Journal articles on the topic 'Autonomous and highly oscillatory differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Autonomous and highly oscillatory differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
DAVIDSON, B. D., and D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM." Mathematical Models and Methods in Applied Sciences 03, no. 03 (June 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Full textPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS." Proceedings of the Edinburgh Mathematical Society 48, no. 2 (May 23, 2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Full textOgorodnikova, S., and F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS." Mathematical Modelling and Analysis 11, no. 4 (December 31, 2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Full textCondon, Marissa, Alfredo Deaño, and Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2118 (January 13, 2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Full textSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations." SIAM Journal on Numerical Analysis 46, no. 2 (January 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Full textPetzold, Linda R., Laurent O. Jay, and Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations." Acta Numerica 6 (January 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Full textCohen, David, Ernst Hairer, and Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations." Foundations of Computational Mathematics 3, no. 4 (October 1, 2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Full textCondon, M., A. Iserles, and S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2161 (January 8, 2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Full textHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter." Journal of Mathematical Sciences 236, no. 3 (December 1, 2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Full textChartier, Philippe, Joseba Makazaga, Ander Murua, and Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations." Numerische Mathematik 128, no. 1 (January 17, 2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Full textLanets, O. S., V. T. Dmytriv, V. M. Borovets, I. A. Derevenko, and I. M. Horodetskyy. "Analytical Model of the Two-Mass Above Resonance System of the Eccentric-Pendulum Type Vibration Table." International Journal of Applied Mechanics and Engineering 25, no. 4 (December 1, 2020): 116–29. http://dx.doi.org/10.2478/ijame-2020-0053.
Full textCondon, Marissa, Alfredo Deaño, Arieh Iserles, and Karolina Kropielnicka. "Efficient computation of delay differential equations with highly oscillatory terms." ESAIM: Mathematical Modelling and Numerical Analysis 46, no. 6 (April 19, 2012): 1407–20. http://dx.doi.org/10.1051/m2an/2012004.
Full textMahdavi, Ashkan, Sheng-Wei Chi, and Negar Kamali. "Harmonic-Enriched Reproducing Kernel Approximation for Highly Oscillatory Differential Equations." Journal of Engineering Mechanics 146, no. 4 (April 2020): 04020014. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001727.
Full textIserles, Arieh. "Think globally, act locally: Solving highly-oscillatory ordinary differential equations." Applied Numerical Mathematics 43, no. 1-2 (October 2002): 145–60. http://dx.doi.org/10.1016/s0168-9274(02)00122-8.
Full textLiu, Zhongli, Tianhai Tian, and Hongjiong Tian. "Asymptotic-numerical solvers for highly oscillatory second-order differential equations." Applied Numerical Mathematics 137 (March 2019): 184–202. http://dx.doi.org/10.1016/j.apnum.2018.11.004.
Full textSanz-Serna, J. M., and Beibei Zhu. "Word series high-order averaging of highly oscillatory differential equations with delay." Applied Mathematics and Nonlinear Sciences 4, no. 2 (December 20, 2019): 445–54. http://dx.doi.org/10.2478/amns.2019.2.00042.
Full textAriel, Gil, Bjorn Engquist, and Richard Tsai. "A multiscale method for highly oscillatory ordinary differential equations with resonance." Mathematics of Computation 78, no. 266 (October 3, 2008): 929–56. http://dx.doi.org/10.1090/s0025-5718-08-02139-x.
Full textLiu, Wensheng. "Averaging Theorems for Highly Oscillatory Differential Equations and Iterated Lie Brackets." SIAM Journal on Control and Optimization 35, no. 6 (November 1997): 1989–2020. http://dx.doi.org/10.1137/s0363012994268667.
Full textJohn, Sabo, and Pius Tumba. "The Efficiency of Block Hybrid Method for Solving Malthusian Growth Model and Prothero-Robinson Oscillatory Differential Equations." International Journal of Development Mathematics (IJDM) 1, no. 3 (September 9, 2024): 008–22. http://dx.doi.org/10.62054/ijdm/0103.02.
Full textSAIRA and Wen-Xiu Ma. "An Approximation Method to Compute Highly Oscillatory Singular Fredholm Integro-Differential Equations." Mathematics 10, no. 19 (October 4, 2022): 3628. http://dx.doi.org/10.3390/math10193628.
Full textZaman, Sakhi, Latif Ullah Khan, Irshad Hussain, and Lucian Mihet-Popa. "Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits." Symmetry 14, no. 1 (January 9, 2022): 115. http://dx.doi.org/10.3390/sym14010115.
Full textSanz-Serna, J. M., and Beibei Zhu. "A stroboscopic averaging algorithm for highly oscillatory delay problems." IMA Journal of Numerical Analysis 39, no. 3 (April 13, 2018): 1110–33. http://dx.doi.org/10.1093/imanum/dry020.
Full textDizicheh, A. Karimi, F. Ismail, M. Tavassoli Kajani, and Mohammad Maleki. "A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems." Journal of Applied Mathematics 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/591636.
Full textBao, W. "Uniformly Accurate Multiscale Time Integrators for Highly Oscillatory Second Order Differential Equations." Journal of Mathematical Study 47, no. 2 (June 2014): 111–50. http://dx.doi.org/10.4208/jms.v47n2.14.01.
Full textLiu, Zhongli, Hongjiong Tian, and Xiong You. "Adiabatic Filon-type methods for highly oscillatory second-order ordinary differential equations." Journal of Computational and Applied Mathematics 320 (August 2017): 1–14. http://dx.doi.org/10.1016/j.cam.2017.01.028.
Full textBlanes, Sergio, Fernando Casas, and Ander Murua. "Splitting methods for differential equations." Acta Numerica 33 (July 2024): 1–161. http://dx.doi.org/10.1017/s0962492923000077.
Full textBayly, Philip V., Larry A. Taber, and Anders E. Carlsson. "Damped and persistent oscillations in a simple model of cell crawling." Journal of The Royal Society Interface 9, no. 71 (October 26, 2011): 1241–53. http://dx.doi.org/10.1098/rsif.2011.0627.
Full textLovetskiy, Konstantin P., Leonid A. Sevastianov, Michal Hnatič, and Dmitry S. Kulyabov. "Numerical Integration of Highly Oscillatory Functions with and without Stationary Points." Mathematics 12, no. 2 (January 17, 2024): 307. http://dx.doi.org/10.3390/math12020307.
Full textBanshchikov, A. V., A. V. Lakeev, and V. A. Rusanov. "On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay." Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, no. 10 (October 26, 2023): 3–21. http://dx.doi.org/10.26907/0021-3446-2023-10-3-21.
Full textLorenz, Katina, Tobias Jahnke, and Christian Lubich. "Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition." BIT Numerical Mathematics 45, no. 1 (March 2005): 91–115. http://dx.doi.org/10.1007/s10543-005-2637-9.
Full textWang, Bin, and Xinyuan Wu. "Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales." Journal of Computational Physics 276 (November 2014): 62–73. http://dx.doi.org/10.1016/j.jcp.2014.07.035.
Full textBuchholz, Simone, Ludwig Gauckler, Volker Grimm, Marlis Hochbruck, and Tobias Jahnke. "Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations." IMA Journal of Numerical Analysis 38, no. 1 (March 9, 2017): 57–74. http://dx.doi.org/10.1093/imanum/drx007.
Full textFox, B., L. S. Jennings, and A. Y. Zomaya. "Numerical Computation of Differential-Algebraic Equations for Non-Linear Dynamics of Multibody Systems Involving Contact Forces." Journal of Mechanical Design 123, no. 2 (March 1, 1999): 272–81. http://dx.doi.org/10.1115/1.1353587.
Full textPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "Asymptotic Decay of the Oscillatory Solutions to First Order Non-Autonomous Linear Unstable Type Delay Differential Equations." Funkcialaj Ekvacioj 49, no. 3 (2006): 385–413. http://dx.doi.org/10.1619/fesi.49.385.
Full textCrouseilles, Nicolas, Shi Jin, and Mohammed Lemou. "Nonlinear geometric optics method-based multi-scale numerical schemes for a class of highly oscillatory transport equations." Mathematical Models and Methods in Applied Sciences 27, no. 11 (August 30, 2017): 2031–70. http://dx.doi.org/10.1142/s0218202517500385.
Full textO’NEALE, DION R. J., and ROBERT I. MCLACHLAN. "RECONSIDERING TRIGONOMETRIC INTEGRATORS." ANZIAM Journal 50, no. 3 (January 2009): 320–32. http://dx.doi.org/10.1017/s1446181109000042.
Full textHan, Houde, and Zhongyi Huang. "The Tailored Finite Point Method." Computational Methods in Applied Mathematics 14, no. 3 (July 1, 2014): 321–45. http://dx.doi.org/10.1515/cmam-2014-0012.
Full textBrunner, Hermann, Yunyun Ma, and Yuesheng Xu. "The oscillation of solutions of Volterra integral and integro-differential equations with highly oscillatory kernels." Journal of Integral Equations and Applications 27, no. 4 (December 2015): 455–87. http://dx.doi.org/10.1216/jie-2015-27-4-455.
Full textKhanamiryan, M. "Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: part I." BIT Numerical Mathematics 48, no. 4 (November 28, 2008): 743–61. http://dx.doi.org/10.1007/s10543-008-0201-0.
Full textDenk, G. "A new numerical method for the integration of highly oscillatory second-order ordinary differential equations." Applied Numerical Mathematics 13, no. 1-3 (September 1993): 57–67. http://dx.doi.org/10.1016/0168-9274(93)90131-a.
Full textSpigler, Renato. "Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method." Journal of Mathematical Analysis and Applications 463, no. 1 (July 2018): 318–44. http://dx.doi.org/10.1016/j.jmaa.2018.03.027.
Full textBayly, P. V., and S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella." Journal of The Royal Society Interface 13, no. 123 (October 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Full textBissembayev, Jomartov, Tuleshov, and Dikambay. "Analysis of the Oscillating Motion of a Solid Body on Vibrating Bearers." Machines 7, no. 3 (September 6, 2019): 58. http://dx.doi.org/10.3390/machines7030058.
Full textGong, Ya Qi, Qin Chen, and Yong Feng Qi. "Solving of Partial Differential Equations by Numerical Manifold Method with Partially Overlapping Covers." Applied Mechanics and Materials 638-640 (September 2014): 1737–40. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1737.
Full textChartier, Philippe, Florian Méhats, Mechthild Thalhammer, and Yong Zhang. "Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type." ESAIM: Mathematical Modelling and Numerical Analysis 51, no. 5 (September 2017): 1859–82. http://dx.doi.org/10.1051/m2an/2017010.
Full textKhanamiryan, Marianna. "Quadrature methods for highly oscillatory linear and non-linear systems of ordinary differential equations: part II." BIT Numerical Mathematics 52, no. 2 (September 23, 2011): 383–405. http://dx.doi.org/10.1007/s10543-011-0355-z.
Full textPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "Asymptotic behavior of the oscillatory solutions to first order non-autonomous linear neutral delay differential equations of unstable type." Mathematical and Computer Modelling 46, no. 3-4 (August 2007): 422–38. http://dx.doi.org/10.1016/j.mcm.2006.11.012.
Full textMarszalek, Wieslaw, Jan Sadecki, and Maciej Walczak. "Computational Analysis of Ca2+ Oscillatory Bio-Signals: Two-Parameter Bifurcation Diagrams." Entropy 23, no. 7 (July 8, 2021): 876. http://dx.doi.org/10.3390/e23070876.
Full textVilmart, Gilles. "Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise." SIAM Journal on Scientific Computing 36, no. 4 (January 2014): A1770—A1796. http://dx.doi.org/10.1137/130935331.
Full textRomanchuk, Yaroslav, Mariia Sokil, and Leonid Polishchuk. "PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14, no. 3 (September 30, 2024): 15–20. http://dx.doi.org/10.35784/iapgos.6377.
Full text