Academic literature on the topic 'Autonomous robot system; Robots; Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous robot system; Robots; Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous robot system; Robots; Simulation"
PETTERSSON, JIMMY, and MATTIAS WAHDE. "UFLIBRARY: A SIMULATION LIBRARY IMPLEMENTING THE UTILITY FUNCTION METHOD FOR BEHAVIORAL ORGANIZATION IN AUTONOMOUS ROBOTS." International Journal on Artificial Intelligence Tools 16, no. 03 (June 2007): 507–36. http://dx.doi.org/10.1142/s0218213007003382.
Full textJimenez, Felix, Teruaki Ando, Masayoshi Kanoh, and Tsuyoshi Nakamura. "Psychological Effects of a Synchronously Reliant Agent on Human Beings." Journal of Advanced Computational Intelligence and Intelligent Informatics 17, no. 3 (May 20, 2013): 433–42. http://dx.doi.org/10.20965/jaciii.2013.p0433.
Full textHou, Yew Cheong, Khairul Salleh Mohamed Sahari, Leong Yeng Weng, Hong Kah Foo, Nur Aira Abd Rahman, Nurul Anis Atikah, and Raad Z. Homod. "Development of collision avoidance system for multiple autonomous mobile robots." International Journal of Advanced Robotic Systems 17, no. 4 (July 1, 2020): 172988142092396. http://dx.doi.org/10.1177/1729881420923967.
Full textKurabayashi, Daisuke, Tatsuki Choh, Jia Cheng, and Tetsuro Funato. "Adaptive Formation Transition of a Swarm of Mobile Robots Based on Phase Gradient." Journal of Robotics and Mechatronics 22, no. 4 (August 20, 2010): 467–74. http://dx.doi.org/10.20965/jrm.2010.p0467.
Full textKurabayashi, Daisuke, and Hajime Asama. "Autonomous Knowledge Acquisition and Revision by Intelligent Data Carriers in a Dynamic Environment." Journal of Robotics and Mechatronics 13, no. 2 (April 20, 2001): 154–59. http://dx.doi.org/10.20965/jrm.2001.p0154.
Full textBESSEGHIEUR, Khadir, Wojciech KACZMAREK, and Jarosław PANASIUK. "Multi-robot Control via Smart Phone and Navigation in Robot Operating System." Problems of Mechatronics Armament Aviation Safety Engineering 8, no. 4 (December 30, 2017): 37–46. http://dx.doi.org/10.5604/01.3001.0010.7316.
Full textMartinez S., Fredy H., Fernando Martinez S., and Holman Montiel A. "Bacterial quorum sensing applied to the coordination of autonomous robot swarms." Bulletin of Electrical Engineering and Informatics 9, no. 1 (February 1, 2020): 67–74. http://dx.doi.org/10.11591/eei.v9i1.1538.
Full textMiglino, Orazio, Henrik Hautop Lund, and Stefano Nolfi. "Evolving Mobile Robots in Simulated and Real Environments." Artificial Life 2, no. 4 (July 1995): 417–34. http://dx.doi.org/10.1162/artl.1995.2.4.417.
Full textSenda, Kei, Yoshisada Murotsu, Akira Mitsuya, Hirokazu Adachi, Shin'ichi Ito, and Jynya Shitakubo. "Hardware Experiments of Autonomous Space Robot – A Demonstration of Truss Structure Assembly –." Journal of Robotics and Mechatronics 12, no. 4 (August 20, 2000): 343–50. http://dx.doi.org/10.20965/jrm.2000.p0343.
Full textWanasinghe, Thumeera R., George K. I. Mann, and Raymond G. Gosine. "Decentralized Cooperative Localization Approach for Autonomous Multirobot Systems." Journal of Robotics 2016 (2016): 1–18. http://dx.doi.org/10.1155/2016/2560573.
Full textDissertations / Theses on the topic "Autonomous robot system; Robots; Simulation"
Vaughan, Richard. "Experiments in animal-interactive robotics." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325617.
Full textHosking, Matthew R. "Testability of a swarm robot using a system of systems approach and discrete event simulation /." Online version of thesis, 2009. http://hdl.handle.net/1850/11215.
Full textMcNeal, William B. "Simulation of the autonomous combat systems robot optical detection system." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA342228.
Full text"December 1997." Thesis advisor(s): Gordon Schacher, Donald Brutzman. Includes bibliographical references (p. 131). Also available online.
Kancir, Pierre. "Méthodologie de conception de système multi-robots : de la simulation à la démonstration." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS519/document.
Full textMulti-robot System Design Methodology : from Simulation to Demonstration Multi-robot systems are complex but promising systems in many fields, the number of academic works in this field underlines the importance they will have in the future. However, while these promises are real, they have not yet been realized, as evidenced by the small number of multi-robot systems used in the industry. However, solutions exist to enable industrialists and academics to work together on this issue. We propose a state of the art and challenges associated with the design of multi-robot systems from an academic and industrial point of view. We then present three contributions for the design of these systems: a realization of a heterogeneous swarm as a practical case study in order to highlight the design obstacles. The modification of an autopilot and a simulator to make them compatible with the development of multi-robot systems. Demonstration of an evaluation tool based on the two previous contributions. Finally, we conclude on the scope of this work and future perspectives based on open source
Bhat, Sriharsha. "Hydrobatics: Efficient and Agile Underwater Robots." Licentiate thesis, KTH, Farkostteknik och Solidmekanik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286062.
Full textTermen hydrobatik avser förmåga att utföra avancerade manövrer med undervattensfarkoster. Syftet är att, med bibehållen fart och räckvidd, utvigda den operationella förmågan i manövrering, vilket möjliggör helt nya användningsområden för maximering av kostnadseffektivitet. I denna avhandling undersöks fördelar och tekniska utmaningar relaterade till hydrobatik som tillämpas på undervattensrobotar, vanligen kallade autonoma undervattensfarkoster (AUV). Avhandlingen bidrar till ny kunskap i simulering, reglering samt tillämpning i experiment av dessa robotar genom en strukturerad metod för att realisera hydrobatisk förmåga i realistiska scenarier. Tre nyttoområden beaktas - miljöövervakning, havsproduktion och säkerhet. Inom dessa nyttoområden har ett antal scenarios identifierats där en kombination av smidighet i manövrerbarhet samt effektivitet i prestanda är avgörande för robotens förmåga att utföra sin uppgift. För att åstadkomma detta måste två viktiga tekniska utmaningar lösas. För det första har dessa AUVer färre styrytor/trustrar än frihetsgrader, vilket leder till utmaningen med underaktuering. Utmaningen beskrivs i detalj och lösningsstrategier som använder optimal kontroll och modellprediktiv kontroll belyses. För det andra är flödet runt en AUV som genomför hydrobatiska manövrar komplext med övergång från laminär till stark turbulent flöde vid höga anfallsvinklar. Detta gör flygdynamikmodellering svår. En full 0-360 graders flygdynamikmodell härleds därför, vilken kombinerar en multi-tillförlitlighets hydrodynamisk databas med en generaliserad strategi för komponentvis-superpositionering av laster. Detta möjliggör prediktering av hydrobatiska manövrar som t.ex. utförande av looping, roll, spiraler och väldigt snäva svängradier i realtids- eller nära realtids-simuleringar. I nästa steg presenteras ett cyber-fysikaliskt system (CPS) – där funktionalitet som härrör från simuleringar kan överföras till de verkliga användningsområdena på ett effektivt och säkert sätt. Simulatormiljön är nära integrerad i robot-miljön, vilket möjliggör förvalidering av reglerstrategier och mjukvara innan hårdvaruimplementering. En egenutvecklad hydrobatisk AUV (SAM) används som testplattform. CPS-konceptet valideras med hjälp av SAM i ett realistiskt sceanrio genom att utföra ett sökuppdrag av ett nedsänkt föremål under fältförhållanden. Resultaten av arbetet i denna licentiatavhandling kommer att användas i den fortsatta forskningen som fokuserar på att ytterligare undersöka och utveckla ny metodik för reglering av underaktuerade AUVer. Detta inkluderar utveckling av realtidskapabla ickelinjära MPC-implementeringar som körs ombord, samt AI-baserade reglerstrategier genom ruttplaneringsåterkoppling, autonom systemidentifiering och förstärkningsinlärning. Sådan utveckling kommer att tillämpas för att visa nya möjligheter inom de tre nyttoområdena.
SMaRC
Sotiropoulos, Thierry. "Test aléatoire de la navigation de robots dans des mondes virtuels." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30097/document.
Full textOne of the major challenges for the deployment of autonomous systems in diverse, unstructured and human shared environments, is the trust that can be placed in those systems. Indeed, internal faults in those systems, uncertainties on the perception, or even unforeseen situations, threat this confidence. Our work focus in autonomous robots, which are part of autonomous systems. The validation of the navigation software embedded in robots typically involves test campaigns in the field, which are expensive and potentially risky for the robot itself or its environment. These tests are able to test the system only in a small subset of situations. An alternative is to perform simulation-based testing, by immersing the software in virtual worlds. The aim of this thesis is to study the possibilities and limits offered by simulation-based testing of embedded software in autonomous systems. Our work deals particularly with simulation-based testing of the navigation layer of autonomous mobile robots. The first chapter introduce the contexts of dependability, autonomous systems and their testing, simulation and procedural generation of worlds. We identify and discuss the issues related to autonomous systems simulation-based testing, such as the definition and generation of inputs as well as the oracle. The procedural generation of worlds used in video games is retained as a way to answer the problem of the generation of test inputs (worlds and missions). A first contribution is presented in the second chapter, which is based on the definition and implementation of a first experimental simulation-based testing framework with a mobile robot. The navigation software used is integrated into the Genom framework and tested with the MORSE simulator. Through this experiment, first conclusions are drawn on the relevance of the procedural generation of worlds, and on the oracle to be considered. Measures such as tortuousness or indeterminism of navigation are defined. This first work also leads to propose an approach to define levels of difficulty of worlds. The purpose of the third chapter is to identify whether faults known and corrected in a academic navigation software could have been detected through simulation-based testing. Nearly 10 years of commits of the navigation software (including the P3D module which is an academic version of a trajectory planner used by NASA) were thus analyzed. Each fault detected is studied to determine the oracle necessary to detect it whether it could be activated in simulation. Many recommendations are extracted from this study, especially on the properties of the oracle to set up for this type of system. In the fourth chapter, lessons learned from the previous two chapters are implemented for the case of an industrial robot. The considered system, provided by our industrial partner Naïo is the agricultural robot Oz. The conclusions of the preceding chapters regarding the world generation and the oracles are validated by an intensive test campaign in simulation
Mikhalsky, Maxim. "Efficient biomorphic vision for autonomous mobile robots." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16206/.
Full textPaul, André. "Design of an autonomous navigation system for a mobile robot." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99565.
Full textAn artificial landmark localization algorithm was also developed to continuously record the positions of the robot whilst it was moving. The algorithm was tested on a grid layout of 6 m x 6 m. The performance of the artificial landmark localization technique was compared with odometric and inertial measurements obtained using a dead-reckoning method and a gyroscope-corrected dead-reckoning method. The artificial landmark localization method resulted in much smaller root mean square error (0.033 m) of position estimates compared to the other two methods (0.175 m and 0.135 m respectively).
Salvaro, Mattia. "Virtual sensing technology applied to a swarm of autonomous robots." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8508/.
Full textDag, Antymos. "Autonomous Indoor Navigation System for Mobile Robots." Thesis, Linköpings universitet, Programvara och system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129419.
Full textBooks on the topic "Autonomous robot system; Robots; Simulation"
McNeal, William B. Simulation of the autonomous combat systems robot optical detection system. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textSIMPAR 2008 (2008 Venice, Italy). Simulation, modeling, and programming for autonomous robots: First international conference, SIMPAR 2008, Venice, Italy, November 3-7, 2008 proceedings. New York: Springer, 2008.
Find full textPushkin, Kachroo, ed. Autonomous underwater vehicles: Modeling, control design, and simulation. Boca Raton: CRC Press, 2011.
Find full textSIMPAR 2008 (2008 Venice, Italy). Simulation, modeling, and programming for autonomous robots: First international conference, SIMPAR 2008, Venice, Italy, November 3-7, 2008 proceedings. New York: Springer, 2008.
Find full textStefano, Carpin, ed. Simulation, modeling, and programming for autonomous robots: First international conference, SIMPAR 2008, Venice, Italy, November 3-7, 2008 proceedings. New York: Springer, 2008.
Find full textPushkin, Kachroo, ed. Autonomous underwater vehicles: Modeling, control design, and simulation. Boca Raton: CRC Press, 2011.
Find full textAndo, Noriaki. Simulation, Modeling, and Programming for Autonomous Robots: Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
Find full textSimulation of the Autonomous Combat Systems Robot Optical Detection System. Storming Media, 1997.
Find full textKozlowski, Krzysztof, Mohammad O. Tokhi, and Gurvinder S. Virk. Mobile Service Robotics. World Scientific Publishing Co Pte Ltd, 2014.
Find full textProgress report on simulation study of the ROMPS robot control system. [Washington, D.C.]: Catholic University of America, Dept. of Electrical Engineering, 1994.
Find full textBook chapters on the topic "Autonomous robot system; Robots; Simulation"
Tanoto, Andry, Felix Werner, and Ulrich Rückert. "Multi-Robot System Validation: From Simulation to Prototyping with Mini Robots in the Teleworkbench." In Advances in Autonomous Mini Robots, 147–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27482-4_16.
Full textKot, Tomáš, Václav Krys, and Petr Novak. "Simulation System for Teleoperated Mobile Robots." In Modelling and Simulation for Autonomous Systems, 164–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13823-7_15.
Full textTsukahara, Kiyoshi, Yorihiko Tanaka, Yingxin He, Toshihisa Miyamoto, and Kyouichi Tatsuno. "Conceptual Design of a Power Distribution Line Maintenance Robot Using a Developed CG Simulator and Experimental Robot System." In Simulation, Modeling, and Programming for Autonomous Robots, 340–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89076-8_33.
Full textGherardi, Luca, Davide Brugali, and Andrea Luzzana. "Dealing with Conflicting Requirements in Robot System Engineering: A Laboratory-Based Course." In Simulation, Modeling, and Programming for Autonomous Robots, 554–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11900-7_47.
Full textMatsusaka, Yosuke, and Isao Hara. "Implementation of Distributed Production System for Heterogeneous Multiprocessor Robotic Systems." In Simulation, Modeling, and Programming for Autonomous Robots, 275–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17319-6_27.
Full textAhn, Ho Seok, I.-Han Kuo, Chandan Datta, Rebecca Stafford, Ngaire Kerse, Kathy Peri, Elizabeth Broadbent, and Bruce A. MacDonald. "Design of a Kiosk Type Healthcare Robot System for Older People in Private and Public Places." In Simulation, Modeling, and Programming for Autonomous Robots, 578–89. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11900-7_49.
Full textLächele, Johannes, Antonio Franchi, Heinrich H. Bülthoff, and Paolo Robuffo Giordano. "SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems." In Simulation, Modeling, and Programming for Autonomous Robots, 375–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34327-8_34.
Full textAraiza-Illan, Dejanira, David Western, Anthony G. Pipe, and Kerstin Eder. "Systematic and Realistic Testing in Simulation of Control Code for Robots in Collaborative Human-Robot Interactions." In Towards Autonomous Robotic Systems, 20–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40379-3_3.
Full textDrews, Sebastian, Sven Lange, and Peter Protzel. "Validating an Active Stereo System Using USARSim." In Simulation, Modeling, and Programming for Autonomous Robots, 387–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17319-6_36.
Full textAwaad, Iman, Ronny Hartanto, Beatriz León, and Paul Plöger. "A Software System for Robotic Learning by Experimentation." In Simulation, Modeling, and Programming for Autonomous Robots, 99–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89076-8_13.
Full textConference papers on the topic "Autonomous robot system; Robots; Simulation"
Khan, Muhammad Tahir, and Clarence de Silva. "Immune System-Inspired Dynamic Multi-Robot Coordination." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87715.
Full textAngatkina, Oyuna, Kimberly Gustafson, Aimy Wissa, and Andrew Alleyne. "Path Following for the Soft Origami Crawling Robot." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9175.
Full textQing, Tang, Xiong Rong, Liu Yong, and Chu Jian. "HumRoboSim: An Autonomous Humanoid Robot Simulation System." In 2008 International Conference on Cyberworlds (CW). IEEE, 2008. http://dx.doi.org/10.1109/cw.2008.101.
Full textHaghshenas-Jaryani, Mahdi, Hakki Erhan Sevil, and Liang Sun. "Navigation and Obstacle Avoidance of Snake-Robot Guided by a Co-Robot UAV Visual Servoing." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3156.
Full textCheung, Yushing, Jae H. Chung, and Ketula Patel. "Semi-Autonomous Collaborative Control of Multi-Robotic Systems for Multi-Task Multi-Target Pairing." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64699.
Full textDang, Fengying, and Feitian Zhang. "DMD-Based Distributed Flow Sensing for Bio-Inspired Autonomous Underwater Robots." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9113.
Full textKuts, Vladimir, Tauno Otto, Toivo Tähemaa, Khuldoon Bukhari, and Tengiz Pataraia. "Adaptive Industrial Robots Using Machine Vision." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86720.
Full textRichardson, Al, and Michael H. Rodgers. "Vision-based semi-autonomous outdoor robot system to reduce soldier workload." In Aerospace/Defense Sensing, Simulation, and Controls, edited by Grant R. Gerhart and Chuck M. Shoemaker. SPIE, 2001. http://dx.doi.org/10.1117/12.440000.
Full textIkeda, Hidetoshi, Kazuki Hashimoto, Daisuke Murayama, Rikuto Yamazaki, and Eiji Nakano. "Robot teleoperation support system for collision avoidance between wheelchair front wheels and a step." In 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). IEEE, 2016. http://dx.doi.org/10.1109/simpar.2016.7862397.
Full textQi, Le, Baoxi Yuan, Peng Ma, Yingxia Guo, Feng Wang, and Chen Mi. "Scene Simulation and Cooperative Target Detection During UAV Autonomous Landing." In 2020 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2020. http://dx.doi.org/10.1109/icris52159.2020.00018.
Full textReports on the topic "Autonomous robot system; Robots; Simulation"
Christie, Benjamin, Osama Ennasr, and Garry Glaspell. Autonomous navigation and mapping in a simulated environment. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42006.
Full text