Journal articles on the topic 'Automotive combustion and fuel engineering'

To see the other types of publications on this topic, follow the link: Automotive combustion and fuel engineering.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Automotive combustion and fuel engineering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tutak, Wojciech, Arkadiusz Jamrozik, Ákos Bereczky, and Kristof Lukacs. "EFFECTS OF INJECTION TIMING OF DIESEL FUEL ON PERFORMANCE AND EMISSION OF DUAL FUEL DIESEL ENGINE POWERED BY DIESEL/E85 FUELS." Transport 33, no. 3 (July 10, 2018): 633–46. http://dx.doi.org/10.3846/transport.2018.1572.

Full text
Abstract:
The paper presents the results of the investigation of Dual Fuel (DF) diesel engines powered by high bioethanol contain fuel – E85. The object of the investigation is a three-cylinder Compression Ignition (CI) Internal Combustion Engine (ICE) powered by diesel oil and bioethanol fuel E85 injected into the intake port as a DF engine. With the increase in the share of E85 fuel the highest intensification of the combustion process takes place in the main stage of the combustion and the ignition delay increases as well. The researchers are conducted using Computational Fluid Dynamics (CFD) method; the results of the investigation are successfully verified based on the indicator diagrams, heat performance rate and emissions. Based on CFD results the cross sections investigation of the combustion chamber it can be seen that in case of the DF engine, the flame front propagates with a higher speed. The initial phase of the combustion starts in a different location of the combustion chamber than in the classic CI engine. Replacement of diesel fuel by E85 in 20% resulted in the shortening of the combustion duration more than 2-times. With the increase of energetic share in E85 the soot emission is decreased at all ranges of the analysed operations of the engine. The oppositerelationship was observed in case of NO emission. With the increase of E85 in the fuel, the emission of NO increased.
APA, Harvard, Vancouver, ISO, and other styles
2

Ilves, Risto, Rauno Põldaru, Andres Annuk, and Jüri Olt. "THE IMPACT OF A TWO-PHASE DIESEL FUEL PILOT INJECTION ON THE COMPRESSED NATURAL GAS AIR–FUEL MIXTURE COMBUSTION PROCESS IN A DIESEL ENGINE." Transport 37, no. 5 (December 20, 2022): 330–38. http://dx.doi.org/10.3846/transport.2022.17938.

Full text
Abstract:
Nowadays, there is a global trend towards the use of alternative fuels in order to reduce environmental pollution. For example, Compressed Natural Gas (CNG) has become more widely used around the world. The use of different fuels in engines affects the combustion process and efficiency, with the latter potentially being reduced by such means as, for example, the use of gaseous fuels in conventional diesel engines. Therefore, it is also important to know how CNG combusts in a diesel engine and how the combustion process can be improved. Consequently, the aim of the study is to give an overview of the effect of divided Diesel Fuel (DF) pilot injection on the combustion process of a naturally aspirated diesel engine using dual-fuel mode, with one fuel being DF and the other CNG. The focus of the article is on the commonly used engines on which the diesel injection system works regularly, and CNG fuel is injected into the intake manifold as an additional fuel. The engine DF quantity and injection timing are regulated by the acceleration pedal. The article provides an overview of the diesel and dual-fuel combustion process, and compare the DF and dual-fuel combustion processes. For this purpose, a test was carried out in order to measure the various involved parameters, such as the combustion pressure, torque, and fuel consumption. The results demonstrated that ignition delay does not significantly vary with the use of gas as a fuel source, and the maximum combustion pressure is actually higher with gas. The combustion is more rapid in dual-fuel mode and results indicate that when using dual-fuel mode on regular engines, it would be necessary to regulate the pre- and main-injection timing.
APA, Harvard, Vancouver, ISO, and other styles
3

Piancastelli, Luca, Merve Sali, and Christian Leon-Cardenas. "Design Issues of Heavy Fuel APUs Derived from Automotive Turbochargers Part III: Combustor Design Improvement." Machines 10, no. 7 (July 18, 2022): 583. http://dx.doi.org/10.3390/machines10070583.

Full text
Abstract:
Heavy fuel combustion problems with startup and operation may significantly reduce the microturbine efficiency in small APUs (Auxiliary Power Units). The use of commercial automotive-derived turbochargers solves the design problems of compressors and turbines but introduces large issues with combustors. The radial combustor proved to be the best design. Unfortunately, high-pressure injection is not practical for small units. For this reason, primary air and low-pressure fuel spray are heated and mixed. In any case, a high air swirl must achieve a satisfactory combustion efficiency. This swirl should be almost eliminated at the turbine intake. CFD analysis of the combustor design was, therefore, performed with several different geometries and design solutions. In the end, a large offset of the fresh pipe from the compressor proved to be the best solution for a high swirl in the combustion region. The combustion tends to eliminate the swirl, but an undesired tumble motion at the turbine intake takes place. To eliminate the tumble, two small fins were added to straighten the flow to the turbine.
APA, Harvard, Vancouver, ISO, and other styles
4

Mikulski, Maciej, and Sławomir Wierzbicki. "EFFECT OF CNG IN A FUEL DOSE ON THE COMBUSTION PROCESS OF A COMPRESSION-IGNITION ENGINE." TRANSPORT 30, no. 2 (May 30, 2015): 162–71. http://dx.doi.org/10.3846/16484142.2015.1045938.

Full text
Abstract:
Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.
APA, Harvard, Vancouver, ISO, and other styles
5

Ali, M. H., A. Abdullah, M. H. Mat Yasin, and M. K. Kamarulzaman. "Cyclic Pressure Variations in A Small Diesel Engine Fueled with Biodiesel and Antioxidant Blends." International Journal of Automotive and Mechanical Engineering 17, no. 2 (July 1, 2020): 7851–57. http://dx.doi.org/10.15282/ijame.17.2.2020.04.0585.

Full text
Abstract:
Biodiesel fuel is considered as one of the most competence sustainable replacement for fossil fuel due to their superior combustion characteristics and possesses higher oxygen content. Thus, many researchers recently investigated to improve biodiesel capability by adding additives whether by blending with dual-fuel or tri-fuel. However, the combustion characteristics for biodiesel and biodiesel-additives blends are not thoroughly examined and need additional research works to study how the biodiesel behaviour and characterise. Thus, this research main objective is to study a single-cylinder diesel engine cyclic cylinder pressure variations running with biodiesel with antioxidant (B2HA1.0 and B2HT 1.0) blends with palm oil methyl ester (POME). While The baseline fuels used for this study were biodiesel (B20) and pure diesel (B0). The entire test fuels were examined at a constant engine speed 1800 rpm with 100% engine load condition. The engine combustion characteristics were studied by utilising the indicated mean effective pressure (IMEP) and cyclic variations of combustion pressure at 200 consecutive cycles. Combustion characteristics of engine diesel have been studied by using statistical analysis. The results revealed that the engine running with biodiesel-antioxidants have higher cyclic variations of combustion from B20 and B0, which B2HA1.0 possessed the highest cyclic variations. It can be summarised from the study that biodiesel-antioxidants fuels produce a substantial influence on the engine cyclical variation, which linked to the characteristics of the engine combustion.
APA, Harvard, Vancouver, ISO, and other styles
6

Abianeh, O. S., M. Mirsalim, and F. Ommi. "Combustion development of a Bi-Fuel engine." International Journal of Automotive Technology 10, no. 1 (February 2009): 17–25. http://dx.doi.org/10.1007/s12239-009-0003-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ickes, A. M., S. V. Bohac, and D. N. Assanis. "Effect of fuel cetane number on a premixed diesel combustion mode." International Journal of Engine Research 10, no. 4 (June 26, 2009): 251–63. http://dx.doi.org/10.1243/14680874jer03809.

Full text
Abstract:
The ability of premixed low-temperature diesel combustion to deliver low particulate matter (PM) and NO x emissions is dependent on achieving optimal combustion phasing. Small deviations in combustion phasing can shift the combustion to less optimal modes, yielding increased emissions, increased noise, and poor stability. This paper demonstrates how variations in fuel cetane number affect the detailed combustion behaviour of a direct-injection, diesel-fuelled, premixed combustion mode. Testing was conducted under light load conditions on a modern single-cylinder engine, fuelled with a range of ultra-low sulphur fuels with cetane numbers ranging from 42 to 53. Fuel cetane number is found to affect ignition delay and, accordingly, combustion phasing. Gaseous emissions are a function of combustion phasing and exhaust gas recirculation (EGR) quantity, but are not directly tied to fuel cetane number. Fuel cetane number is merely one of many different engine parameters that shift combustion phasing. Furthermore, the operating range is constrained by the changes in cetane number: no injection timings yield acceptable combustion across the whole spread of tested cetane numbers. However, in terms of combustion phasing, the operating range is consistent, independent of fuel cetane number.
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Wonah. "Naphtha as a Fuel for Internal Combustion Engines." International Journal of Automotive Technology 22, no. 4 (July 24, 2021): 1119–33. http://dx.doi.org/10.1007/s12239-021-0100-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, T., R. Moriwaki, H. Ogawa, R. Kakizaki, and M. Murase. "Dependence of premixed low-temperature diesel combustion on fuel ignitability and volatility." International Journal of Engine Research 13, no. 1 (December 1, 2011): 14–27. http://dx.doi.org/10.1177/1468087411422852.

Full text
Abstract:
A comprehensive study of fuel property effects in internal combustion engines is required to enable fuel diversification as well as the development of applications to advanced engines for operation with a variety of combustion modes. The objective of this paper is to investigate the effects of fuel ignitability and volatility over a wide range of premixed low-temperature combustion (LTC) modes in diesel engines. A total of 23 fuels were prepared from commercial gasoline, kerosene, and diesel as baseline fuels and with the addition of additives, to generate a cetane number (CN) range from 11 to 75. Experiments with a single-cylinder diesel engine operated in moderately advanced-injection LTC modes were conducted to evaluate these fuels. The combustion phasing is demonstrated to be a good indicator to estimate the in-cylinder peak pressure, exhaust gas emissions, and thermal efficiency in the LTC mode. Fuel ignitability affects the combustion phasing by changing the ignition delay. The predicted cetane number (PCN) based on fuel molecular structure analysis can be fitted to the ignition delays with a higher coefficient of determination than CN, suggesting good potential as a fuel ignitability measure over a wide range. The stable operating load range in the smokeless LTC mode depends more on the actual ignition delay or PCN rather than CN. With fixed injection timing and intake oxygen concentration, O2in, only when PCN < 40, the load range can be expanded significantly to higher loads. By holding the combustion phasing at top dead centre and varying intake oxygen concentration, the nitrogen oxides and smoke emissions become limitations of the load expansion for some fuels. The effects of fuel volatility on the characteristics of LTC are small compared to ignitability. Finally, the operational injection timing range and robustness of the LTC to fuel ignitability are examined, showing that the advantageous ignitability range becomes narrower, with fuel ignitability decreasing.
APA, Harvard, Vancouver, ISO, and other styles
10

WIERZBICKI, Sławomir, Grzegorz BORUTA, Łukasz KONIECZNY, and Bogusław ŁAZARZ. "ANALYSIS OF THE SHARE OF NATURAL GAS IN THE TOTAL FUEL SUPPLY DOSE ON THE COMBUSTION PROCESS IN A CRDI ENGINE." Transport Problems 17, no. 1 (March 1, 2022): 141–50. http://dx.doi.org/10.20858/tp.2022.17.1.12.

Full text
Abstract:
Natural gas is one of the potential combustion engine fuels whose proportion in the overall energy balance is expected to increase. Owing to some of its properties, its use requires a dual-fuel supply system; thus, the use of natural gas as a fuel for diesel engines is currently limited. Systems that supply gas fuel to diesel engines do not usually interfere with the engine control system. This solution significantly reduces system-installation costs. However, as demonstrated in the present study, it considerably changes the course of the combustion process, which increases thermal and mechanical loads. In this case, the combustion process can be controlled by changing the liquid fuel injection pressure or advancing the injection angle. This, however, requires interference with the engine control system.
APA, Harvard, Vancouver, ISO, and other styles
11

Lacey, Joshua, Karthik Kameshwaran, Sakthish Sathasivam, Zoran Filipi, William Cannella, and Peter A. Fuentes-Afflick. "Effects of refinery stream gasoline property variation on the auto-ignition quality of a fuel and homogeneous charge compression ignition combustion." International Journal of Engine Research 18, no. 3 (July 28, 2016): 226–39. http://dx.doi.org/10.1177/1468087416647646.

Full text
Abstract:
The combination of in-cylinder thermal environment and fuel ignition properties plays a critical role in the homogeneous charge compression ignition engine combustion process. The properties of fuels available in the automotive market vary considerably and display different auto-ignition behaviors for the same intake charge conditions. Thus, in order for homogeneous charge compression ignition (HCCI) technology to become practically viable, it is necessary to characterize the impact of differences in fuel properties as a source of ignition/combustion variability. To quantify the differences, 15 gasolines composed of blends made from refinery streams were investigated in a single-cylinder homogeneous charge compression ignition engine. The properties of the refinery stream blends were varied according to research octane number, sensitivity (S = research octane number − motor octane number) and volumetric contents of aromatics and olefins. Nine fuels contained 10% ethanol by volume, and six more were blended with 20% ethanol. Pure ethanol (E100) and an un-oxygenated baseline fuel (RD3-87) were included too. For each fuel, a sweep of intake temperature at a consistent load and engine speed was conducted, and the combustion phasing given by the crank angle of 50% mass fraction burned was tracked to assess the sensitivity of auto-ignition to fuel chemical kinetics. The experimental results provided a wealth of information for predicting the HCCI combustion phasing from the given properties of a fuel. In this study, the original octane index correlation proposed by Kalghatgi based solely on fuel research octane number and motor octane number was found to be insufficient for characterizing homogeneous charge compression ignition combustion of refinery stream fuels. A new correlation was developed for estimation of auto-ignition properties of practical fuels in the typical HCCI engine. Fuel composition, captured by terms indicating the fraction of aromatics, olefins, saturates and ethanol, was added to generate the following formula: [Formula: see text]. The results indicate a significantly improved estimation of combustion phasing for gasoline fuels of varying chemical composition under low-temperature combustion conditions. Quantitative findings of this investigation and the new octane index correlation can be used for designing robust HCCI control strategies, capable of handling the wide spectrum of fuel chemical compositions found in pump gasoline.
APA, Harvard, Vancouver, ISO, and other styles
12

Yuan, Chenheng, Cuijie Han, Mian Yang, and Yan Zhang. "Numerical investigation into the fuel evaporation and mixture formation characteristics of a free-piston diesel engine." International Journal of Engine Research 21, no. 7 (August 19, 2019): 1180–92. http://dx.doi.org/10.1177/1468087419870361.

Full text
Abstract:
The free-piston engine generator becomes a new-type potential substitute for the conventional crankshaft combustion engine. This article presents a simulation to study the fuel spray and mixing characteristics of a diesel free-piston engine generator by comparing a corresponding crankshaft combustion engine. A full-cycle model which couples with piston dynamics, combustion, and gas exchange is developed to simulate the fuel spray, atomization, and mixing in the free-piston engine generator. The result indicates that compared with the crankshaft combustion engine, the free-piston engine generator provides a higher temperature and pressure for fuel spray and mixing during the ignition delay, but its ignition delay lasts shorter. The free-piston engine generator shows a shorter spray penetration and more fuel impingement due to its smaller combustion chamber volume during the injection process. The free-piston engine generator exhibits a lower level of air utilization and worse uniformity of fuel–air mixture in combustion chamber. In addition, the shorter ignition delay of free-piston engine generator makes the time of atomization, evaporation, and mixing of fuel shorter, and the mixing effect of free-piston engine generator is worse, resulting in less combustible mixture formed during the ignition delay. In addition, some guiding suggestions have been proposed to improve the fuel spray and fuel–air mixing characteristics of free-piston engine generator.
APA, Harvard, Vancouver, ISO, and other styles
13

Meng, Nan, Feng Li, and Yehan Jin. "Transient numerical simulation of flame combustion instabilities in a liquid-jet-fuel." Journal of Physics: Conference Series 2239, no. 1 (April 1, 2022): 012006. http://dx.doi.org/10.1088/1742-6596/2239/1/012006.

Full text
Abstract:
Abstract Liquid fuel jet combustion, which plays an important guiding role in the field of aviation, automotive, is widely used in engineering equipment. Therefore, this paper mainly conducts on the study of its combustion characteristics, which analyses the influence of transient numerical simulations of flame combustion instability on the flame combustion instability in a liquid-jet-fuel. In addition, the simulations are also adopted by the Favre-filtered conservation equations, including three dimensions mass, momentum and energy conservation equations. Moreover, the effects of different inlet velocities on flame height and flame flutter in the flow field shows unstable explicitly. In addition, the time from the beginning to the stabilization of the jet flame is analyzed by comparing the flame height and flame shape at different moments.
APA, Harvard, Vancouver, ISO, and other styles
14

Wissink, Martin, and Rolf Reitz. "The role of the diffusion-limited injection in direct dual fuel stratification." International Journal of Engine Research 18, no. 4 (August 20, 2016): 351–65. http://dx.doi.org/10.1177/1468087416661867.

Full text
Abstract:
Low-temperature combustion offers an attractive combination of high thermal efficiency and low NO x and soot formation at moderate engine load. However, the kinetically-controlled nature of low-temperature combustion yields little authority over the rate of heat release, resulting in a tradeoff between load, noise, and thermal efficiency. While several single-fuel strategies have achieved full-load operation through the use of equivalence ratio stratification, they uniformly require retarded combustion phasing to maintain reasonable noise levels, which comes at the expense of thermal efficiency and combustion stability. Previous work has shown that control over heat release can be greatly improved by combining reactivity stratification in the premixed charge with a diffusion-limited injection that occurs after low-temperature heat release, in a strategy called direct dual fuel stratification. While the previous work has shown how the heat release control offered by direct dual fuel stratification differs from other strategies and how it is enabled by the reactivity stratification created by using two fuels, this paper investigates the effects of the diffusion-limited injection. In particular, the influence of fuel selection and the pressure, timing, and duration of the diffusion-limited injection are examined. Diffusion-limited injection fuel type had a large impact on soot formation, but no appreciable effect on performance or other emissions. Increasing injection pressure was observed to decrease filter smoke number exponentially while improving combustion efficiency. The timing and duration of the diffusion-limited injection offered precise control over the heat release event, but the operating space was limited by a tradeoff between NO x and soot.
APA, Harvard, Vancouver, ISO, and other styles
15

Fyffe, John R., Mark A. Donohue, Maria C. Regalbuto, and Chris F. Edwards. "Mixed combustion–electrochemical energy conversion for high-efficiency, transportation-scale engines." International Journal of Engine Research 18, no. 7 (September 7, 2016): 701–16. http://dx.doi.org/10.1177/1468087416665936.

Full text
Abstract:
This article discusses an approach to exceeding current peak exergy efficiencies of approximately 50% for transportation-scale engines. A detailed model was developed for an internal combustion engine and a fuel cell, where the internal combustion engine is operated under fuel-rich conditions to produce a hydrogen-rich exhaust gas as a fuel for the fuel cell. The strategy of using combustion and electrochemical energy conversion processes has been shown to reduce reaction-related exergy losses while providing the balance of plant necessary to achieve efficient thermal management. Prior approaches which used internal combustion engines downstream of the fuel cell have shown exergy efficiencies near 70%. The system architecture developed for this article, in addition to achieving exergy efficiencies near 70%, provides further advantages. The internal combustion engine, producing work in addition to generating synthesis gas, enables a quick-start approach to this mixed strategy and the ability to use a range of fuels. Therefore, the proposed architecture supplies a very efficient starting point for the development of a quick-start, hybridized system for transportation-scale applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Varde, K., A. Jones, A. Knutsen, D. Mertz, and P. Yu. "Exhaust emissions and energy release rates from a controlled spark ignition engine using ethanol blends." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, no. 8 (August 1, 2007): 933–41. http://dx.doi.org/10.1243/09544070jauto179.

Full text
Abstract:
Although alcohols have been considered and used as fuels for internal combustion engines for decades, their use in automotive transportation systems has been rather limited. In the past few years, ethanol has received varying amounts of attention in the United States owing to the increasing cost of gasoline fuel and legislative mandates in some states requiring the sale of alcohol-blended gasoline for light-duty vehicles. This may, in the end, help the agricultural economy in the United States. If alcohol blends are to be used in spark ignition (SI) engines designed to operate on gasoline, then it is important that engines be tuned for the fuel that is being utilized at that instant. This requires knowledge of the combustion characteristics of alcohol blends so that the engine control system can make appropriate changes according to the quality of the blend. The present investigation was conducted to evaluate the combustion and exhaust emissions characteristics of ethanol-gasoline blends in a two-valve automotive SI engine. Ethanol blends improved the specific energy consumption relative to pure gasoline fuel. At stoichiometric air-fuel ratio, the alcohol blends improved exhaust CO emissions marginally. However, there were consistent reductions in NO x levels, particularly with the E-85 blend. The use of E-85 in the engine also resulted in a reduction in HC levels relative to neat gasoline, but E-85 produced significantly higher levels of acetaldehydes by comparison with neat gasoline and lower ethanol blends, particularly at lighter engine loads. The E-85 blend required a longer time to develop and set up the flame in the combustion chamber relative to neat gasoline. This was particularly true at lower engine loads, probably owing to cooling effects of the inducted charge. However, the rapid combustion duration did not exhibit much difference between the blends and gasoline.
APA, Harvard, Vancouver, ISO, and other styles
17

Singh, Akhilendra Pratap, and Avinash Kumar Agarwal. "Experimental evaluation of sensitivity of low-temperature combustion to intake charge temperature and fuel properties." International Journal of Engine Research 19, no. 7 (September 15, 2017): 732–57. http://dx.doi.org/10.1177/1468087417730215.

Full text
Abstract:
Main challenge for mineral diesel in achieving low-temperature combustion is its poor volatility characteristics, which results in relatively inferior fuel–air mixtures. In this experimental study, feasibility of mineral diesel–fueled premixed homogeneous charge compression ignition (PHCCI) combustion was explored by employing an external charge preparation technique. An external mixing device called “fuel vaporizer” was developed for improving the fuel–air mixing. To investigate the effect of fuel properties on PHCCI combustion, this study was carried out using a variety of additives blended with mineral diesel, which included low-quality high-volatile fuel (kerosene), low-cetane high-volatile fuels (ethanol and gasoline) and high-cetane low-volatile fuel (biodiesel). To investigate the effects of intake charge temperature (Ti), experiments were performed at three Tis (160, 180 and 200 °C) and six different relative air–fuel ratios (λ = 1.5–5.25). In all experiments, exhaust gas recirculation (EGR) rate was maintained constant at 10%. Experimental results showed that combustion phasing was significantly affected by the fuel properties and Ti. At lower engine loads, volatile additives improved start of combustion, combustion phasing and heat release rate; however, excessive knocking was seen at higher engine loads. Diesoline (15% v/v gasoline with mineral diesel) and diesosene (15% v/v kerosene with mineral diesel) showed significant improvement in engine performance characteristics, while B20 (20% v/v soybean biodiesel with mineral diesel) delivered relatively higher indicated specific fuel consumption (ISFC). Increasing Ti affected fuel–air mixing, which resulted in slightly lower carbon monoxide (CO) and hydrocarbon (HC) emissions, but higher Ti led to excessive knocking and resulted in slightly higher oxides of nitrogen (NOx) emissions. Addition of volatiles reduced particulate emissions; however, increasing Ti led to slightly higher particulate emissions. Presence of significant number of nanoparticles during combustion of B20 was another important finding of this study. Overall, it was concluded that addition of volatile additives such as gasoline, alcohols and kerosene, in addition to optimized Ti can improve mineral diesel–fueled PHCCI combustion and can lead to potentially expanded operating window.
APA, Harvard, Vancouver, ISO, and other styles
18

Mirmohammadsadeghi, Mahmoudreza, Hua Zhao, and Akira Ito. "Optical study of gasoline substitution ratio and diesel injection strategy effects on dual-fuel combustion." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 4 (July 16, 2019): 1075–97. http://dx.doi.org/10.1177/0954407019864013.

Full text
Abstract:
Ever growing population and increased vehicles have resulted in higher atmospheric concentration of the greenhouse gases, such as carbon dioxide and methane, thus increasing our planet’s average temperature leading to irreversible climate changes, which has led to increasingly demanding and stricter legislations on pollutant emission and CO2, as well as fuel economy targets for the automotive industry. As a result, a great deal of efforts and resources has been spent on the research and development of high efficiency and low emission engines for automotive applications in the attempt to reduce greenhouse gas emissions and levels of nitrogen oxides and soot emissions, which affect the air quality. This research has developed strategies to investigate the combustion characteristics, engine performance and exhaust emission of diesel–gasoline dual-fuel operation in a Ricardo Hydra single-cylinder optical engine running at 1200 r/min, equipped with a high-pressure common rail injection system for diesel fuel delivery, and a port fuel injection system, designed and manufactured by the author, for gasoline fuel delivery, in order to allow for dual-fuel operations. In-cylinder pressure measurement is used for calculating all engine parameters, heat release rate and efficiency. In addition to the thermodynamic analysis of the combustion parameters, high-speed imaging of spray and combustion chemiluminescence was used for the optical analysis of the effect of the above-mentioned parameters on auto-ignition and combustion processes. Effects of different substitution ratios and diesel injection strategies at low engine loads were studied when the total fuel energy was kept constant. The three main substitution ratios used in this study include 45%, 60% and 75%, which also indicates the amount of fuel energy from port-injected gasoline, where the rest is provided by the direct injection of diesel. Depending on the testing conditions, such as injection strategy and intake conditions, some dual-fuel operations were able to deliver high efficiency and improved emissions compared to that of a pure diesel engine operation, with the diesel–gasoline operation offering more consistency in improved thermal efficiency. The optical analysis of the combustion illustrates the main difference in the flame propagation, distribution and quality for each substitution percentage, as well as the condition under examination. It was observed that combustions with higher concentration of diesel fuel having more diffusion-like combustion, especially with diesel injection timings closer to the top dead centre, where there is less time for the two fuel and air to properly mix before combustion occurs, resulted in higher temperature and levels of NOx due to the pockets of high diesel concentrations within the combustion chamber, whereas higher concentration of gasoline, especially at earlier diesel injection timings, resulted in more homogeneous fuel mixture and thus lower combustion temperatures. In other words, when the gasoline substitution ratio is lower, optimised start of injection is advanced further, so that richer diesel mixture needs longer ignition delay to have proper combustion timing, and combustion is milder and peak heat release rate is slightly lower due to less local diesel rich mixture area by means of earlier injection timing, and in terms of emissions, lower gasoline substitution ratio, decreases NOx with more homogeneous diesel mixture, and same can be said for total hydrocarbon. Performing the thermodynamics testing with an all metal piston alongside the optical testing allowed for the confirmation of these outcomes. This study not only delivers an insight to the benefits of dual-fuel engine operation, it also represents the benefits of optical engines in providing better understanding of engine operation and ways of improving it.
APA, Harvard, Vancouver, ISO, and other styles
19

Wissink, Martin L., Scott J. Curran, Greg Roberts, Mark PB Musculus, and Christine Mounaïm-Rousselle. "Isolating the effects of reactivity stratification in reactivity-controlled compression ignition with iso-octane and n-heptane on a light-duty multi-cylinder engine." International Journal of Engine Research 19, no. 9 (October 9, 2017): 907–26. http://dx.doi.org/10.1177/1468087417732898.

Full text
Abstract:
Reactivity-controlled compression ignition (RCCI) is a dual-fuel variant of low-temperature combustion that uses in-cylinder fuel stratification to control the rate of reactions occurring during combustion. Using fuels of varying reactivity (autoignition propensity), gradients of reactivity can be established within the charge, allowing for control over combustion phasing and duration for high efficiency while achieving low NOx and soot emissions. In practice, this is typically accomplished by premixing a low-reactivity fuel, such as gasoline, with early port or direct injection, and by direct injecting a high-reactivity fuel, such as diesel, at an intermediate timing before top dead center. Both the relative quantity and the timing of the injection(s) of high-reactivity fuel can be used to tailor the combustion process and thereby the efficiency and emissions under RCCI. While many combinations of high- and low-reactivity fuels have been successfully demonstrated to enable RCCI, there is a lack of fundamental understanding of what properties, chemical or physical, are most important or desirable for extending operation to both lower and higher loads and reducing emissions of unreacted fuel and CO. This is partly due to the fact that important variables such as temperature, equivalence ratio, and reactivity change simultaneously in both a local and a global sense with changes in the injection of the high-reactivity fuel. This study uses primary reference fuels iso-octane and n-heptane, which have similar physical properties but much different autoignition properties, to create both external and in-cylinder fuel blends that allow for the effects of reactivity stratification to be isolated and quantified. This study is part of a collaborative effort with researchers at Sandia National Laboratories who are investigating the same fuels and conditions of interest in an optical engine. This collaboration aims to improve our fundamental understanding of what fuel properties are required to further develop advanced combustion modes.
APA, Harvard, Vancouver, ISO, and other styles
20

Asri, S., M. F. Othman, A. Abdullah, Z. Abdullah, and Z. Azmi. "Analysis of Organic Germanium Ge-132 as Cetane Improver in Diesel Combustion Process." International Journal of Automotive and Mechanical Engineering 16, no. 1 (March 16, 2019): 6134–45. http://dx.doi.org/10.15282/ijame.16.1.2019.4.0466.

Full text
Abstract:
The depletion of global petroleum reserves and growth in awareness regarding the environmental pollution of diesel engines urge the reinforcement for the development of alternative fuels. This research experimentally investigated the effect of diesel-organic germanium (Ge-132, 2-Carboxyl Sesquioxide) fuels blend on combustion characteristics, engine performances and exhaust emissions on a direct injection diesel engine at the speed of 1800 rpm at various brake effective pressures. On this occasion, the Ge-132 compound used in this experiment was widely utilized in the medical industry as a dietary supplement that contains therapeutic qualities such as oxygen enrichment, free radical scavenging, and immunity enhancement. Three fuel blends employed in this experiment were Ge5, Ge8, and Ge10 that are used to compare their performances with diesel fuel. In brief, the result stated that the fuel blend of Ge10 showed the highest value of cetane number, which was 8.23% higher compared to the diesel fuel followed by Ge8 and Ge5, which were 7.84 and 7.45% higher than the diesel fuel respectively. Besides, from the experiment, Ge5 decreased the value of BSFC by 26.6% compared to diesel fuel and improved the value of BTE that was 25.6% higher than the diesel fuel.
APA, Harvard, Vancouver, ISO, and other styles
21

Cao, L., H. Zhao, X. Jiang, and N. Kalian. "Mixture formation and controlled auto-ignition combustion in four-stroke gasoline engines with port and direct fuel injections." International Journal of Engine Research 6, no. 4 (August 1, 2005): 311–29. http://dx.doi.org/10.1243/146808705x30611.

Full text
Abstract:
Controlled auto-ignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI) can be achieved by trapping residuals with early exhaust valve closure in both port and direct fuel injection four-stroke gasoline engines. A multi-cycle three-dimensional engine simulation program has been developed and applied to study the effect of injection on in-cylinder mixing and CAI combustion. The full engine cycle simulation, including complete gas exchange and combustion processes, was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are based on the Shell auto-ignition model and the characteristic-time combustion model, both of which have been modified to take the high level of residual gas into consideration. A liquid sheet break-up spray model was used for the droplet break-up processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance. In comparison with the port fuel injection case, an early direct injection at exhaust valve closure can lead to higher load and lower fuel consumption.
APA, Harvard, Vancouver, ISO, and other styles
22

Hulwan, D. B., and S. V. Joshi. "Multizone Model Study for DI Diesel Engine Running on Diesel-Ethanol-Biodiesel Blends of High Ethanol Fraction." International Journal of Automotive and Mechanical Engineering 15, no. 3 (October 5, 2018): 5451–67. http://dx.doi.org/10.15282/ijame.15.3.2018.4.0419.

Full text
Abstract:
A multizone combustion model for closed cycle of a DI diesel engine is developed to interpret the experimental investigations on the utilization of diesel-ethanol-biodiesel blends of high ethanol fraction (DEB blends). A computer-based programming for engine process simulation is developed in MATLAB. The model is validated with the experimental values of cylinder pressure and heat release rate. Important information related to fuel injection and combustion inside the combustion chamber, is revealed through the model prediction which is normally difficult to get from the experiments. Model prediction shows that the rate of fuel evaporation is higher for DEB blends, than diesel fuel at any instant of time. The fuel combustion is started late for DEB blends compared to diesel fuel, however, once the combustion is started the burning rate is higher than the diesel fuel. The droplet size (Sauter mean diameter) is decreased for DEB blends which indicate improved fuel atomization. The mean temperature in the zone is significantly lower for DEB blends compared to diesel fuel. The equivalence ratio in the zone is decreased for DEB blends proving that engine runs leaner. The equivalence ratio trend is not uniform as it depends on the combination of the rate of fuel evaporation, rate of air entrainment and rate of burning. Soot density is remarkably decreased, and NOx formation is also drastically reduced for DEB blends at different instant of time. The predictions help to interpret the experimental results for DEB blends and its comparison with diesel fuel.
APA, Harvard, Vancouver, ISO, and other styles
23

Hu, Zongjie, Junjie Zhang, Magnus Sjöberg, and Wei Zeng. "The use of partial fuel stratification to enable stable ultra-lean deflagration-based Spark-Ignition engine operation with controlled end-gas autoignition of gasoline and E85." International Journal of Engine Research 21, no. 9 (December 19, 2019): 1678–95. http://dx.doi.org/10.1177/1468087419889702.

Full text
Abstract:
Lean operation of Spark-Ignition engines can provide higher thermal efficiency compared to standard stoichiometric operation. However, for a homogeneous lean mixture, the associated reduction of flame speeds becomes an important issue from the perspective of robust ignition and fast flame spread throughout the charge. This study is focused on the use of a lean partial fuel stratification strategy that can stabilize the deflagration, while sufficiently fast combustion is ensured via the use of end-gas autoignition. The engine has a spray-guided Direct-Injection Spark-Ignition combustion system and was fueled with either a high-octane certification gasoline or E85. Partial fuel stratification was achieved using several fuel injections during the intake stroke in combination with a small pilot-injection concurrent with the Spark-Ignition. The results reveal that partial fuel stratification enables very stable combustion, offering higher thermal efficiency for parts of the load range in comparison to well-mixed lean and stoichiometric combustion. The heat release and flame imaging demonstrate that the combustion often has three distinct stages. The combustion of the pilot-injected fuel, ignited by the normal spark, acts as a “super igniter,” ensuring a very repeatable initiation of combustion, and flame incandescence reveals locally rich conditions. The second stage is mainly composed of blue flame propagation in a well-mixed lean mixture. The third stage is the compression autoignition of a well-mixed and typically very lean end-gas. The end-gas autoignition is critical for achieving high combustion efficiency, high thermal efficiency, and stable combustion. Partial fuel stratification enables very effective combustion-phasing control, which is critical for controlling the occurrence and intensity of end-gas autoignition. Comparing the gasoline and E85 fuels, it is noted that achieving end-gas autoignition for the higher octane E85 requires a more aggressive compression of the end-gas via the use of a more advanced combustion phasing or higher intake-air temperature.
APA, Harvard, Vancouver, ISO, and other styles
24

Paimon, A. S., S. Rajoo, W. Jazair, M. A. Abas, and Z. H. Che Daud. "Idling Performance under Valve Deactivation Strategy in Port Fuel Injection Engine." International Journal of Automotive and Mechanical Engineering 16, no. 4 (December 31, 2019): 7155–69. http://dx.doi.org/10.15282/ijame.16.4.2019.01.0535.

Full text
Abstract:
This paper investigates the effect of valve deactivation (VDA) on idling performance in port fuel injection (PFI) engine. The test was conducted on 1.6L, 4-cylinder engine with PFI configuration. One of the two intake valves in each cylinder was deactivated (zero lift on deactivated port) and fuel injector was modified to only provide fuel spray on the active intake port. In-cylinder pressure was recorded by the combustion analyzer in order to measure and analyze the combustion characteristics. From the test, there are up to 6% of fuel consumption improvements across all the test conditions. Better combustion stability is achieved at very low idling speed (throttle position, TP = 2%) as a lower coefficient of variation of engine speed (COVrpm) and coefficient of variation indicated mean effective pressure (COVimep) were recorded. Increased intake velocity and swirl flow in the VDA strategy creates more turbulence intensity causing higher heat release rate and faster combustion. However, there is no significant difference in the pumping work during the intake cycle but there is extra pumping work recorded towards the end of expansion stroke due to the very early end of combustion. Therefore, valve deactivation strategy provides limited positive improvement to the idling performance in PFI engine.
APA, Harvard, Vancouver, ISO, and other styles
25

Białecki, Tomasz, Andrzej Sitkiewicz, Bolesław Giemza, Jarosław Sarnecki, Marta Skolniak, and Bartosz Gawron. "Compatibility of Different Automotive Elastomers in Paraffinic Diesel Fuel." Applied Sciences 11, no. 23 (November 29, 2021): 11312. http://dx.doi.org/10.3390/app112311312.

Full text
Abstract:
The introduction of new fuels to power internal combustion engines requires testing the compatibility of such fuels with materials commonly used in fuel supply systems. This paper investigates the influence of alternative fuels on the acrylonitrile-butadiene rubber and fluoroelastomer used in the automotive industry. In the study, conventional diesel fuel, its blend with 7% of fatty acid methyl esters and paraffinic diesel fuel produced with the Fisher Tropsch synthesis from natural gas were interacted with the elastomers. The immersion tests were carried out at room temperature (20 °C) for 168 h. The effect was evaluated based on changes in the selected rubber’s volume, mass and hardness. It has been confirmed that the synthetic component without aromatic hydrocarbons had a different effect on the tested rubber than did conventional fuel. In follow-up work, the selected rubbers were also subjected to microscopic observation. The most frequently observed effect was the washing out of the seal protective layer.
APA, Harvard, Vancouver, ISO, and other styles
26

Gejji, Rohan M., Cheng Huang, Christopher Fugger, Changjin Yoon, and William Anderson. "Parametric investigation of combustion instabilities in a single-element lean direct injection combustor." International Journal of Spray and Combustion Dynamics 11 (July 13, 2018): 175682771878585. http://dx.doi.org/10.1177/1756827718785851.

Full text
Abstract:
Self-excited combustion dynamics in a liquid-fueled lean direct injection combustor at high pressure (1 MPa) are described. Studied variables include combustor and air plenum length, inlet air temperature, equivalence ratio, fuel nozzle location, and fuel composition. Measured pressure oscillations were dependent on combustor geometry and ranged from about 1% of mean chamber pressure at low equivalence ratio, up to 20% at high equivalence ratio. In the most unstable cases, strong pressure modes were measured throughout the frequency spectrum including a band around 1.2–1.5 kHz representing the 4th longitudinal mode, and another band around 7 kHz. The oscillation amplitudes have a non-monotonic dependency on air temperature, and are affected by the placement of the fuel nozzle relative to the throat of the subsonic swirling air flow. The parametric survey provides a rich dataset suitable for validating high-fidelity simulations and their subsequent use in analyzing and interpreting the complex combustion dynamics.
APA, Harvard, Vancouver, ISO, and other styles
27

Yuvenda, Dori, Bambang Sudarmanta, Jamaludin Jamaludin, Oki Muraza, Randi Purnama Putra, Remon Lapisa, Krismadinata Krismadinata, et al. "Combustion and Emission Characteristics of CNG-Diesel Dual Fuel Engine with Variation of Air Fuel Ratio." Automotive Experiences 5, no. 3 (December 18, 2022): 507–27. http://dx.doi.org/10.31603/ae.7807.

Full text
Abstract:
Compressed natural gas (CNG) is a popular alternative fuel because of its more environmentally friendly properties than fossil fuels , including applications in diesel engines. However, supplying too much compressed natural gas fuel causes poor engine performance and emissions due to a decrease in the air-fuel ratio on the dual-fuel engine. The addition of air using electric superchargers was done to return the air-fuel ratio to ideal conditions. Lambda value (λ) was variation under low load (1.52 to 2.71), medium load (1.18 to 2.17), and high load (0.94 to 2.17) on a CNG-diesel dual fuel engine. The addition of pure air in each load can increase combustion stability in certain lambda, which was indicated by an increase in thermal efficiency, heat release rate, and a decrease in ignition delay, combustion duration, hydrocarbon, and carbon monoxide emissions.
APA, Harvard, Vancouver, ISO, and other styles
28

Goldsworthy, L. "Computational Fluid Dynamics Modelling of Residual Fuel Oil Combustion in the Context of Marine Diesel Engines." International Journal of Engine Research 7, no. 2 (April 1, 2006): 181–99. http://dx.doi.org/10.1243/146808705x30620.

Full text
Abstract:
A simplified model is presented for vaporization and combustion of heavy residual based fuel oil in high-pressure sprays, in the context of marine diesel engines. The fuel is considered as a mix of residual base and cutter stock. The model accounts for multiple fuel components as well as limited diffusion rates and thermal decomposition rates within droplets by the use of straight-line relationships for the saturation pressure of combustible fuel vapour at the droplet surface as functions of droplet temperature. The energy required for decomposition of heavy molecules is accounted for. Combustion is modelled using a timescale that is the sum of a kinetic timescale based on a single-step reaction and a turbulent timescale based on turbulent mixing rates. The ignition timescale is based on a simple three-equation model. Cellwise ignition is employed. The heavy fuel oil model is applied to two different constant volume chambers that are used to test ignition and combustion quality of marine heavy fuel oil, using the computational fluid dynamics code StarCD version 3.2. Good agreement is shown between trends in measured and computed data including ignition delay, burn rate and spatial distribution of spray and flame parameters. The model is tested for two representative fuels, one with good ignition and combustion properties and one poor. Essentially only two parameters need to be changed to set the fuel quality. These are the ignition delay factor and the activation energy for the high-temperature kinetics. Further tuning of the model to specific fuels is possible by modifying the saturation temperature relationships.
APA, Harvard, Vancouver, ISO, and other styles
29

Valipour Berenjestanaki, Alireza, and Dilawar Hussain. "Effect of Nitromethane and Jatropha Biodiesel on the Combustion, Performance and Emission Characteristics of Diesel Engine." International Journal of Automotive and Mechanical Engineering 18, no. 3 (September 19, 2021): 8986–97. http://dx.doi.org/10.15282/ijame.18.3.2021.11.0688.

Full text
Abstract:
The experimental work reported has been carried out in two parts; Jatropha biodiesel production and engine test. The engine test has been carried out on a direct injection, single-cylinder, water-cooled stationary diesel engine. Several diesel fuel blends which contain 10% and 20% by volume of JBD and 1% and 3% nitromethane were prepared. The effects of these blends on the combustion, performance, and emission characteristics of diesel engine were studied. The tests were performed under constant speed and varying load conditions without altering injection timing. A maximum increase of 11.73%, 3.2 % and 7.68 % in the brake thermal efficiency, the brake specific fuel consumption and exhaust gas temperature were achieved respectively for 20% Jatropha biodiesel and 3% nitromethane at full engine load. Compared to the pure diesel operation, the peak in-cylinder pressure of blended fuels was lower at the full load conditions. Also, the maximum net heat release rate of blended fuels was lower than that of diesel at all loading conditions. In regards to the engine emissions, the results showed that the blended fuels reduced carbon monoxide at 18.6–28.9% and unburned hydrocarbon of 7.5-24.2%, while increased the emission of nitrogen oxides at 6.9–14.3% and carbon dioxide at 4.3-10.5%.
APA, Harvard, Vancouver, ISO, and other styles
30

Kumakura, H., M. Sasaki, D. Suzuki, and H. Ichikawa. "Development of a Low-Emission Combustor for a 100-kW Automotive Ceramic Gas Turbine (II)." Journal of Engineering for Gas Turbines and Power 118, no. 1 (January 1, 1996): 167–72. http://dx.doi.org/10.1115/1.2816534.

Full text
Abstract:
Performance tests were conducted on a low-emission combustor, which has a pre-vaporization–premixing lean combustion system and is designed for a 100 kW automotive ceramic gas turbine. The results of steady-state combustion tests performed at an inlet temperature of 1000–1200 K and pressure of 0.1–0.34 MPa indicate that the combustor would meet Japan’s emission standards for gasoline engine passenger cars without using an aftertreatment system. Flashback was suppressed by controlling the mixture velocity and air ratios. Strength tests conducted on rings and bars cut from the actual ceramic parts indicate that the combustor has nearly the same level of strength as standard test specimens.
APA, Harvard, Vancouver, ISO, and other styles
31

Shibata, Gen, Hideyuki Ogawa, Yasumasa Amanuma, and Yuki Okamoto. "Optimization of multiple heat releases in pre-mixed diesel engine combustion for high thermal efficiency and low combustion noise by a genetic-based algorithm method." International Journal of Engine Research 20, no. 5 (April 18, 2018): 540–54. http://dx.doi.org/10.1177/1468087418767225.

Full text
Abstract:
The reduction of diesel combustion noise by multiple fuel injections maintaining high indicated thermal efficiency is an object of the research reported in this article. There are two aspects of multiple fuel injection effects on combustion noise reduction. One is the reduction of the maximum rate of pressure rise in each combustion, and the other is the noise reduction effects by the noise canceling spike combustion. The engine employed in the simulations and experiments is a supercharged, single-cylinder direct-injection diesel engine, with a high pressure common rail fuel injection system. Simulations to calculate the combustion noise and indicated thermal efficiency from the approximated heat release by Wiebe functions were developed. In two-stage high temperature heat release combustion, the combustion noise can be reduced; however, the combustion noise in amplification frequencies must be reduced to achieve further combustion noise reduction, and an additional heat release was added ahead of the two-stage high temperature heat release combustion in Test 1. The simulations of the resulting three-stage high temperature heat release combustion were conducted by changing the heating value of the first heat release. In Test 2 where the optimum heat release shape for low combustion noise and high indicated thermal efficiency was investigated and the role of each of the heat releases in the three-stage high temperature heat release combustion was discussed. In Test 3, a genetic-based algorithm method was introduced to avoid the time-consuming loss and great care in preparing the calculations in Test 2, and the optimum heat release shape and frequency characteristics for combustion noise by the genetic-based algorithm method were speedily calculated. The heat release occurs after the top dead center, and the indicated thermal efficiency and overall combustion noise were 50.5% and 86.4 dBA, respectively. Furthermore, the optimum number of fuel injections and heat release shape of multiple fuel injections to achieve lower combustion noise while maintaining the higher indicated thermal efficiency were calculated in Test 4. The results suggest that the constant pressure combustion after the top dead center by multiple fuel injections is the better way to lower combustion noise; however, the excess fuel injected leads to a lower indicated thermal efficiency because the degree of constant volume becomes deteriorates.
APA, Harvard, Vancouver, ISO, and other styles
32

Lebedevas, Sergejus, Saugirdas Pukalskas, and Vygintas Daukšys. "MATHEMATICAL MODELLING OF INDICATIVE PROCESS PARAMETERS OF DUAL-FUEL ENGINES WITH CONVENTIONAL FUEL INJECTION SYSTEM." Transport 35, no. 1 (March 16, 2020): 57–67. http://dx.doi.org/10.3846/transport.2020.12212.

Full text
Abstract:
Modern engine research uses multi-dimensional Mathematical Models (MMs) that are applicable to multi-fuel engines. However, their use involves the availability of detailed technical data on the design and characteristics of the engine, which is not always possible. The use of a one-dimensional MM is more expedient for the prediction of engine parameters, but their application for this purpose has not yet been sufficiently investigated. This publication presents the results of numerical studies evaluating the application of a one-dimensional MM with bi-phase Vibe combustion laws for dual-fuel (DF) Diesel (D) and Natural Gas (NG) engine power parameters. The motor test results of a high-speed 4ČN79.5/95.5 Diesel Engine (DE) with a conventional fuel injection system were used as adequacy criteria. The engines were operated with D100 and DF D20/NG80, in high- (HLM), medium- (MLM), and low- (LLM) load modes, and the angle of Diesel-fuel Injection Timing (DIT) was changed from −1 to −13 °CA in the Before Top Dead Center (BTDC) range. Modelling of the single-phase Vibe combustion law has limited applicability for efficient use only in HLM (with an error of 7%). In the MLM and LLM regimes, owing to non-compliance with real bi-phasic combustion with a strongly extended NG diffusive second phase, the modelling error is 50%. Individual MM matching in MLM and LLM in a DF D20/NG80 experiment detected a burn time increase from between 45 and 50 °CA, to 110 and 200 °CA, respectively. Limited use of the one-dimensional MM in the evaluation of DF engine performance has been identified. When comparing a one-dimensional MM with experimental data, a bi-phase law of heat release characteristic should be considered for better coincidence. In addition, individual MM matching with an experiment on each engine load mode ensured acceptable accuracy in testing and optimising the parameters of the indicator process, including DIT.
APA, Harvard, Vancouver, ISO, and other styles
33

Lim, Donghyun, Jeongwoo Lee, Hyungjin Shin, Kihong Kim, Sunyoung Moon, and Kyoungdoug Min. "Effect of Swirl Motion on Combustion and Emissions Characteristics with Dual-Fuel Combustion in Compression Ignition Engine." International Journal of Automotive Technology 23, no. 2 (April 2022): 379–88. http://dx.doi.org/10.1007/s12239-022-0035-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yusof, Siti Nurul Akmal, Nor Azwadi Che Sidik, Yutaka Asako, Wan Mohd Arif Aziz Japar, Saiful Bahri Mohamed, and Nura Mu’az Muhammad. "A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE)." Nanotechnology Reviews 9, no. 1 (January 1, 2020): 1326–49. http://dx.doi.org/10.1515/ntrev-2020-0104.

Full text
Abstract:
Abstract Nanofluid is a colloidal mixture consisting of nano-sized particles dispersed in a liquid medium. It improves heat transfer properties and promotes high energy efficiency in a wide spectrum of engineering applications. In recent years, particularly in the automotive industry, the addition of nanofluid in diesel/biodiesel as an additive for ICE has become an attractive approach to promote enhanced combustion efficiency and emission reduction due to their superior thermophysical properties. Many researchers have previously demonstrated that the addition of nanoparticles in diesel/biodiesel fuel improved the overall engine combustion characteristics. As a whole, this study aims to summarize the recent research findings related to the effect of nanoparticles on the fuel properties and engine combustion efficiency. Furthermore, different types of additive blended with varying fuel properties are also compared and discussed. Lastly, the advantages and prospects of using nanofluid as an additive fuel are summarized for future research opportunities.
APA, Harvard, Vancouver, ISO, and other styles
35

Lacey, Joshua, Karthik Kameshwaran, Zoran Filipi, Peter Fuentes-Afflick, and William Cannella. "The effect of fuel composition and additive packages on deposit properties and homogeneous charge compression ignition combustion." International Journal of Engine Research 21, no. 9 (February 7, 2019): 1631–46. http://dx.doi.org/10.1177/1468087419828624.

Full text
Abstract:
Homogeneous charge compression ignition combustion is highly dependent on in-cylinder thermal conditions that are favorable to auto-ignition, and the presence of deposits can dramatically impact the in-cylinder environment. Because fuels available at the pump can differ considerably in composition, and fuel composition and the included additive package directly affect how deposits accumulate in a homogeneous charge compression ignition engine, strategies intended to bring homogeneous charge compression ignition to market must account for this fuel and additive variability. In order to investigate this impact, two oxygenated refinery stream test fuels with two different additives were run in a single cylinder homogeneous charge compression ignition engine. The two fuels had varying chemical composition; one represents a “dirty” fuel with high aromatic content that was intended to simulate a worst-case scenario for deposit growth, while the other represents a California Reformulated Gasoline Blendstock for Oxygenate Blending fuel, which is the primary constituent of pump gasoline at fueling stations across the state of California. The additive packages are typical of technologies that are commercially available to treat engine deposits. Both fuels were run in an experimental, single-cylinder homogeneous charge compression ignition engine in a passive conditioning study, during which the engine was run at steady state over a period of time in order to track changes in the homogeneous charge compression ignition combustion event as deposits accumulated in-cylinder. Both the composition and the additive influenced the structure of the combustion chamber deposit layer, but more importantly, both the rate at which the layer developed and the equilibrium thickness it achieved. The overall thickness of the combustion chamber deposit layer was found to have a significant impact on homogeneous charge compression ignition combustion phasing.
APA, Harvard, Vancouver, ISO, and other styles
36

Hu, Heng Jie, Guo Qing Wang, and Yin Zhu. "The Calculation Methods of Markstein Numbers and Laminar Burning Velocities for Hydrogen-Air Premixed Mixtures in Constant Volume Combustion Bomb." Advanced Materials Research 912-914 (April 2014): 382–85. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.382.

Full text
Abstract:
Energy and emissions are the two major problems the automotive industry facing currently. Hydrogen has been of great concern worldwide as a renewable clean fuel.It has burn fast, wide flammable range, less pollution, and many other advantages. Premixed laminar burning is an important part of researching combustion mechanism,and Is an important means of developing and verifying fuel combustion chemical reaction kinetics mechanism.
APA, Harvard, Vancouver, ISO, and other styles
37

Karmann, Stephan, Stefan Eicheldinger, Maximilian Prager, and Georg Wachtmeister. "Optical and thermodynamic investigations of a methane and hydrogen blend fueled large bore engine." International Journal of Engine Research 23, no. 5 (January 3, 2022): 846–64. http://dx.doi.org/10.1177/14680874211066735.

Full text
Abstract:
The following paper presents thermodynamic and optical investigations of the natural flame and OH radical chemiluminescence of a hydrogen enriched methane combustion compared to natural gas combustion. The engine under investigation is a port-fueled unscavenged prechamber 4.8 L single cylinder large bore engine. The blends under consideration are 2%V, 5%V,10%V, and 40%V of hydrogen expected to be blended within existing natural gas grids in a short and mid-term timeline in order to store green energy from solar and wind. These fuel blends could be used for stabilization of the energy supply by reconverting the renewable fuel CH4/H2 in combined heat and power plants. As expected, admixture of hydrogen extends the ignition limits of the fuel mixture toward lean ranges up to an air-fuel equivalence ratio of almost 2. No negative effect on combustion is observed up to an admixture of 40%V hydrogen. At 40%V hydrogen, abnormal combustion like backfire occurs at an air-fuel equivalence ratio of 1.5. The higher mixtures exhibit increased nitrogen oxide emissions due to higher combustion chamber temperatures, while methane slip and CO emissions are reduced due to more complete combustion. The optical investigation of the natural flame and OH radical chemiluminescence are in good agreement with the thermodynamic results verifying the more intense combustion of the fuel blends by means of the chemiluminescence intensity. Further, lube oil combustion and a continuing luminescence after the thermodynamic end of combustion are observed.
APA, Harvard, Vancouver, ISO, and other styles
38

Wagner, Robert M. "Engines of the Future." Mechanical Engineering 137, no. 12 (December 1, 2015): 30–35. http://dx.doi.org/10.1115/1.2015-dec-1.

Full text
Abstract:
This article elaborates the advancement in internal combustion engine technology and explains why internal combustion engines will continue to be integral to the transportation of people and goods for the foreseeable future. The internal combustion engine has seen a remarkable evolution over the past century. Before 1970, the evolution of engine design was driven by quest for performance and increase in octane in the fuel supply. Since then, however, the imperative was the need to meet new emissions and fuel economy regulations. Some game-changing advances in automotive sector in recent years are improvements in engine technologies, sensors, and onboard computing power. This combination of technologies will enable unprecedented control of the combustion process, which in turn will enable real-world implementations of low-temperature combustion and other advanced strategies as well as improved robustness and fuel flexibility. In future, new engine concepts will also blend the best characteristics of both engine types to push the boundaries of efficiency while meeting stringent emissions regulations worldwide.
APA, Harvard, Vancouver, ISO, and other styles
39

Kassa, Mateos, Carrie Hall, Andrew Ickes, and Thomas Wallner. "Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings." International Journal of Engine Research 18, no. 8 (October 24, 2016): 797–809. http://dx.doi.org/10.1177/1468087416674426.

Full text
Abstract:
In internal combustion engines, cycle-to-cycle and cylinder-to-cylinder variations of the combustion process have been shown to negatively impact the fuel efficiency of the engine and lead to higher exhaust emissions. The combustion variations are generally tied to differences in the composition and condition of the trapped mass throughout each cycle and across individual cylinders. Thus, advanced engines featuring exhaust gas recirculation, flexible valve actuation systems, advanced fueling strategies, and turbocharging systems are prone to exhibit higher variations in the combustion process. In this study, the cylinder-to-cylinder variations of the combustion process in a dual-fuel internal combustion engine leveraging late intake valve closing are investigated and a model to predict and address one of the root causes for these variations across cylinders is developed. The study is conducted on an inline six-cylinder heavy-duty dual-fuel engine equipped with exhaust gas recirculation, a variable geometry turbocharger, and a fully flexible variable intake valve actuation system. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. The cylinder-to-cylinder variations observed in the study have been associated with the maldistribution of the port-injected fuel, which is exacerbated at late intake valve timings. The resulting difference in indicated mean effective pressure between the cylinders ranges from 9% at an intake valve closing of 570° after top dead center to 38% at an intake valve closing of 620° after top dead center and indicates an increasingly uneven fuel distribution. The study leverages both experimental and simulation studies to investigate the distribution of the port-injected fuel and its impact on cylinder-to-cylinder variation. The effects of intake valve closing as well as the impact of intake runner length on fuel distribution were quantitatively analyzed, and a model was developed that can be used to accurately predict the fuel distribution of the port-injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow. A model-based control strategy is implemented to adjust the fueling at each port and shown to significantly reduce the cylinder-to-cylinder variations in fuel distribution.
APA, Harvard, Vancouver, ISO, and other styles
40

Pielecha, Ireneusz, and Zbigniew Stępień. "Operational evaluation of atomization indicators for gasoline with admixtures of ethanol and butanol during Keep-Clean tests." Archives of Transport 62, no. 2 (June 30, 2022): 123–37. http://dx.doi.org/10.5604/01.3001.0015.9583.

Full text
Abstract:
The global policy of reducing road transport sector pollution requires the introduction of significantly modified already in use technologies and construction solutions. Currently, direct fuel injection technology is the best solution in terms of reducing fuel consumption and exhaust emissions of standard pollutants into the atmosphere, as well as further improving the engine performance. In terms of exhaust emissions, direct injection spark ignition engines are characterized by significantly higher exhaust emissions of particulate matter (approximately 10 times higher) compared to indirect fuel injection SI engines, they show a greater tendency to knocking combustion and are prone to the formation of harmful deposits on engine parts, including in the fuel injectors. The injector tips located in the combustion chamber are exposed to the direct influence of the very high pressure and temperature caused by the combusting fuel-air mixture, which contributes to the rapid formation of harmful deposits. Operation-based injectors contamination in spark ignition engines results in a reduction of the cross-sectional flow diameter of the injector, which then necessitates the extension of the injection time in order to maintain the fuel dose and the expected engine operating parameters. The tests were carried out on an engine dynamometer and an optical test stand for fuel atomization process. The presented research analyzes indicate the possibility of using admixtures that effectively reduce the likelihood of contamination. The paper presents a results analysis of engine tests performed in accordance with the CEC F-113-KC procedure. Additionally, the injectors were tested to conduct an analysis of the injected fuel stream’s geometric indicators. The range, surface area and speed of the injected fuel stream as well as the fuel distribution in the stream were determined based on an equivalent indicator. The obtained results indicated that ethanol and butanol admixtures of 10% (V/V) to gasoline did not significantly extend the fuel injection time as compared to the reference fuel. A further increase in the proportion of ethanol caused a significant deterioration of the fuel flow and the geometric indicators of the fuel spray.
APA, Harvard, Vancouver, ISO, and other styles
41

Chubbock, Stuart, and Ralph Clague. "Comparative Analysis of Internal Combustion Engine and Fuel Cell Range Extender." SAE International Journal of Alternative Powertrains 5, no. 1 (April 5, 2016): 175–82. http://dx.doi.org/10.4271/2016-01-1188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

d’Ambrosio, Stefano, Ezio Spessa, and Alberto Vassallo. "Methods for Specific Emission Evaluation in Spark Ignition Engines Based on Calculation Procedures of Air-Fuel Ratio: Development, Assessment, and Critical Comparison." Journal of Engineering for Gas Turbines and Power 127, no. 4 (September 20, 2005): 869–82. http://dx.doi.org/10.1115/1.1852566.

Full text
Abstract:
New computational procedures are proposed for evaluating the exhaust brake specific mass emissions of each pollutant species in internal combustion (IC) engines. The procedures start from the chemical reaction of fuel with combustion air and, based on the measured exhaust raw emissions THC, CH4,NOx, CO, O2,CO2, calculate the volume fractions of the compounds in the exhaust gases, including those that are not usually measured, such as water, nitrogen and hydrogen. The molecular mass of the exhaust gases is then evaluated and the brake specific emissions can be obtained if the exhaust flow rate and the engine power output are measured. The algorithm can also be applied to the evaluation of air-fuel ratio from measured raw volume emissions of IC engines. The new procedures take the effects of various fuel and combustion air compositions into account, with particular reference to different natural gas blends as well as to the presence of water vapor, CO2, Ar and He in the combustion air. In the paper, the algorithms are applied to the evaluation of air-fuel ratio and brake specific mass emissions in an automotive bi-fuel Spark Ignition (SI) engine with multipoint sequential port-fuel injection. The experimental tests were carried out in a wide range of steady-state operating conditions under both gasoline and compressed natural gas operations. The specific emissions calculated from the new procedures are compared to those evaluated by applying Society of Automotive Engineers (SAE) and International Standards Organization (ISO) recommended practices and the air-fuel ratio results are compared to those obtained either from directly measured air and fuel mass flow rates or from Universal Exhaust Gas Oxygen (UEGO) sensor data. The sensitivity of the procedure results to the main engine working parameters, the influence of environmental conditions (in particular the effect of air humidity on NOx formation) and the experimental uncertainties are also determined.
APA, Harvard, Vancouver, ISO, and other styles
43

Dai, Xingyi (Hunter), Satbir Singh, Sundar R. Krishnan, and Kalyan K. Srinivasan. "Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings." International Journal of Engine Research 21, no. 5 (June 22, 2018): 781–93. http://dx.doi.org/10.1177/1468087418783637.

Full text
Abstract:
Computational fluid dynamics simulations are performed to investigate the combustion and emission characteristics of a diesel/natural gas dual-fuel engine. The computational fluid dynamics model is validated against experimental measurements of cylinder pressure, heat release rate, and exhaust emissions from a single-cylinder research engine. The model predictions of in-cylinder diesel spray distribution and location of diesel ignition sites are related to the behavior observed in measured and predicted heat release rate and emissions. Various distributions of diesel fuel inside the combustion chamber are obtained by modifying the diesel injection timing and the spray included angle. Model predictions suggest that the distribution of diesel fuel in the combustion chamber has a significant impact on the characteristics of heat release rate, explaining experimental observations. Regimes of combustion in the dual-fuel engine are identified. Turbulent flame speed calculations, premixed turbulent combustion regime diagram analysis, and high-temperature front propagation speed estimation indicated that the dual-fuel combustion in this engine was supported by successive local auto-ignition and not by turbulent flame propagation.
APA, Harvard, Vancouver, ISO, and other styles
44

Nakakita, K., K. Akihama, W. Weissman, and J. T. Farrell. "Effect of the hydrocarbon molecular structure in diesel fuel on the in-cylinder soot formation and exhaust emissions." International Journal of Engine Research 6, no. 3 (June 1, 2005): 187–205. http://dx.doi.org/10.1243/146808705x7400.

Full text
Abstract:
Evaluations of diesel fuel effects on combustion and exhaust emissions in single-cylinder direct-injection diesel engines led to the unexpected result that a Swedish ‘class 1’ fuel generated more particulate matter (PM) than a fuel denoted ‘improved’, even though ‘class 1’ fuel had much lower distillation temperatures, aromatic concentration, sulphur level, and density than the ‘improved’ fuel. Little differences were observed in the combustion characteristics between these fuels, but detailed compositional analyses showed that ‘class 1’ fuel contains higher levels of cyclic and/or branched paraffins. Subsequent investigations in a laboratory flow reactor showed that ‘class 1’ fuel produces more soot precursors such as benzene and acetylene than the ‘improved’ fuel. In addition, experiments in a low-pressure laminar flame apparatus and shock tube with model (single-molecule) paraffin fuels showed that isoparaffins and cycloparaffins generate more soot precursors and soot than n-paraffins do. These results strongly suggested that the effect of molecular structure on exhaust PM formation should be more carefully examined. Therefore, a new series of investigations were performed to examine exhaust emissions and combustion characteristics in single-cylinder engines, with well-characterized test fuels having carefully controlled molecular composition and conventional distillation characteristics and cetane numbers (CNs). These investigations revealed the following. Firstly, under low and medium loads, cycloparaffins (naphthenes) have a higher PM formation tendency than isoparaffins and n-paraffins. Under high-load conditions, however, the paraffin molecular structure has a very small effect. Secondly, a highly n-paraffinic fuel does not yield PM reductions as high as expected, due to its high CN and corresponding shorter ignition lag, which initiates combustion under a state of insufficient fuel-air mixing. This finding was corroborated by laser-induced incandescence analyses. Thirdly, the lowest PM emissions were observed with a paraffinic fuel containing 55 per cent isoparaffins and 39 per cent n-paraffins. Fourthly, aromatics give higher soot and PM levels than paraffins do at high and medium load conditions. Smaller differences are observed at lower speeds and loads. Fifthly, the best fit to the PM emissions was obtained with an equation containing the regression variables CN, aromatic rings, and naphthene rings. This expression of the fuel effects in chemical terms allows well-to-wheel analyses of refining and vehicle impacts resulting from molecularly based fuel changes.
APA, Harvard, Vancouver, ISO, and other styles
45

Raslavičius, Laurencas, and Donatas Markšaitis. "RESEARCH INTO THREE‐COMPONENT BIODIESEL FUELS COMBUSTION PROCESS USING A SINGLE DROPLET TECHNIQUE." TRANSPORT 22, no. 4 (December 31, 2007): 312–15. http://dx.doi.org/10.3846/16484142.2007.9638147.

Full text
Abstract:
In order to reduce the engine emission while at same time improving engine efficiency, it is very important to clarify the combustion mechanism. Even if, there are many researches into investigating the mechanism of engine combustion, so that to clarify the relationship between complicated phenomena, it is very difficult to investigate due to the complicated process of both physical and chemical reaction from the start of fuel injection to the end of combustion event. The numerical simulations are based on a detailed vaporization model and detailed chemical kinetics. The influence of different physical parameters like droplet temperature, gas phase temperature, ambient gas pressure and droplet burning velocity on the ignition delay process is investigated using fuel droplet combustion stand. Experimental results about their influence on ignition delay time were presented.
APA, Harvard, Vancouver, ISO, and other styles
46

Noroozi, M. J., and M. Seddiq. "Effects of Post-Injection Characteristics on the Combustion, Emission, and Performance in a Diesel-Syngas Reactivity Controlled Compression Ignition Engine." International Journal of Automotive and Mechanical Engineering 18, no. 3 (September 19, 2021): 9006–21. http://dx.doi.org/10.15282/ijame.18.3.2021.13.0690.

Full text
Abstract:
This paper presents a numerical investigation of the separate effects of post-injection characteristics in a heavy-duty turbocharged direct injection diesel engine under pure diesel combustion (PDC) and diesel-syngas combustion (DSC) operating conditions. Converge CFD code was used coupled with a detailed n-heptane/toluene/PAH chemical kinetic mechanism (consists of 71 species and 360 reactions) for diesel-syngas dual-fuel combustion simulation. A total of 36 strategies based on the post-injection characteristics (post-injection timing, fuel quantity, spraying pressure, and main-post dwell time) on the combustion characteristics, exhaust gas emissions, and engine performance under PDC and DSC conditions were investigated. Numerical achievements revealed that 40% substitution of diesel fuel with syngas significantly decreased particulate matter emission and enhanced the indicated thermal efficiency (ITE), compared to the baseline PDC case. However, carbon monoxide noticeably increased. In addition, retarding the post-injection timing prolonged the combustion duration and also reduced the nitrogen oxides emissions and ITE. By increasing the post-injection quantity up to 15%, the combustion process deteriorated, and carbon-based emissions such as particulate matter, carbon monoxide, and unburnt hydro-carbon in the exhaust gases increased under PDC and DSC conditions. Furthermore, increasing post-injection pressure (PIP) from 1000 to 1450 bar under both PDC and DSC conditions led to higher flame temperature, and as a result, the heat release rate peak point and temperature peak point for the second combustion event increased. However, at a PIP of 1600 bar, the ITE deteriorated under PDC and DSC operating cases.
APA, Harvard, Vancouver, ISO, and other styles
47

Ishiyama, T., H. Kawanabe, K. Ohashi, M. Shioji, and S. Nakai. "A study on premixed charge compression ignition combustion of natural gas with direct injection." International Journal of Engine Research 6, no. 5 (October 1, 2005): 443–51. http://dx.doi.org/10.1243/146808705x30459.

Full text
Abstract:
In order to extend the available load range and obtain higher thermal efficiency in natural gas premixed charge compression ignition (PCCI) engines, a strategy for controlling direct injection combustion is discussed. Experimental results from single-cylinder engine tests demonstrate the possibility to extend load range by direct fuel injection. Reduced nozzle orifice size and reduced injection angle provide higher combustion efficiency; however, this promotes the tendency to knock because of the formation of a locally rich mixture. Arising from discussions based on prediction by computational fluid dynamics (CFD) code, considering mixture heterogeneity, it is suggested that controlling probability density functions (PDFs) of fuel concentration could be a means to control the rate of pressure rise. Restricted air utilization is useful to activate combustion at low overall equivalence ratios; on the other hand, full utilization of in-cylinder air and formation of a quantity of lean mixture can provide mild combustion.
APA, Harvard, Vancouver, ISO, and other styles
48

Kimura, S., H. Ogawa, Y. Matsui, and Y. Enomoto. "An experimental analysis of low-temperature and premixed combustion for simultaneous reduction of NOx and particulate emissions in direct injection diesel engines." International Journal of Engine Research 3, no. 4 (August 1, 2002): 249–59. http://dx.doi.org/10.1243/146808702762230932.

Full text
Abstract:
A new combustion concept, named MK (modulated kinetics) combustion, has been developed, which reduces NOx and smoke simultaneously through high exhaust gas recirculation (EGR) and retarded injection timing. High-speed photography was employed to investigate the physical and chemical processes of MK combustion, and the results revealed that the combustion features premixed combustion and the low-temperature flames were accompanied by transparent appearances. Heat flux measurements and KIVA calculations were also made to investigate the effects of swirl, which serves to improve thermal efficiency in MK combustion. It was apparent that the swirl effectively governs the fuel distribution in the combustion chamber, suppressing HC formation and improving thermal efficiency by preventing the flames from contacting the cavity walls. Throughout these experiments, ignition delay and fuel injection duration were found to be the two key parameters that control MK combustion. Accordingly, ignition delay was prolonged by cooled EGR and fuel injection duration was shortened by high injection pressure to allow the MK combustion operation in a high load range.
APA, Harvard, Vancouver, ISO, and other styles
49

Ebrahimi, Mojtaba, Mohammad Najafi, and Seyed Ali Jazayeri. "Multi-input–multi-output optimization of reactivity-controlled compression-ignition combustion in a heavy-duty diesel engine running on natural gas/diesel fuel." International Journal of Engine Research 21, no. 3 (February 26, 2019): 470–83. http://dx.doi.org/10.1177/1468087419832085.

Full text
Abstract:
The aim of this study is to implement the multi-input–multi-output optimization of reactivity-controlled compression-ignition combustion in a heavy-duty diesel engine running on natural gas and diesel fuel. A single-cylinder heavy-duty diesel engine with a modified bathtub piston bowl profile is set on operation at 9.4 bar indicated mean effective pressure and running at a fixed engine speed of 1300 r/min. A certain amount of diesel fuel mass per cycle is fed into the engine at a fixed equivalence ratio without any exhaust gas recirculation. The optimization targets include reduction in engine emissions as much as possible, avoiding diesel knock occurrence, and achieving low temperature combustion concept with the least or no engine power losses. To implement the optimization, the effects of three control factors on the engine performance are assessed by the design of experiment concept—fractional factorial method. These selected control factors are intake temperature and intake pressure (both at intake valve closing) and the diesel fuel start of injection timing. Some randomized treatment combinations of chosen levels from the three selected control factors are employed to simulate reactivity-controlled compression-ignition combustion. Based on the engine’s responses derived from the simulation, reactivity-controlled compression-ignition combustion’s mathematical model is identified directly using an artificial neural network. Next, an optimization process is conducted using two different optimization algorithms, namely, genetic algorithm and particle swarm optimization algorithm. For assessing and validating the obtained optimal results, the obtained data are used to simulate reactivity-controlled compression-ignition combustion as the engine input factors. The results show that the proposed artificial neural network design is effectively capable of identifying reactivity-controlled compression-ignition combustion’s mathematical model. Also, by optimizing reactivity-controlled compression-ignition combustion through different optimization algorithms, the optimal range of the engine operation at 9.4 bar indicated mean effective pressure is well estimated and extended.
APA, Harvard, Vancouver, ISO, and other styles
50

Korkmaz, Metin, Dennis Ritter, Bernhard Jochim, Joachim Beeckmann, Dirk Abel, and Heinz Pitsch. "Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine." International Journal of Engine Research 20, no. 10 (March 26, 2019): 1059–72. http://dx.doi.org/10.1177/1468087419836586.

Full text
Abstract:
In order to counteract the drawbacks of conventional diesel combustion, which can lead to high indicated specific nitric oxide and indicated specific particulate matter emissions, a promising diesel-dual-fuel concept is investigated and evaluated. In this study, methane is used as supplement to liquid diesel fuel due to its benefits like high knock resistance and clean combustion. A deep understanding of the in-cylinder process is required for engine design and combustion controller development. To investigate the impact of different input parameters such as injection duration, injection timing, and substitution rate on varying output parameters like load, combustion phasing, and engine-out emissions, numerous investigations were conducted. Engine speed, global equivalence ratio, and injection pressure were held constant. The experiments were carried out in a modified single-cylinder compression ignition engine. The results reveal regimes with different dependencies between injection timing of diesel fuel and combustion phasing. This work demonstrates the potential of the diesel-dual-fuel concept by combining sophisticated combustion control with the favorable combustion mode. Without employing exhaust gas recirculation, TIER IMO 3 emissions limits are met while ensuring high thermal efficiency.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography