Academic literature on the topic 'Autonomous Driving Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Autonomous Driving Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Autonomous Driving Systems"
Walch, Marcel, Kristin Mühl, Martin Baumann, and Michael Weber. "Autonomous Driving." International Journal of Mobile Human Computer Interaction 9, no. 2 (April 2017): 58–74. http://dx.doi.org/10.4018/ijmhci.2017040104.
Full textYaakub, Salma, and Mohammed Hayyan Alsibai. "A Review on Autonomous Driving Systems." International Journal of Engineering Technology and Sciences 5, no. 1 (June 20, 2018): 1–16. http://dx.doi.org/10.15282/ijets.v5i1.2800.
Full textHenschke, Adam. "Trust and resilient autonomous driving systems." Ethics and Information Technology 22, no. 1 (November 19, 2019): 81–92. http://dx.doi.org/10.1007/s10676-019-09517-y.
Full textV S, Amar. "Autonomous Driving using CNN." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 30, 2021): 3633–36. http://dx.doi.org/10.22214/ijraset.2021.35771.
Full textLee, Heung-Gu, Dong-Hyun Kang, and Deok-Hwan Kim. "Human–Machine Interaction in Driving Assistant Systems for Semi-Autonomous Driving Vehicles." Electronics 10, no. 19 (October 1, 2021): 2405. http://dx.doi.org/10.3390/electronics10192405.
Full textLIM, Kyung-Il. "Fifth-Generation Technology in Autonomous Driving Systems." Physics and High Technology 29, no. 3 (March 31, 2020): 21–26. http://dx.doi.org/10.3938/phit.29.009.
Full textBlasinski, Henryk, Joyce Farrell, Trisha Lian, Zhenyi Liu, and Brian Wandell. "Optimizing Image Acquisition Systems for Autonomous Driving." Electronic Imaging 2018, no. 5 (January 28, 2018): 161–1. http://dx.doi.org/10.2352/issn.2470-1173.2018.05.pmii-161.
Full textBhat, Anand, Shunsuke Aoki, and Ragunathan Rajkumar. "Tools and Methodologies for Autonomous Driving Systems." Proceedings of the IEEE 106, no. 9 (September 2018): 1700–1716. http://dx.doi.org/10.1109/jproc.2018.2841339.
Full textVitas, Dijana, Martina Tomic, and Matko Burul. "Traffic Light Detection in Autonomous Driving Systems." IEEE Consumer Electronics Magazine 9, no. 4 (July 1, 2020): 90–96. http://dx.doi.org/10.1109/mce.2020.2969156.
Full textBaber, J., J. Kolodko, T. Noel, M. Parent, and L. Vlacic. "Cooperative autonomous driving - Intelligent vehicles sharing city roads cooperative autonomous driving." IEEE Robotics & Automation Magazine 12, no. 1 (March 2005): 44–49. http://dx.doi.org/10.1109/mra.2005.1411418.
Full textDissertations / Theses on the topic "Autonomous Driving Systems"
Al-Khoury, Fadi. "Safety of Machine Learning Systems in Autonomous Driving." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218020.
Full textMaskininlärning, och i synnerhet deep learning, är extremt kapabla verktyg för att lösa problem som är svåra, eller omöjliga att hantera analytiskt. Applikationsområden inkluderar mönsterigenkänning, datorseende, tal‐ och språkförståelse. När utvecklingen inom bilindustrin går mot en ökad grad av automatisering, blir problemen som måste lösas alltmer komplexa, vilket har lett till ett ökat användande av metoder från maskininlärning och deep learning. Med detta tillvägagångssätt lär sig systemet lösningen till ett problem implicit från träningsdata och man kan inte direkt utvärdera lösningens korrekthet. Detta innebär problem när systemet i fråga är del av en säkerhetskritisk funktion, vilket är fallet för självkörande fordon. Detta examensarbete behandlar säkerhetsaspekter relaterade till maskininlärningssystem i autonoma fordon och applicerar en safety monitoring‐metodik på en kollisionsundvikningsfunktion. Simuleringar utförs, med ett deep learning‐system som del av systemet för perception, som ger underlag för styrningen av fordonet, samt en safety monitor för kollisionsundvikning. De relaterade operationella situationerna och säkerhetsvillkoren studeras för en autonom körnings‐funktion, där potentiella fel i det lärande systemet introduceras och utvärderas. Vidare introduceras ett förslag på ett mått på trovärdighet hos det lärande systemet under drift.
Agha, Jafari Wolde Bahareh. "A systematic Mapping study of ADAS and Autonomous Driving." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-42754.
Full textVillalonga, Pineda Gabriel. "Leveraging Synthetic Data to Create Autonomous Driving Perception Systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671739.
Full textLa anotación manual de imágenes para desarrollar sistemas basados en visión por computador ha sido uno de los puntos más problemáticos desde que se utiliza aprendizaje automático para ello. Esta tesis se centra en aprovechar los datos sintéticos para aliviar el coste de las anotaciones manuales en tres tareas de percepción relacionadas con la asistencia a la conducción y la conducción autónoma. En todo momento asumimos el uso de redes neuronales convolucionales para el desarrollo de nuestros modelos profundos de percepción. La primera tarea plantea el reconocimiento de señales de tráfico, un problema de clasificación de imágenes. Asumimos que el número de clases de señales de tráfico a reconocer se debe incrementar sin haber podido anotar nuevas imágenes con las que realizar el correspondiente reentrenamiento. Demostramos que aprovechando los datos sintéticos de las nuevas clases y transformándolas con una red adversaria-generativa (GAN, de sus siglas en inglés) entrenada con las clases conocidas (sin usar muestras de las nuevas clases), es posible reentrenar la red neuronal para clasificar todas las señales en una proporción de ~1/4 entre clases nuevas y conocidas. La segunda tarea consiste en la detección de vehículos y peatones (objetos) en imágenes. En este caso, asumimos la recepción de un conjunto de imágenes sin anotar. El objetivo es anotar automáticamente esas imágenes para que así se puedan utilizar posteriormente en el entrenamiento del detector de objetos que deseemos. Para alcanzar este objetivo, partimos de datos sintéticos anotados y proponemos un método de aprendizaje semi-supervisado basado en la idea del co-aprendizaje. Además, utilizamos una GAN para reducir la distancia entre los dominios sintético y real antes de aplicar el co-aprendizaje. Nuestros resultados cuantitativos muestran que el procedimiento desarrollado permite anotar el conjunto de imágenes de entrada con la precisión suficiente para entrenar detectores de objetos de forma efectiva; es decir, tan precisos como si las imágenes se hubiesen anotado manualmente. En la tercera tarea dejamos atrás el espacio 2D de las imágenes, y nos centramos en procesar nubes de puntos 3D provenientes de sensores LiDAR. Nuestro objetivo inicial era desarrollar un detector de objetos 3D (vehículos, peatones, ciclistas) entrenado en nubes de puntos sintéticos estilo LiDAR. En el caso de las imágenes cabía esperar el problema de cambio de dominio debido a las diferencias visuales entre las imágenes sintéticas y reales. Pero, a priori, no esperábamos lo mismo al trabajar con nubes de puntos LiDAR, ya que se trata de información geométrica proveniente del muestreo activo del mundo, sin que la apariencia visual influya. Sin embargo, en la práctica, hemos visto que también aparecen los problemas de adaptación de dominio. Factores como los parámetros de muestreo del LiDAR, la configuración de los sensores a bordo del vehículo autónomo, y la anotación manual de los objetos 3D, inducen diferencias de dominio. En la tesis demostramos esta observación mediante un exhaustivo conjunto de experimentos con diferentes bases de datos públicas y detectores 3D disponibles. Por tanto, en relación a la tercera tarea, el trabajo se ha centrado finalmente en el diseño de una GAN capaz de transformar nubes de puntos 3D para llevarlas de un dominio a otro, un tema relativamente inexplorado. Finalmente, cabe mencionar que todos los conjuntos de datos sintéticos usados en estas tres tareas han sido diseñados y generados en el contexto de esta tesis doctoral y se harán públicos. En general, consideramos que esta tesis presenta un avance en el fomento de la utilización de datos sintéticos para el desarrollo de modelos profundos de percepción, esenciales en el campo de la conducción autónoma.
Manually annotating images to develop vision models has been a major bottleneck since computer vision and machine learning started to walk together. This thesis focuses on leveraging synthetic data to alleviate manual annotation for three perception tasks related to driving assistance and autonomous driving. In all cases, we assume the use of deep convolutional neural networks (CNNs) to develop our perception models. The first task addresses traffic sign recognition (TSR), a kind of multi-class classification problem. We assume that the number of sign classes to be recognized must be suddenly increased without having annotated samples to perform the corresponding TSR CNN re-training. We show that leveraging synthetic samples of such new classes and transforming them by a generative adversarial network (GAN) trained on the known classes (i.e., without using samples from the new classes), it is possible to re-train the TSR CNN to properly classify all the signs for a ~1/4 ratio of new/known sign classes. The second task addresses on-board 2D object detection, focusing on vehicles and pedestrians. In this case, we assume that we receive a set of images without the annotations required to train an object detector, i.e., without object bounding boxes. Therefore, our goal is to self-annotate these images so that they can later be used to train the desired object detector. In order to reach this goal, we leverage from synthetic data and propose a semi-supervised learning approach based on the co-training idea. In fact, we use a GAN to reduce the synth-to-real domain shift before applying co-training. Our quantitative results show that co-training and GAN-based image-to-image translation complement each other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from human annotations. While in previous tasks we focus on vision-based perception, the third task we address focuses on LiDAR pointclouds. Our initial goal was to develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While for images we may expect synth/real-to-real domain shift due to differences in their appearance (e.g. when source and target images come from different camera sensors), we did not expect so for LiDAR pointclouds since these active sensors factor out appearance and provide sampled shapes. However, in practice, we have seen that it can be domain shift even among real-world LiDAR pointclouds. Factors such as the sampling parameters of the LiDARs, the sensor suite configuration on-board the ego-vehicle, and the human annotation of 3D bounding boxes, do induce a domain shift. We show it through comprehensive experiments with different publicly available datasets and 3D detectors. This redirected our goal towards the design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored topic. Finally, it is worth to mention that all the synthetic datasets used for these three tasks, have been designed and generated in the context of this PhD work and will be publicly released. Overall, we think this PhD presents several steps forward to encourage leveraging synthetic data for developing deep perception models in the field of driving assistance and autonomous driving.
Universitat Autònoma de Barcelona. Programa de Doctorat en Informàtica
Sharma, Devendra. "Evaluation and Analysis of Perception Systems for Autonomous Driving." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291423.
Full textFör säker rörlighet måste ett autonomt fordon uppfatta omgivningen exakt. Det finns många uppfattningsuppgifter associerade med att förstå den lokala miljön, såsom objektdetektering, lokalisering och filanalys. I synnerhet objektdetektering spelar en viktig roll för att bestämma ett objekts plats och klassificera det korrekt och är en av de utmanande uppgifterna inom det självdrivande forskningsområdet. Innan en anställd detekteringsmodul används i autonoma fordonsprovningar måste en organisation ha en exakt analys av modulen. Därför blir det avgörande för ett företag att ha en utvärderingsram för att utvärdera en objektdetekteringsalgoritms prestanda. Denna avhandling utvecklar ett omfattande ramverk för utvärdering och analys av objektdetekteringsalgoritmer, både 2 D (kamerabilder baserade) och 3 D (LiDAR-punktmolnbaserade). Rörledningen som utvecklats i denna avhandling ger möjlighet att enkelt utvärdera flera modeller, betecknad med nyckelprestandamätvärdena, Genomsnittlig precision, F-poäng och genomsnittlig genomsnittlig precision. 40-punkts interpoleringsmetod används för att beräkna medelprecisionen.
Behere, Sagar. "Architecting Autonomous Automotive Systems : With an emphasis on Cooperative Driving." Licentiate thesis, KTH, Inbyggda styrsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120595.
Full textQC 20130412
Behere, Sagar. "Reference Architectures for Highly Automated Driving." Doctoral thesis, KTH, Inbyggda styrsystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179306.
Full textQC 20151216
Veeramani, Lekamani Sarangi. "Model Based Systems Engineering Approach to Autonomous Driving : Application of SysML for trajectory planning of autonomous vehicle." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254891.
Full textModellbaserade systemteknikens (MBSE) inriktning syftar till att implementera de olika processerna i systemteknik (SE) genom diagram som ger olika perspektiv på samma underliggande system. Detta tillvägagångssätt ger en grund som hjälper till att utveckla ett komplext system på ett systematiskt sätt. Sålunda syftar denna avhandling att härleda en systemmodell genom detta tillvägagångssätt för autonom körning, med särskild inriktning på att utveckla delsystemet som är ansvarigt för att generera en genomförbar ban för en miniatyrbil, som kallas AutoCar, för att göra det möjligt att nå målet. Rapporten ger en bakgrund till MBSE and Systemmodelleringsspråk (SysML) som används för modellering av systemet. Med denna bakgrund, MBSE ramverket för AutoCar är härledt och den övergripande systemdesignen förklaras. I denna rapport förklaras vidare begreppen autonom banplanering följd av en introduktion till Robot Operating System (ROS) och dess tillämpning för systemplanering av systemet. Rapporten avslutas med en detaljerad analys av fördelarna med att använda detta tillvägagångssätt för att utveckla ett system. Det identifierar också bristerna för att tillämpa MBSE på systemutveckling. Rapporten stänger med en omtale om hur det givna projektet kan vidarebefordras för att kunna realisera det på ett fysiskt system.
Perez, Cervantes Marcus Sebastian. "Issues of Control with Older Drivers and Future Automated Driving Systems." Research Showcase @ CMU, 2011. http://repository.cmu.edu/theses/21.
Full textJugade, Shriram. "Shared control authority between human and autonomous driving system for intelligent vehicles." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2507.
Full textRoad traffic accidents have always been a concern to the driving community which has led to various research developments for improving the way we drive the vehicles. Since human error causes most of the road accidents, introducing automation in the vehicle is an efficient way to address this issue thus making the vehicles intelligent. This approach has led to the development of ADAS (Advanced Driver Assistance Systems) functionalities. The process of introducing automation in the vehicle is continuously evolving. Currently the research in this field has targeted full autonomy of the vehicle with the aim to tackle the road safety to its fullest potential. The gap between ADAS and full autonomy is not narrow. One of the approach to bridge this gap is to introduce collaboration between human driver and autonomous system. There have been different methodologies such as haptic feedback, cooperative driving where the autonomous system adapts according to the human driving inputs/intention for the corrective action each having their own limitations. This work addresses the problem of shared control authority between human driver and autonomous driving system without haptic feedback using the fusion of driving inputs. The development of shared control authority is broadly divided into different stages i.e. shared control framework, driving input assessment, driving behavior prediction, fusion process etc. Conflict resolution is the high level strategy introduced in the framework for achieving the fusion. The driving inputs are assessed with respect to different factors such as collision risk, speed limitation,lane/road departure prevention etc in the form of degree of belief in the driving input admissibility using sensor data. The conflict resolution is targeted for a particular time horizon in the future using a sensor based driving input prediction using neural networks. A two player non-cooperative game (incorporating admissibility and driving intention) is defined to represent the conflict resolution as a bargaining problem. The final driving input is computed using the Nash equilibrium. The shared control strategy is validated using a test rig integrated with the software Simulink and IPG CarMaker. Various aspects of shared control strategy such as human-centered, collision avoidance, absence of any driving input, manual driving refinement etc were included in the validation process
Kang, Yong Suk. "Development of Predictive Vehicle Control System using Driving Environment Data for Autonomous Vehicles and Advanced Driver Assistance Systems." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85106.
Full textPh. D.
Books on the topic "Autonomous Driving Systems"
Shi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6.
Full textJoseph, Lentin, and Amit Kumar Mondal. Autonomous Driving and Advanced Driver-Assistance Systems (ADAS). Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003048381.
Full textWaschl, Harald, Ilya Kolmanovsky, and Frank Willems, eds. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91569-2.
Full textTrimble, Tammy E., Stephanie Baker, Jason Wagner, Wendy Wagner, Lisa Loftus-Otway, Brad Mallory, Susanna Gallun, et al. Implications of Connected and Automated Driving Systems, Vol. 4: Autonomous Vehicle Action Plan. Washington, D.C.: Transportation Research Board, 2018. http://dx.doi.org/10.17226/25292.
Full textZuev, Sergey, Ruslan Maleev, and Aleksandr Chernov. Energy efficiency of electrical equipment systems of autonomous objects. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1740252.
Full textTrimble, Tammy E., Stephanie Baker, Jason Wagner, Myra Blanoo, Wendy Wagner, Lisa Loftus-Otway, Brad Mallory, et al. Implications of Connected and Automated Driving Systems, Vol. 5: Developing the Autonomous Vehicle Action Plan. Washington, D.C.: Transportation Research Board, 2018. http://dx.doi.org/10.17226/25291.
Full textShi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Springer International Publishing AG, 2022.
Find full textShi, Weisong, and Liangkai Liu. Computing Systems for Autonomous Driving. Springer International Publishing AG, 2021.
Find full textZiefle, Martina, Houbing Song, Guido Dartmann, Anke Schmeink, and Volker Lücken. Smart Transportation: AI Enabled Mobility and Autonomous Driving. Taylor & Francis Group, 2021.
Find full textZiefle, Martina, Houbing Song, Guido Dartmann, Anke Schmeink, and Volker Lücken. Smart Transportation: AI Enabled Mobility and Autonomous Driving. Taylor & Francis Group, 2021.
Find full textBook chapters on the topic "Autonomous Driving Systems"
Matthaei, Richard, Andreas Reschka, Jens Rieken, Frank Dierkes, Simon Ulbrich, Thomas Winkle, and Markus Maurer. "Autonomous Driving." In Handbook of Driver Assistance Systems, 1519–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12352-3_61.
Full textMatthaei, Richard, Andreas Reschka, Jens Rieken, Frank Dierkes, Simon Ulbrich, Thomas Winkle, and Markus Maurer. "Autonomous Driving." In Handbook of Driver Assistance Systems, 1–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09840-1_61-1.
Full textPavone, Marco. "Autonomous Mobility-on-Demand Systems for Future Urban Mobility." In Autonomous Driving, 387–404. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48847-8_19.
Full textIclodean, Călin, Bogdan Ovidiu Varga, and Nicolae Cordoș. "Autonomous Driving Systems." In Autonomous Vehicles for Public Transportation, 69–138. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14678-7_3.
Full textShi, Weisong, and Liangkai Liu. "Autonomous Driving Landscape." In Computing Systems for Autonomous Driving, 1–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6_1.
Full textShi, Weisong, and Liangkai Liu. "Autonomous Driving Simulators." In Computing Systems for Autonomous Driving, 143–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81564-6_6.
Full textBehere, Sagar, and Martin Törngren. "Systems Engineering and Architecting for Intelligent Autonomous Systems." In Automated Driving, 313–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31895-0_13.
Full textHammoud, Ahmad, Azzam Mourad, Hadi Otrok, and Zbigniew Dziong. "Data-Driven Federated Autonomous Driving." In Mobile Web and Intelligent Information Systems, 79–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14391-5_6.
Full textLiu, Shaoshan, Liyun Li, Jie Tang, Shuang Wu, and Jean-Luc Gaudiot. "Perception in Autonomous Driving." In Creating Autonomous Vehicle Systems, 51–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01802-2_3.
Full textLiu, Shaoshan, Liyun Li, Jie Tang, Shuang Wu, and Jean-Luc Gaudiot. "Introduction to Autonomous Driving." In Creating Autonomous Vehicle Systems, 1–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01802-2_1.
Full textConference papers on the topic "Autonomous Driving Systems"
Furst, Simon. "System/ Software Architecture for Autonomous Driving Systems." In 2019 IEEE International Conference on Software Architecture Companion (ICSA-C). IEEE, 2019. http://dx.doi.org/10.1109/icsa-c.2019.00013.
Full text"Session AD: Autonomous Driving." In 2021 16th International Conference on Computer Engineering and Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces54031.2021.9686118.
Full textBiral, Francesco, Enrico Bertolazzi, Daniele Bortoluzzi, and Paolo Bosetti. "Development and Testing of an Autonomous Driving Module for Critical Driving Conditions." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68487.
Full textvan den Broek, Thijs H. A., Jeroen Ploeg, and Bart D. Netten. "Advisory and autonomous cooperative driving systems." In 2011 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2011. http://dx.doi.org/10.1109/icce.2011.5722582.
Full textStocco, Andrea, Michael Weiss, Marco Calzana, and Paolo Tonella. "Misbehaviour prediction for autonomous driving systems." In ICSE '20: 42nd International Conference on Software Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377811.3380353.
Full textWang, Keying. "Safe Reconfiguration of Autonomous Driving Systems." In 2020 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2020. http://dx.doi.org/10.1109/urtc51696.2020.9668860.
Full textOuarnoughi, Hamza, Mohamed Neggaz, Berkay Gulcan, Ozcan Ozturk, and Smail Niar. "Hierarchical Platform for Autonomous Driving." In INTESA2019: INTelligent Embedded Systems Architectures and Applications Workshop 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3372394.3372400.
Full text"Image Processing for Autonomous Driving." In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2019. http://dx.doi.org/10.1109/iwssip.2019.8787260.
Full textLaurenza, Maicol, Gianluca Pepe, and Antonio Carcaterra. "Auto-Sapiens Autonomous Driving Vehicle." In 6th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009419403610369.
Full textLaurenza, Maicol, Gianluca Pepe, and Antonio Carcaterra. "Auto-Sapiens Autonomous Driving Vehicle." In 6th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009419400002550.
Full textReports on the topic "Autonomous Driving Systems"
Wang, Shenlong, and David Forsyth. Safely Test Autonomous Vehicles with Augmented Reality. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-015.
Full textRazdan, Rahul. Unsettled Topics Concerning Human and Autonomous Vehicle Interaction. SAE International, December 2020. http://dx.doi.org/10.4271/epr2020025.
Full textHemphill, Jeff. Unsettled Issues in Drive-by-Wire and Automated Driving System Availability. SAE International, January 2022. http://dx.doi.org/10.4271/epr2022002.
Full textQin, Tong, Zhen Chen, John Jakeman, and Dongbin Xiu. Data-driven learning of non-autonomous systems. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1763550.
Full textQuinn, Brian, Jordan Bates, Michael Parker, and Sally Shoop. A detailed approach to autonomous vehicle control through Ros and Pixhawk controllers. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42460.
Full textPorcel Magnusson, Cristina. Unsettled Topics Concerning Coating Detection by LiDAR in Autonomous Vehicles. SAE International, January 2021. http://dx.doi.org/10.4271/epr2021002.
Full textLevine, Edward R. Multi-Scale Model-Driven Sampling with Autonomous Systems at a National Littoral Laboratory: Turbulence Characterization from an AUV. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630605.
Full textLevine, Edward R. Renewal of Multi-Scale Model-Driven Sampling with Autonomous Systems at a National Littoral Laboratory: Turbulence Characterization with an AUV. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625153.
Full textMartinez, Kimberly D., and Gaojian Huang. Exploring the Effects of Meaningful Tactile Display on Perception and Preference in Automated Vehicles. Mineta Transportation Institute, October 2022. http://dx.doi.org/10.31979/mti.2022.2164.
Full textRarasati, Niken, and Rezanti Putri Pramana. Giving Schools and Teachers Autonomy in Teacher Professional Development Under a Medium-Capability Education System. Research on Improving Systems of Education (RISE), January 2023. http://dx.doi.org/10.35489/bsg-rise-ri_2023/050.
Full text