Dissertations / Theses on the topic 'Automotive combustion and fuel engineering'

To see the other types of publications on this topic, follow the link: Automotive combustion and fuel engineering.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Automotive combustion and fuel engineering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hockett, Andrew. "A computational and experimental study on combustion processes in natural gas/diesel dual fuel engines." Thesis, Colorado State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=3746141.

Full text
Abstract:

Natural gas/diesel dual fuel engines offer a path towards meeting current and future emissions standards with lower fuel cost. However, numerous technical challenges remain that require a greater understanding of the in-cylinder combustion physics. For example, due to the high compression ratio of diesel engines, substitution of natural gas for diesel fuel at high load is often limited by engine knock and pre-ignition. Additionally, increasing the natural gas percentage in a dual fuel engine often results in decreasing maximum load. These problems limit the substitution percentage of natural gas in high compression ratio diesel engines and therefore reduce the fuel cost savings. Furthermore, when operating at part load dual fuel engines can suffer from excessive emissions of unburned natural gas. Computational fluid dynamics (CFD) is a multi-dimensional modeling tool that can provide new information about the in-cylinder combustion processes causing these issues.

In this work a multi-dimensional CFD model has been developed for dual fuel natural gas/diesel combustion and validated across a wide range of engine loads, natural gas substitution percentages, and natural gas compositions. The model utilizes reduced chemical kinetics and a RANS based turbulence model. A new reduced chemical kinetic mechanism consisting of 141 species and 709 reactions was generated from multiple detailed mechanisms, and has been validated against ignition delay, laminar flame speed, diesel spray experiments, and dual fuel engine experiments using two different natural gas compositions. Engine experiments were conducted using a GM 1.9 liter turbocharged 4-cylinder common rail diesel engine, which was modified to accommodate port injection of natural gas and propane. A combination of experiments and simulations were used to explore the performance limitations of the light duty dual fuel engine including natural gas substitution percentage limits due to fast combustion or engine knock, pre-ignition, emissions, and maximum load. In particular, comparisons between detailed computations and experimental engine data resulted in an explanation of combustion phenomena leading to engine knock in dual fuel engines.

In addition to conventional dual fuel operation, a low temperature combustion strategy known as reactivity controlled compression ignition (RCCI) was explored using experiments and computations. RCCI uses early diesel injection to create a reactivity gradient leading to staged auto-ignition from the highest reactivity region to the lowest. Natural gas/diesel RCCI has proven to yield high efficiency and low emissions at moderate load, but has not been realized at the high loads possible in conventional diesel engines. Previous attempts to model natural gas/diesel RCCI using a RANS based turbulence model and a single component diesel fuel surrogate have shown much larger combustion rates than seen in experimental heat release rate profiles, because the reactivity gradient of real diesel fuel is not well captured. To obtain better agreement with experiments, a reduced dual fuel mechanism was constructed using a two component diesel surrogate. A sensitivity study was then performed on various model parameters resulting in improved agreement with experimental pressure and heat release rate.

APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Dai. "Combustion and emissions of an automotive diesel engine using biodiesel fuels under steady and start conditions." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5797/.

Full text
Abstract:
Biodiesels have been proved to reduce the smoke and THC emissions by many researchers. The demands of biodiesel are increasing all over the world. Various feedstocks of biodiesel have been used in different countries and regions. The blend ratio of biodiesel in petrol station is also varies. Therefore, more calibration works have been done for the car manufacturers. In first part this research, the combustion characteristics and emissions of using biodiesels from different feedstocks with different blend ratio was studied by experimental works. Statistical analysis indicated the correlation between emissions and fuel properties. Then, a smoke index, containing Reynolds Number of fuel spray, cetane number and gross heat value of combustion, was created and showed a significant linear relationship with the smoke emissions. The effects of engine loads and EGR rates on the relationship were also discussed. The second part of this research was focused on the cold start with using biodiesel blends. The tests were conducted in a wide range of the temperatures (from -20°C to 90°C). Results showed that the methyl ester biodiesel reduced the PM during the acceleration period of the start at 20°C conditions. As ambient temperature decreased, using of biodiesel shows an increased emissions of PM and THC. The chemical compositions of particle emissions with using biodiesel blends at cold start were identified by a 20-GC/MS and the results also confirmed this trend.
APA, Harvard, Vancouver, ISO, and other styles
3

Baranski, Jacob A. "Experimental Investigation of Octane Requirement Relaxation in a Turbocharged Spark-Ignition Engine." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375262182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Everett, Ryan Vincent. "An Improved Model-Based Methodology for Calibration of an Alternative Fueled Engine." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1321285633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fussey, Peter Michael. "Automotive combustion modelling and control." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ec66cbb1-407e-431c-bd77-e67bcf33be3a.

Full text
Abstract:
This thesis seeks to bring together advances in control theory, modelling and controller hardware and apply them to automotive powertrains. Automotive powertrain control is dominated by PID controllers, look-up tables and their derivatives. These controllers have been constantly refined over the last two decades and now perform acceptably well. However, they are now becoming excessively complicated and time consuming to calibrate. At the same time the industry faces ever increasing pressure to improve fuel consumption, reduce emissions and provide driver responsiveness. The challenge is to apply more sophisticated control approaches which address these issues and at the same time are intuitive and straightforward to tune for good performance by calibration engineers. This research is based on a combustion model which, whilst simplified, facilitates an accurate estimate of the harmful NOx and soot emissions. The combustion model combines a representation of the fuel spray and mixing with charge air to give a time varying distribution of in-cylinder air and fuel mixture which is used to calculate flame temperatures and the subsequent emissions. A combustion controller was developed, initially in simulation, using the combustion model to minimise emissions during transient manoeuvres. The control approach was implemented on an FPGA exploiting parallel computations that allow the algorithm to run in real-time. The FPGA was integrated into a test vehicle and tested over a number of standard test cycles demonstrating that the combustion controller can be used to reduce NOx emissions by over 10% during the US06 test cycle. A further use of the combustion model was in the optimisation of fuel injection parameters to minimise fuel consumption, whilst delivering the required torque and respecting constraints on cylinder pressure (to preserve engine integrity) and rate of increase in cylinder pressure (to reduce noise).
APA, Harvard, Vancouver, ISO, and other styles
6

Al, Qubeissi Mansour. "Heating and evaporation of automotive fuel droplets." Thesis, University of Brighton, 2015. https://research.brighton.ac.uk/en/studentTheses/540596d9-e14f-4007-9533-acd625e14b8e.

Full text
Abstract:
The previously introduced fuel droplet heating and evaporation models, taking into account temperature gradients, recirculations, and species diffusion within droplets, are further developed and generalised for the application to a broad range of automotive fuel droplets. The research has been conducted in three directions: modelling of biodiesel fuel droplets, modelling of Diesel fuel droplets, and modelling of gasoline fuel droplets.
APA, Harvard, Vancouver, ISO, and other styles
7

Cuseo, James M. (James Michael). "Cold start fuel management of port-fuel-injected internal combustion engines." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32380.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
Includes bibliographical references (p. 64).
The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent cycles. Close attention will be paid to cycle-to-cycle interaction of the fueling strategy. It is our intent to see if residual fuel from each cycle has a predicable influence on subsequent cycle's charge mass and EOHC emissions. The fast flame ionization detector is employed to measure both in-cylinder and engine out hydrocarbon concentrations for various cold start strategies. The manufacturer's original fueling strategy is used as a starting point and is compared to a "in-cylinder fuel air ratio (Phi) [approx.] 1" case (a fueling strategy that results in an in-cylinder concentration of approximately stoichiometric for each of the first five cycles) and to a number of cases that are chosen to illustrate cycle-to-cycle mixture preparation dependence on second cycle fueling. Significant cycle-to-cycle dependence is observed with the change in second cycle. A fueling deficit in cycle two has a more pronounce effect on future cycles delivered charge mass than a fueling surplus while a fueling surplus in cycle two has a more pronounce effect on future cycles charge mass than a fueling deficit.
by James M. Cuseo.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
8

Girgis, Elisabeth. "Fuel devolatilization in packed bed wood combustion." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26645.

Full text
Abstract:
Packed bed combustion is the burning of solid fuel particles supported by a grate with the combustion air supplied from below. The combustion process is divided into four main stages: drying, devolatilization, volatiles combustion and char combustion. Biomasses proposed as renewal energy sources, such as wood, have a very high volatile content (∼80%). Therefore mechanistic models developed for the prediction of bed characteristics during biomass combustion must include devolatilization and volatile combustion stages in order to correctly predict combustion behaviour for better emissions control and process efficiency. A novel in-situ sampling method for tar, a major pyrolysis product, was developed that allows its concentration to be measured at various heights within the packed bed and appears to work satisfactorily. A series of experiments on packed bed combustion were conducted in a laboratory 'pot' type combustor. Two different equivalent particle size diameters (2.8 cm and 3.2 cm) of untreated spruce wood and two different airflow rates (0.025 kg/m2s and 0.03 kg/m 2s) were tested at a 22 cm bed height. Although the experimental data show scatter, the measurements indicated that pyrolysis occurred primarily within two particle diameters of the top of the bed, with large amounts of tar and CO and somewhat less CO2 being produced. This research also expanded a numerical model for packed bed combustion of solid fuels with the addition of a simple first order pyrolysis reaction, in which fixed proportions of the products were set as light volatiles of CO and CO2 with the balance as tar. The model results compared well with bed temperature, particle size and density measurement throughout the bed and gas concentration (CO, CO2, O2, and CH4) measurements in the reduction and oxidation zone.
APA, Harvard, Vancouver, ISO, and other styles
9

Goldsmith, Claude Franklin III. "Predicting combustion properties of hydrocarbon fuel mixtures." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59876.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 189-201).
In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions that are critical in combustion, including a detailed analysis of the pressure dependence of these rate coefficients. I developed a new method for rapidly estimating the vibrational modes and hindered rotor parameters for molecules. This new method has been implemented in an automatic reaction mechanism generation software, RMG, and has improved the accuracy of the density of states computed in RMG, which in turn has improved RMG's ability to predict the pressure-dependence of rate coefficients for complex reaction networks. I used statistical mechanics to compute the thermochemistry for over 170 of the most important species in combustion. These calculations form a new library of thermodynamic parameters, and this library will improve the accuracy of kinetic models, particularly for fuel lean conditions. I measured reaction rate coefficients using both laser flash-photolysis absorption spectroscopy in a slow-flow reactor and time-of-flight mass spectrometry and laser Schlieren densitometry in a shock tube. Based upon these experimental projects, I helped design a one-of-a-kind instrument for measuring rate coefficients for combustion-relevant reactions. The new reactor combines photoionization time-of-flight mass spectrometry with multi-pass absorption spectroscopy in a laser-flash photolysis cell. The cumulative effect of these efforts should advance our understanding of combustion chemistry and allow us to make more accurate predictions of how hydrocarbons burn.
by Claude Franklin Goldsmith, III.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

Crua, Cyril. "Combustion processes in a diesel engine." Thesis, University of Brighton, 2002. https://research.brighton.ac.uk/en/studentTheses/d0d73428-8bf3-460f-8297-f40572fd4bd7.

Full text
Abstract:
The effects of in-cylinder and injection pressures on the formation and autoignition of diesel sprays at realistic automotive in-cylinder conditions was investigated. A two-stroke diesel Proteus engine has been modified to allow optical access for visualisation of in-cylinder combustion processes. Various optical techniques were used to investigate the combustion processes. These include high-speed video recording of the liquid phase, high-speed schlieren video recording of the vapour phase and laser-induced incandescence for soot imaging. The spray cone angle and penetration with time data extracted from photographic and high-speed video studies are presented. The effects of droplet evaporation, breakup and air entrainment at the initial stage of spray penetration were studied theoretically using three models. It was found that the predictions of the model combining bag breakup and air entrainment are in good agreement with the experimental measurements. Spray autoignition was investigated using video, in-cylinder pressure, and schlieren recordings. Pseudo three-dimensional visualisation of the autoignition was achieved by simultaneous use of two high-speed video cameras at right angles to each other. The effects of elevated injection and in-cylinder pressures on the ignition delay and ignition sites have been investigated. Laser-induced incandescence was performed to obtain maps of soot concentration for a range of engine conditions. The influence of in-cylinder and injection pressures on soot formation sites and relative soot concentration has been studied. The work has been mainly focused on the specificities of soot formation under extreme in-cylinder conditions.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Fan. "Spray, combustion and emission characteristics of dieseline fuel." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4699/.

Full text
Abstract:
The spray, combustion and emissions characteristics of diesel and gasoline blends (dieseline) were studied. Experimental results showed that the dieseline fuel spray had tip penetration length similar as diesel. With an increase of the gasoline/diesel blending ratio, the fuel droplets size decreased. When operating with dieseline, the engine's PM emissions were much lower than diesel. With advanced injection timing and large amounts of EGR, both the NOx and PM emissions of dieseline combustion were reduced significantly at part loads. Using split injection strategies gave even more flexibility for the control of mixing strength and combustion phasing. However, the power density of dieseline fuelled PPCI operation was limited. A novel concept, Stoichiometric Dual-fuel Compression Ignition (SDCI) was investigated. The diesel and gasoline were blended internally through direct injection and port fuel injection respectively. Stoichiometric condition was maintained through adjusting the EGR ratio, which thus allows for a three-way-catalyst to handle gaseous emissions. Experimental results showed that the SDCI combustion can achieve better thermal efficiency and lower PM emissions than conventional diesel combustion. Overall, the SDCI concept was proved to be a promising technique for optimising a CI engine's efficiency, emissions and noise without compromise of cost and power density.
APA, Harvard, Vancouver, ISO, and other styles
12

Kronholm, David Franklin 1967. "Molecular weight growth pathways in fuel-rich combustion." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8996.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2000.
Includes bibliographical references.
Polycyclic aromatic hydrocarbons (P AH) and soot are formed when a hydrocarbon fuel is oxidized under fuel-rich conditions. The distinction between what constitutes the largest P AH molecule and the smallest soot particle is arbitrary; the formation processes of both can be placed under the heading of molecular weight growth. Evidence exists for the carcinogenicity of many P AH molecules. Soot is used as a component of dyes and as an additive to rubbers as well as being an undesirable atmospheric pollutant. Both are emitted from many typical combustion processes such as diesel engines, wood fires, furnaces, etc. Though the area has received much attention, the fundamental chemical mechanisms for formation of both P AH and soot are still uncertain. Much debate has centered on the identity of the soot surface growth reactant, in particular whether the dominant surface growth reactant is P AH or acetylene. Though several models of soot formation exist, none has demonstrated through comparison to experimental data a thorough knowledge of the fundamental chemical processes of soot formation. The goal of this research was to further the understanding of these fundamental chemical processes. Since the chemistry of P AH and soot are intertwined, PAH was a necessary subcomponent of the soot formation research. The research was accomplished by obtaining soot particle size distribution data for the jet-stirred reactor/ plug-flow reactor (JSR/PFR), development of kinetics modeling methods, and the development of a kinetics model of soot formation. The JSR/PFR has been used extensively in the past to investigate P AH and soot formation, providing much data for concentrations of light-gas species, P AH, and soot under various conditions of equivalence ratio, temperature, and PFR additives. No experimental data have been obtained for soot particle size distribution in the JSR/PFR, so a study was undertaken here to obtain the soot particle size distributions for two conditions previously studied by Marr, premixed atmospheric ethylene combustion at equivalence ratio 2.2 and temperatures of 1520 K and 1620 K. Thermophoretic sampling was used to obtain soot samples for transmission electron micrograph analysis. Software was written and used to obtain soot particle sizes from electron micrographs. The chemical environment in a fuel-rich flame consists of many hundreds of species and thousands of chemical reactions. To isolate particular portions of the chemistry, a calculational technique was developed, data incorporation, that replaces chosen portions of the chemistry in kinetics models with functions of data concentrations. This technique was then used to isolate the process of P AH molecular weight growth and soot nucleation through the use of a discrete sectional model, and rate coefficients for hydrogen-atom abstraction, acetylene-addition, and PAH radical addition to PAH were obtained by comparisons to data from Marr for the 1620 K condition described above and the same condition with naphthalene injection into the PFR. The data incorporation technique was then used to expand the discrete sectional model to include sections describing soot, and the experimental soot size distribution data described above was used with previously available PFR data to obtain values for rate coefficients of PAHaddition to soot and coagulation of soot particles. Five PFR conditions were used to develop the soot formation model in these calculations, and the dominant mechanisms of soot formation present under these conditions appear to be present in the model. Quantitative agreement is obtained to all of the available data, including simultaneous agreement of soot mass and particle size, without significant deviation in the rate coefficients required to obtain agreement. Calculations were performed using both PAH and acetylene as the dominant soot surface growth reactant. It was found that P AH had far more consistent rate coefficient values (constant to within a factor of 4) than acetylene ( constant to within a factor of 59) to describe the data for all of the conditions. An analysis of the above five sets of conditions in the PFR, an additional three for the PFR, and three for premixed one-dimensional flames of acetylene, ethylene, and benzene, for which concentrations of acetylene, P AH. and soot, and in the case of the one-dimensional flames, soot particle size data, were available, were analyzed with the aim of understanding the dominant characteristics of the soot surface growth reactant. Soot mass growth rates were calculated for all of the conditions, and deviate markedly between the PFR and one-dimensional flames. Soot growth rate increases and oscillates in the PFR and sharply declines in the one-dimensional flames in the region of soot growth after initial particle inception. Under all of these conditions, PAH show the characteristics required of the dominant surface growth reactant: increases and oscillations in the PFR and sharp declines in the one-dimensional flames. For acetylene to be the dominant surface growth reactant, anomalous behavior of acetylene-suot reactivity would be required that cannot be explained by soot aging or radical intermediates. This leads to the observation that the long-held notion of declining soot reactivity in premixed one-dimensional flames similar to the ones studied here is a result of variations in the PAH intermediates and not a real phenomenon in the region after soot particle inception. An approximate method of uncertainty analysis of kinetics models was used to place an uncertainty bound of a factor of 3 on the rate coefficient parameters calculated. The approximate method was compared to more precise techniques and used to show that the uncertainty of concentration predictions with PAH kinetics models is of very large magnitude. The approximate uncertainty analysis technique was also used to show that the data incorporation technique reduces the uncertainty in calculated rate parameters by over two orders of magnitude. A kinetics model reduction algorithm was developed and implemented to reduce a PAH kinetics model fro.n 722 reactions and 187 species to 93 reactions and 52 species, maintaining naphthalene conc1;;ntration to within 9% of the original model. This technique was also used by Dinaro to redm:e a benzene oxidation model from 545 to 41 reactions for use in super-critical water oxidation applications.
by David Franklin Kronholm.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
13

Van, der Ham Gert A. "Liquid petroleum gas as automotive fuel in South Africa." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52324.

Full text
Abstract:
Thesis (MEng)--University of Stellenbosch, 2001.
ENGLISH ABSTRACT: The trends in worldwide fuel consumption and availability were studied, these indicated a bigger growth in gaseous fuel use than that of crude oil over the last decade. The economics (cost of converting and running vehicles on LPG) were studied and compared with those of petrol and diesel fuels. The government's approach to LPG taxation and the structure of the fuel price was also considered in an attempt to foresee what the future holds for LPG use in the motor industry. Gas fuelling systems that are currently available were studied and briefly described. The information obtained from the background study was used to help in the conversion of a two litre petrol engine. The engine was equipped to run on petrol Injection, liquid phase LPG injection and LPG carburettion. In-cylinder pressures, exhaust emissions and fuel consumption were amongst the parameters that were recorded for each fuel. The in-cylinder pressure measurements were used to study the combustion characteristics of petrol and LPG. Computer modeling was also used to investigate the trends that were recorded and this gave valuable insight into the different combustion characteristics of each fuel and the effect of gaseous versus liquid supply. For the passenger bus market a 12 litre 6 cylinder diesel engine was converted to LPG operation only. This required several changes to the pistons, cylinder head, inlet manifold and the addition of an electronic ignition system. Some changes had to be made to the squish characteristics of the pistons to make it suitable for homogeneous fuel air mixtures. The reasons for this were studied and described. Dynamometer tests revealed inadequacies in the ignition system that still need to be addressed before the engine can be built into a bus. Recommendations are made as to best utilize LPG in the South African Automotive industry, so as to improve public transport and air quality in some of our cities.
AFRIKAANSE OPSOMMING: 'n Studie van tendense in wêreldwye energieverbruik en besikbaarheid is gedoen. Dit het aan die lig gebring dat die groei in die gebruik van gasagtige brandstowwe in die laaste dekade die van ru-olie oortref het. Die lewensvatbaarheid van Vloeibare Petroleum Gas (VPG) voertuie, ombouing sowel as lopende koste, is bestudeer en vergelyk met die van Petrol en Diesel voertuie. Die regering se benadering tot belasting op VPG en die struktuur van die brandstofprys is ook ondersoek om te bepaal of die gebruik van VPG in n groter skaal as tans lewenvatbaar is. Vir tegniese agergrond is gas aangedrewe voertuie wêreldwyd bestudeer om te sien watter brandstof-voorsiening stelsels en enjins gebruik word. Die verskillende stelsels word bondig beskryf. Hierdie inligting is onder meer gebruik in die ombouing van n twee liter petrolenjin na VPG. Die enjin is toegerus om op beide petrol en VPG te loop terwyl die VPG in gasfase met behulp van 'n vergasser of as vloestof deur brandstof inspuiting toegedien kon word. Ontbrandingskamerdruk, uitlaatgasse en brandstofverbruik is van die parameters wat tydens toetse gemeet is. Die ontbrandingskamerdukmetings is gebruik om die verbrandingskarakteristieke van elke brandstof te bepaal. Nagebootste verbrandingstempos is in n rekeraarprogram gebruik om verskillende verbrandings karakteristieke wat gemeet is te ondersoek en tendense te bevestig. Vir die swaarvoertuigmark is 'n 12 Liter diesel enjin ombebou na VPG gebruik. Die dieselpomp en inspuiters is vervang met elektroniese vonkontsteking en vonkproppe. Die verbrandingskamer moes verander word om spontane verbranding tydens samepersing te voorkom. Die redes hiervoor is ondersoek en beskryf. Dinamo toetse het tekortkominge uitgewys in die elektroniese vonkontstekingsstelsel wat nog nie ten volle aangespreek is nie. Aanbevelings is gemaak om die toenemende gebruik van VPG as motorvoertuigbrandstof in Suid Afrika aan te bevorder om sodoende beter gebruik te maak van die beskikbare energie uit ru olie en ander bronne. Aanbevelings is ook gemaak ten opsigte van die gebruik van VPG in openbare vervoer en verbetering van lug gehalte in sommige stede.
APA, Harvard, Vancouver, ISO, and other styles
14

Adamson, Kerry-Ann. "European Union policy, technical change and innovation in the automotive industry : can fuel cells challenge the existing paradigm?" Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Turner, Dale Michael. "The combustion and emissions performance of fuel blends in modern combustion systems." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1165/.

Full text
Abstract:
The combustion and emissions performance of fuel blends in modern combustion systems has been investigated with the intention of reducing emissions, improving efficiency and assessing the suitability of future automotive fuels. The combustion systems used in this study include Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Spark Ignition (DISI). By adding a small quantity (10%) of diesel to gasoline, the HCCI combustion of this ‗Dieseline‘ mixture shows a 4% increase in the maximum and a 16% reduction in the minimum loads (IMEP) achievable. The NOX emissions are reduced, with greater than 30% savings seen for high engine loads. The addition of bio-fuels (ethanol and 2,5 di-methylfuran) to gasoline in HCCI combustion resulted in reduced ignitability giving rise to a 0.25 bar IMEP reduction of the maximum load. A 70% increase in NOX emissions is seen at an engine load of 3.5 bar IMEP. The addition of ethanol and to a lesser extent 2,5 di-methylfuran (DMF) to gasoline in DISI combustion shows increased combustion efficiency. The NOX emissions are reduced with ethanol, but are increased with the addition of DMF. At wide open throttle the bio-fuels show up to a 3 percentage point increase in efficiency through the use of more favourable spark timings brought about by the increased octane ratings and enthalpies of vaporisation. The PM emissions from DISI combustion can be reduced by up to 58% (mass) with the addition of ethanol. The soluble organic fraction forms a significant part of the total PM, particularly for the higher ethanol blends at wide open throttle. The addition of DMF however increases the total PM by up to 70% (mass) through the incomplete combustion of the ring structure.
APA, Harvard, Vancouver, ISO, and other styles
16

Napier, Parhys L. "The individual contribution of automotive components to vehicle fuel consumption." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68851.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 47-51).
Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles and their level of impact using an in-depth literature review of technical papers. The literature is rigorously screened using an algorithm that excluded unreliable studies by criteria defined herein. Papers that are identified using this strategy are stratified according to vehicle subsystem and component. Relationships are established between external factors and fuel consumption using linear regression models and ranked by level of importance. Results show that coolant, air conditioning, alternator, rolling resistance and lubricants have an impact on vehicle fuel consumption and its variation. More specifically, coolant flow rate, oil viscosity, ambient temperature and tire pressure are found to be significant factors to fuel economy for the automobile.
by Parhys L. Napier.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
17

Balogun, Sunday Julius. "Static Optimization of Fuel Cell Plug-In Hybrid Electric Vehicle." Thesis, Northern Illinois University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10978070.

Full text
Abstract:

This thesis focuses on the static optimization of a fuel cell plug-in hybrid electric vehicle. The vehicle is been powered by three (3) sources of electrical energy. These sources of electrical energy are: fuel cell, supercapacitor, and lithium-ion battery.

The main target of this thesis is to make good the performance of a fuel cell plug-in hybrid electric vehicle. This will be achieved by applying static optimization method on the dynamic equations of a moving hybrid vehicle.

The optimization model of this plug-in hybrid electric vehicle (PHEV) was formulated bases on multiple objectives. The objective parameters are: cost, volume, and mass. We were able to apply static optimization algorithm to find optimal solutions for both the objective values and decision variables of the multiple energy sources.

The optimization model formulated from the dynamic equations, objective specifications, and design constrains were found to be feasible, bounded, and optimizable by subjecting the primal optimization model to its equivalent dual optimization test.

Advanced vehicle simulator (ADVISOR) was used to stimulate vehicle performance of our design on a standard driving cycle. The results provide a better outcome than that of standard driving cycles.

APA, Harvard, Vancouver, ISO, and other styles
18

Falk, Joel. "Effect of fuel composition and combustion conditions on phosphorus behavior during combustion of biomass." Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kristyadi, Tarsisius. "Modelling of the heating and evaporation of fuel droplets." Thesis, University of Brighton, 2007. https://research.brighton.ac.uk/en/studentTheses/76ad22c1-5e09-410c-bec6-acf5bf1fe815.

Full text
Abstract:
The results of a comparative analysis of liquid and gas phase models for fuel droplets heating and evaporation, suitable for implementation into computational fluid dynamics (CFD) codes, are presented. Among liquid phase models, the analysis is focused on the model based on the assumption that the liquid thermal conductivity is infinitely large, and the so called effective thermal conductivity model. Seven gas phase models are compared. These are six semi-theoretical models, based on various assumptions, and a model based solely on the approximation to experimental data. It is pointed out that the gas phase model, taking into account the finite thickness of the thermal boundary layer around the droplet, predicts the evaporation time closest to the one based on the approximation to experimental data. The values of the absorption coefficients of gasoline fuel (BP Pump Grade 95 RON ULG), 2,2,4-trimethylpentane (CH3)2CHCH2C(CH3)3 (iso-octane) and 3-pentanone CH3CH2COCH2(CH3)3 have been measured experimentally in the range of wavelengths between 0.2 μm and 4 μm. The values of the average absorption efficiency factor for all fuels have been approximated by a power function aRdb, where Rd is the droplet radius. a and b in turn have been approximated by piecewise quadratic functions of the radiation temperature, with the coefficients calculated separately in the ranges 2 - 5 μm, 5 - 50 μm, 50 - 100 μm and 100 - 200 μm for all fuels. This new approximation is shown to be more accurate compared with the case when a and b are approximated by quadratic functions or fourth power polynomials of the radiation temperature, with the coefficients calculated in the full range of 2 - 200 μm. Results of experimental studies of heating and evaporation of monodisperse ethanol and acetone droplets in two regimes are compared with the results of modelling. It is pointed out that for relatively small droplets the experimentally measured droplet temperatures are close to the predicted average droplet temperatures, while for larger droplets the experimentally measured droplet temperatures are close to the temperatures predicted at the centre of droplets. All the developed models have been implemented into the KIVA-2 CFD code and validated against available in-house experimental data referring to spray penetration and ignition delay in Diesel engines.
APA, Harvard, Vancouver, ISO, and other styles
20

Elwardani, Ahmed Elsaid Youssef Mohamed. "Modelling of multi-component fuel droplet heating and evaporation." Thesis, University of Brighton, 2012. https://research.brighton.ac.uk/en/studentTheses/ace0fc77-1fa9-4c7e-a33e-e18ecb0b9f84.

Full text
Abstract:
The results of numerical study of heating and evaporation of monodisperse fuel droplets in an ambient air of fixed temperature and atmospheric pressure are reported and compared to experimental data from the literature. The numerical model is based on the Effective Thermal Conductivity (ETC) model and the analytical solution to the heat conduction equation inside droplets. It is pointed out that the interactions between droplets lead to noticeable reduction of their heating in the case of ethanol, 3-pentanone, n-heptane, n-decane and n-dodecane droplets, and reduction of their cooling in the case of acetone. A simplified model for bi- component droplet heating and evaporation is developed. The predicted time evolution of the average temperatures is shown to be reasonably close to the measured one (ethanol/acetone mixture). The above-mentioned simplified model is generalised to take into account the coupling between droplets and the ambient gas. The model is applied to the analysis of the experimentally observed heating and evaporation of a monodispersed n-decane/3-pentanone mixture of droplets at atmospheric pressure. It is pointed out that the number of terms in the series in the expressions for droplet temperature and species mass fractions can be reduced to as few as three, with possible errors less than about 0.5%. In this case, the model can be recommended for implementation into CFD codes. The simplified model for bi- component droplet heating and evaporation, based on the analytical solutions to the heat transfer and species diffusion equations, is generalised to take into account the effect of the moving boundary and its predictions are compared with those of the model based on the numerical solutions to the heat transfer and species diffusion equations for both moving and stationary boundary conditions. A new model for heating and evaporation of complex multi-component hydrocarbons fuel droplets is developed and applied to Diesel and gasoline fuels. In contrast to all previous models for multi-component fuel droplets with large number of components, the new model takes into account the effects of thermal diffusion and diffusion of components within the droplets.
APA, Harvard, Vancouver, ISO, and other styles
21

Fishbein, Bryan. "Combustion of surrogate jet fuel components in premixed stagnation flames." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97224.

Full text
Abstract:
The combustion of modern jet fuel, known as Jet A, in aero-derived gas turbine engines is a complicated process that is not fully understood. While many attempts have been made to produce numerical and chemical models of Jet A, the current lack of consensus within literature suggests that more work remains. This work will study three pure substances, which are representative of the chemical components that comprise typical jet fuels. n-Decane represents the alkanes present in Jet A, methylcyclohexane the cyclic hydrocarbons, and toluene the aromatics. All three compounds are used to stabilize flames in a stagnation flow burner, with their velocity profiles measured using particle image velocimetry. These velocity profiles are then compared so that the relative reactivity of these three compounds can be established. It was found that the most reactive substance was n-decane, followed by methylcyclohexane, with toluene being the least reactive. In addition, the predictions of an analytical hydrodynamic model are compared to experimental results. The analytical model was found to be in good agreement under stoichiometric and fuel rich conditions, but diverges as the flames become increasingly fuel lean. This result can be explained either by issues which remain in the experimental apparatus, or by inaccuracies within data collected from literature, and this warrants further investigation. The experience gained in assembling the apparatus will be used to continue its development to facilitate future studies.
La combustion du carburant d'aviation, connu sous le nom de Jet A, dans les turbines à gaz aro-drives est un processus complexe qui n'est pas entièrement compris. Bien que de nombreuse études on été faites pour produire des modèles num ́eriques et chimiques du Jet A, l'absence de consensus dans la littérature montre qu'il reste encore du travail. Ce travail est une étude de trois substances pures, qui sont représentatifs de la composition chimique qui constituent les carburants d'aviation. Le n-décane représente les alcanes présents dans le Jet A, le méthylcyclohexane les hydrocarbures cycliques, et le toluène les aromatiques. Les trois composés sont utilisés pour stabiliser les flammes dans un brûleur à écoulement stagné, avec les profils de vitesse mesurés à l'aide de la technique de vélocimétrie par images de particules. Ces profils de vitesse sont ensuite comparés de telle sorte que la réactivité relative de ces trois composés peut être déduite. Il a été constat que la substance la plus réactive est le n-décane, suivie par le méthylcyclohexane et le toluène étant le moins réactif. Aussi, les prédictions d'un modèle analytique hydrodynamique sont comparèes aux résultats expérimentaux. Le modèle analytique a donné un bon accord sous les conditions stœchiomtrique et riche mais diverge dans les conditions de flammes pauvres. Ce résultat peut s'expliquer soit par des problèmes qui restent dans le dispositif expérimental, ou par l'inexactitude des données collectées dans la littérature, ce qui justifie plus d'investigations. L'expérience acquise dans le montage de l'appareil sera utilisé pour continuer son développement afin de faciliter les études futures.
APA, Harvard, Vancouver, ISO, and other styles
22

Shroll, Andrew Philip. "Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67803.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 83-86).
Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to burn fuel in oxygen to easily obtain a pure stream of carbon dioxide from the products of combustion. A diluent, typically carbon dioxide, is recycled from the exhaust to mitigate temperature. This substitution of carbon dioxide with the nitrogen in air alters the thermodynamics, transport properties, and relative importance of chemical pathways of the reacting mixture, impacting the flame temperature and stability of the combustion process. In this thesis, methane oxy-combustion flames are studied for relevance to natural gas. First, a numerical 1-D strained flame shows significantly reduced consumption speeds for oxy-combustion compared to air combustion at the same adiabatic flame temperature. Competition for the H radical from the presence of carbon dioxide causes high CO emissions. Elevated strain rates also cause incomplete combustion in oxy-combustion, demonstrated by the effect of Lewis number with a value greater than one for flame temperatures under 1900 K. Most of this work focuses on experimental results from premixed flames in a 50 kW axi-symmetric swirl-stabilized combustor. Combustion instabilities, upon which much effort is expended to avoid in gas turbines with low pollutant emissions, are described as a baseline for the given combustor geometry using overall sound pressure level maps and chemiluminescence images of 1/4, 3/4, and 5/4 wave mode limit cycles. These oxy-combustion results are compared to conventional air combustion, and the collapse of mode transitions with temperature for a given Reynolds number is found. Hysteresis effects in mode transition are important and similar for air and oxy-combustion. Blowoff trends are also analyzed. While oxy-combustion flames blow off at a higher temperature for a given Reynolds number due to weaker flames, there is an unexpected negative slope in blowoff velocity vs temperature for both air and oxy-combustion. The blowoff data are shown to collapse due to blowoff velocity being inversely proportional to the molar heat capacities of the burned gas mixtures at a given power. Finally, particle image velocimetry results are discussed to relate flow structures to corresponding flame structures.
by Andrew Philip Shroll.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
23

Kumar, Sri Adarsh A. "Cloud Computing based Velocity Profile Generation for Minimum Fuel Consumption." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331083555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tingelöf, Thomas. "Polymer Electrolyte Fuel Cells in Reformate Power Generators." Doctoral thesis, KTH, Skolan för kemivetenskap (CHE), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26938.

Full text
Abstract:
The topic of this thesis is the generation of electricity from hydrocarbon fuels via polymer electrolyte fuel cells (PEFC). The aim has been to develop methods and hardware for experimental evaluation of process parameters and design variables in PEFC reformate cells and stacks. Reformate fuel cell systems have the potential to offer a way for utilizing fuels efficiently with low global and local emissions. Reforming of hydrocarbon fuels may also provide a way around the famous “chicken or egg” dilemma of hydrogen vehicles and infrastructure. In this thesis current distribution measurements are introduced as a tool for investigating the current distribution in a PEFC with Pt/C or PtRu/C anode catalyst as function of reformate fuel gas composition. It is shown that CO may induce a strong transient behavior, with respect to current density, on both Pt/C and PtRu/C catalysts, depending on mode of operation. Analysis of the exhaust fuel gas showed that the oxygen in the air bleed most likely reacts close to the anode inlet, but this is not visible in the measured current density plots.  The time dependence of the CO poisoning reactions is studied more closely in a commercial fuel cell stack. The development of a test fuel cell system, called multisinglecell, that can multiply the capacity of a conventional test station is reported. The setup is successfully demonstrated with initial screening of the corrosion resistance of different stainless steel grades and coatings. Most of the iron originating from a stainless steel sample accumulates in the MEA and GDLs. These results were validated with a similar measurement in a commercial fuel cell stack. The experimental validation of a 3D FEM computer endplate model, which can accurately predict pressure distribution within any type of fuel cell at any temperature, is described. The model could reliably predict trends in changes in the compression pressure distribution. The PBI fuel cell competes with the PEFC in small-scale power applications. A high temperature break-in procedure for PBI fuel cells is developed, which can rapidly and reproducibly ensure stable cell behavior.
QC 20101130
APA, Harvard, Vancouver, ISO, and other styles
25

Rukas, Christopher J. "Prognostic Health Assessment of an Automotive Proton Exchange Membrane Fuel Cell System." Thesis, Rochester Institute of Technology, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1586450.

Full text
Abstract:

Proton exchange membrane fuel cells are a promising technology for the automotive industry. However, it is necessary to develop effective diagnostic tools to improve system reliability and operational life to be competitive in the automotive market. Early detection and diagnosis of fuel cell faults may lead to increased system reliability and performance. An efficient on-line diagnosis system may prevent irreparable damage due to poor control and system fatigue. Current attempts to monitor fuel cell stack health are limited to specialized tests that require numerous parameters. An increased effort exists to minimize parameter input and maximize diagnostic robustness. Most methods use complex models or black-box methods to determine a singular fault mode. Limited research exists with pre-processing or statistical methods. This research examines the effectiveness of a Naïve Bayes classifier on determining multiple states of health; such as healthy, dry, degraded catalyst, and inert gas build-up. Independent component analysis and principal component analysis are investigated for preprocessing. An automotive style fuel cell model is developed to generate data for these purposes. Since automotive applications have limited computational power, a system that minimizes the number of inputs and computational complexity is preferred.

APA, Harvard, Vancouver, ISO, and other styles
26

Piaszyk, Jakub. "Animal fat (tallow) as fuel for stationary internal combustion engines." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/4135/.

Full text
Abstract:
The main aim of this thesis is to verify the suitability of waste animal fat, obtained from animal by-products in a process called rendering, as a fuel for internal combustion engines. This work is an attempt to provide guidance and minimal requirements for animal fat to be utilised as fuel. The properties of tallow were monitored on a weekly basis throughout a period of one year. Some properties, namely acidity, showed significant variability. Possible reasons causing variable and high acidity are given together with a proposal for an acidity removal method. The available laboratory facilities enabled the verification of changes in fat's viscosity, density, surface tension and lubricity in a range of temperatures. The impact of storage temperature on deterioration in tallow quality was investigated over a period of one month. The available emission control systems have been reviewed and a solution choice has been made, based on legal and economic criteria. A summary of two thousand hours operation of the 800 kW generating set using neat fat is provided. The renewable electricity generation subsidising system in the United Kingdom has been reviewed. A basic feasibility study for the installed generating set was prepared and the highest tallow price at which electricity generation is profitable was determined.
APA, Harvard, Vancouver, ISO, and other styles
27

Hossain, Abu Noman. "Combustion of solid fuel in a fluidized bed combustor." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176492911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wu, Chunyang. "Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1165.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Korres, Michael. "Cylinder Pressure Sensor based Engine Combustion and Fuel System Diagnostics." Thesis, KTH, Fordonsdynamik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203351.

Full text
Abstract:
Nowadays, the developed diagnostics models and software are not capable of locating the root cause of an emerging malfunction, or in other words the responsible component, while the vehicle is up and running. In most cases they are solely able to provide the driver with indications that a fault has been detected within a group of components. Subsequently, it is unavoidable that the vehicle returns to the workshop for a number of standardized tests to be performed, in order to evaluate the condition of the potentially faulty components. The new era in combustion engines and the attempt to fully incorporate closed-loop combustion control can facilitate the diagnostics procedure and especially the process of fault isolation. By harnessing signals from both real and virtual sensors, it can be feasible to diagnose or even prognose faults, averting the return of the vehicle to the workshop. Moreover, the down-time of the vehicle, can be radically decreased, since there will be an indication on which components to focus. Taking into account the fastpace steps and improvements on the respective hardware, such as sensors, one can understand that this endeavour can actually be successful in the future. In the spectrum of this thesis it is assessed whether or not fault detection and isolation can be achieved, through comparison of sensors’ output signals for a number of engine parameters to a stored set of nominal values for these parameters (reference values). Towards that goal, virtual sensors have been developed with the aid of measurement data, in order to increase the reliability of the system. Subsequently, a network of dependencies between parameter values and consequent malfunctions has been constructed, in the form of flowcharts, rudimental for fault isolation. In addition to that and despite the fact that no finalized production code for the model is provided, pseudocode charts have been created as well. Finally, significant effort was made to derive precise tolerances for the reference values, as this is of great importance for the results of the diagnostics model.
APA, Harvard, Vancouver, ISO, and other styles
30

Llaniguez, Jeremy T. (Jeremy Tolentino) 1979. "A fundamental study of relationships among fuel properties, combustion characteristics and emission with normal and synthetic diesel fuel." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/89930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Burger, Victor. "The design of a combustion test facility for synthetic jet fuel research." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/9495.

Full text
Abstract:
Includes bibliographical references (p. 78-80).
With the relatively recent emergence of non-petroleum-derived aviation gas turbine fuels, it was appropriate to review the complete list of jet-fuel specifications to assess whether they were sufficiently robust to ensure fit-forpurpose within the new paradigm. Although this has been an industry-wide endeavour, there were some particular research areas that were identified for special in-house attention by Sasol, as the world’s first commercial producer of approved and certified semi-synthetic and fully synthetic jet fuel. The project described in this report formed part of one of these research areas, which pertained to ignition and combustion stability in gas turbines and the role played by various fuel attributes and properties. The project was conducted at the Sasol Advance Fuels Laboratory based at the University of Cape Town. The project entailed the design and construction of a combustion test facility for conducting synthetic jet fuel research. The primary intended focus of the facility was the investigation of ignition and combustion stability behaviour of various test fuels, ranging from commercial jet fuel to single component model fuels. The scope of the project also included the design of both a basic homogeneous and a heterogeneous combustor which served to verify the facility’s suitability for investigating the influence of fuel chemistry and combustor inlet conditions on ignition and combustion stability limits.
APA, Harvard, Vancouver, ISO, and other styles
32

Flora, Giacomo. "Fuel Structure Effects on Surrogate Alternative Jet Fuel Emission." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1450286398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Siemelink, Johannes Jacobus. "The effect of sulphur in fuel on the performance of automotive catalysts." Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/21486.

Full text
Abstract:
Catalysts have been used on cars since 1974 to reduce tailpipe emission levels of carbon monoxide, hydrocarbons and oxides of nitrogen. Initially, oxidation catalysts were used that operated under very lean air/fuel conditions and gave rise to increased sulphate particulate emissions. These sulphate emissions could fortunately be reduced by better air/fuel control. However, the introduction of more active catalyst compositions, in particular the use of cerium oxide components on the wash coat, led to bad odour complaints from motorists. In the report it is shown that under fuel-lean conditions, sulphur, originating from the fuel, is stored as aluminium and cerium sulphates onto the washcoat. Upon a rapid change to fuel-rich engine operation the stored sulphates are released as hydrogen sulphide and is the cause for the smell observed. The sulphur storage/release process results in hydrogen sulphide emissions many times higher than is possible from steady-state conversion from the fuel sulphur level. By using a catalyst/engine combination on a testbed the experiments have shown that the hydrogen sulphide release is a kinetically limited reaction and, apart from the air/fuel control, depends mainly on the catalyst temperature.
APA, Harvard, Vancouver, ISO, and other styles
34

Lopez, David M. "Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40455.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
Includes bibliographical references (p. 37).
The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature Combustion mode. The engine used was a 436 cc Yanmar Diesel engine, driven at constant 2200 rpm by a 10 hp AC powered dynamometer. Intake air flow was measured by a model FMA-903-V Air Velocity Transducer by Omega Engineering, Inc., and the diluent gas flow was both measured and controlled by a model FMA-2613A Mass Flow Controller, also by Omega Engineering, Inc. Both were connected to a computer through a National Instruments USB-6211 data acquisition hub, and the signals from both were processed in real time through National Instruments' LabView 8.2 software. The diluent gas used was nitrogen. The flow controller was found to have reasonable flow precision but poor flow accuracy at many of the flow rates encountered during this experiment, with a minimum steady state error of 3.7% for a flow rate of 207.4 Standard Liters Per Minute (SLPM), the highest flow studied, and a maximum error of 97.4% at 53.8 SLPM, the lowest flow studied.
(cont.) The substantial error at low flow rates stems from the rated lower flow limit of the controller of 250 SLPM. A relation describing the amount of steady state error present was determined empirically, and either this equation or the implementation of an external PI controller can be used in the controlling LabView environment to decrease the steady state error.
by David M. Lopez.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
35

Michlberger, Alexander. "Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines." Cleveland State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=csu1397567798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Garcia, Pardo Diego. "Piston bowl combustion simulation - From fuel spray calibration to emissions minimization." Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203950.

Full text
Abstract:
The current pollution policies in all European and American countries are forcing the industry to movetowards a more efficient and environmentally friendly engines. On the other hand, customers requiremaintaining the power and fuel consumption. Lowering mainly nitrous oxides (NOx) and carbon particles(Soot) is therefore a challenging task with a very strong impact on mainly the automotive andaeronautical market.The purpose of the current work is to research the pollution production of automotive diesel enginesand optimize the fuel injection and piston geometry to lower the emissions. The interaction betweenfuel and air as well as the combustion are the two main physical and chemical processes governing thepollutants formation. Converged-CFD will be the CFD tool employed during the analysis of the previousproblems.The fuel-air interaction is related to jet break up, vaporization and turbulence. The strong dependenceon the surrounding flow field of the previous processes require the equations to be solved numericallywithin a CFD code. The fuel is to be placed in a combustion chamber (piston) where the spray will affectthe surrounding flow field and ultimately the combustion process.In order to accurately represent the nature of the processes, the current work is divided into two mainchapters. Spray modelling and Combustion Modelling. The first will help to accurately model the discretephase (fuel spray) and the vapour entrainment. The second chapter, combustion modelling willretrieve the knowledge gain in the first part to accurately represent the fuel injection in the chamber aswell as the combustion process to ultimately model the pollutants emissions.Finally, a piston bowl optimization will be performed using the previous analysed models and give theindustry a measure of the potential improvement by just adjusting the fuel injection or by modifyingthe piston bowl geometry.
APA, Harvard, Vancouver, ISO, and other styles
37

Boettner, Daisie D. "Modeling of PEM fuel cell systems including controls and reforming effects for hybrid automotive applications." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374767452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gong, Xiaohui Cernansky N. P. Miller David L. "The effects of DTBP on the oxidation of SI primary reference fuels - a study in an HCCI engine and in a pressurized flow reactor /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Begg, Steven M. "In-cylinder airflow and fuel spray characteristics for a top-entry direct injection gasoline engine." Thesis, University of Brighton, 2003. https://research.brighton.ac.uk/en/studentTheses/ecdf9e55-604a-45af-a709-9839c57d282c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Estefanos, Wessam. "Effects of the Fuel-Air Mixing on Combustion Instabilities and NOx Emissions in Lean Premixed Combustion." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460731723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hong, Jongsup. "Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO₂ capture." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/50567.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
Includes bibliographical references (leaves 124-127).
Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology for capturing carbon dioxide in power generation systems utilizing hydrocarbon fuels. Combustion of a fuel in an environment of oxygen and recycled combustion gases yields flue gases consisting predominantly of carbon dioxide and water. To capture carbon dioxide, water is condensed, and carbon dioxide is purified and compressed beyond its supercritical state. However, conventional atmospheric oxy-fuel combustion systems require substantial parasitic energy in the compression step within the air separation unit, a flue gas recirculation system and carbon dioxide purification and compression units. Moreover, a large amount of flue gas latent enthalpy, which has high water concentration, is wasted. Both lower the overall cycle efficiency. Alternatively, pressurized oxy-fuel combustion power cycles have been investigated. In this thesis, the analysis of an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is reported. We show that this approach is beneficial in terms of larger flue gas thermal energy recovery and smaller parasitic power requirements. In addition, we find the pressure dependence of the system performance to determine the optimal combustor operating pressure for this cycle.
(cont.) We calculate the energy requirements of each unit and determine the pressure dependence of the water-condensing thermal energy recovery and its relation to the gross power output. Furthermore, a sensitivity analysis is conducted on important operating parameters including combustor temperature, Heat Recovery Steam Generator outlet temperature, oxygen purity and oxygen concentration in the flue gases. A cost analysis of the proposed system is also conducted so as to provide preliminary cost estimates.
by Jongsup Hong.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
42

Yong, Sze Zheng. "Multiphase models of slag layer built-up in solid fuel gasification and combustion." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61928.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 124-127).
A steady-state model has been developed to describe the flow and heat transfer characteristics of slag. The model incorporates two submodels for particle capture and wall burning; takes into consideration the temperature and composition dependent properties of slag, the contribution of momentum of captured particles and the possibility of slag resolidification. The model predicts the local thickness of molten and solid slag layers as well as the average slag velocity. Moreover, it is capable of predicting heat losses and the inner as well as outer wall temperatures, taking into account the influence of molten and resolidified slag layers coating the combustor or reactor wall. An equally important issue is the interaction of the particles colliding with the slag layer. High inertia particles tend to rebound whereas slower particles are trapped in the slag layer. Since only trapped particles are relevant to the slag layer built-up, a particle capture criterion for colliding particles is introduced. Particles with combustibles may be captured by the slag layer while they continue to bum at a different rate. To take this into account, a wall burning submodel is proposed to predict a correction factor for both solid and porous char combustion models.
by Sze Zheng Yong.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
43

Sone, Kazuo. "Unsteady simulations of mixing and combustion in internal combustion engines." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ekpe, Ngozi Chinwe. "Novel co-precipitated oxygen carriers for chemical looping combustion of gaseous fuel." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39557/.

Full text
Abstract:
Carbon Capture and Storage (CCS) is one option to meet the increasing energy demand as well as reduce net CO2 emissions to the atmosphere. Chemical Looping Combustion (CLC) is a promising CCS technology proposed to meet the challenge of mitigating the carbon dioxide (CO2) emissions. CLC process can be based on interconnected fluidized beds, consisting of air reactor, fuel reactor and oxygen carrier (OC) which undergoes redox reactions while it circulates between the reactors. The main products are CO2 and water, thus eliminating the need of an additional energy intensive CO2 separation. The feasibility of CLC depends on the oxygen carrier's (OC) ability to transfer O2 from air reactor to fuel reactor and have sufficient oxygen capacity, high reactivity and withstand a high number of redox cycles without significant loss in performance. OCs based on transition metal oxides of Cu, Co, Fe, Mn and Ni has been explored. Nevertheless, research is focused on improving the OCs performance with the aim to overcome their various practical limitations. Mechanical mixing and impregnation which fails to provide a high degree of dispersion and high metal loading respectively are commonly used for OC synthesis. Very few works have been reported for Mn-oxide and co-precipitated oxygen carriers. The few studies on co-precipitated OCs mainly use strong base as precipitants. One drawback to this is the repetitive washing of precipitate to remove excess alkali ions and controlled loading of active components cannot be easily obtained. In this study, weak base instead of strong base was used in the synthesis of OCs. This is the first time this controlled approach has been applied to prepare oxygen carrier in CLC for manganese and iron. This thesis is a novel research on development and detailed investigation of co-precipitated Mn-oxide and Fe-oxide OCs with ZrO2 and combined ZrO2–CeO2 support. The reaction kinetics, stability and oxygen transfer capacity (OTC) of the OCs were studied by TGA up to 1173 K in H2, CO and CH4. Characterization of physical and chemical structures of particles was obtained by SEM-EDX, XRD, BET and pycnometer. The result reveals that regardless of the composition of the co-precipitated oxygen carriers, there was no interaction of the metal oxides with the support material which could have altered the thermodynamics of the redox system. Furthermore, co-precipitated Mn/Zr and Fe/Zr OCs were more reactive than their counterpart prepared by impregnation and mechanical mixing. Also, changes in reactivity and OTC suggest that the synergistic effect varies with ratios of the single oxides in the bimetallic OCs. Co-precipitated Mn-rich oxygen carriers were more reactive than Fe-rich OCs. Interestingly, OCs with zirconia-ceria support exhibited activation tendency behaviour. Moreover, the use of combined zirconia-ceria for bimetallic Mn-Fe oxide reversed the characteristic progressive decrease in the performance of the OC with equimolar composition. For co-precipitated Mn-Fe Oxide oxygen carriers, zirconia content of 44 wt. % is sufficient to maintain the mechanical integrity of the particles during redox reactions compared to a zirconia content of 20 wt. %. This research has resulted in the development of highly reactive and stable oxygen carriers, which are promising for CLC. Mn/Zr OC reached full conversion in less than 48 secs and bimetallic Mn-Fe OCs reached 30% conversion in less than 43 secs in CH4 and maintained stability in a thirty multicycle test. The redox reaction kinetics of the most reactive oxygen carrier using CH4, H2, CO and air was investigated at isothermal conditions (973-1173 K) to determine the kinetic parameters. Models of the reduction and oxidation reactions were selected by using a model fitting method. The nucleation model was the most statistically significant and suitable model for describing the reduction and oxidation behaviour of the oxygen carrier. The values of activation energy obtained for the reduction reaction in CH4, H2 and CO were 142.8 KJ/mol, 32.95 KJ/mol and 26.37 KJ/mol respectively. Whereas, for the oxidation reaction, the activation energy obtained using air was 28.83 KJ/mol. In the application of co-precipitation technique for the synthesis of multicomponent materials, a heterogeneous product could be obtained from using improper preparation conditions. Results from this research have demonstrated that, the application of the well-designed co-precipitation procedure effectively produced composite materials (up to four co-precipitated mixed metal oxides) with controlled compositions and homogeneous dispersion. Furthermore, this study provides insight into the fundamental behaviours of co-precipitated manganese and iron based oxygen carriers to aid the design and optimization of future materials development.
APA, Harvard, Vancouver, ISO, and other styles
45

Baker, Kelly Scott. "Effect of fuel volatility on fuel vaporization, combustion quality, and hydrocarbon emissions during starting and warm-up in spark-ignition engines." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/46103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bongartz, Dominik. "Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92224.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 135-147).
Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when combined with enhanced oil recovery (EOR). Chemical kinetic modeling can help to assess the potential of this approach. In this thesis, a detailed chemical reaction mechanism for oxy-fuel combustion of sour gas has been developed and applied for studying the combustion behavior of sour gas and the design of power cycles with EOR. The reaction mechanism was constructed by combining mechanisms for the oxidation of CH4 and H2S and optimizing the sulfur sub-mechanism. The optimized mechanism was validated against experimental data for oxy-fuel combustion of CH4, oxidation of H2S, and interaction between carbon and sulfur species. Improved overall performance was achieved through the optimization and all important trends were captured in the modeling results. Calculations with the optimized mechanism suggest that increasing H2 S content in the fuel tends to improve flame stability through a lower ignition delay time. Water diluted oxy-fuel combustion leads to higher burning velocities at elevated pressures than CO 2 dilution or air combustion, which also facilitates flame stabilization. In a mixed CH4 and H2S flame, H25 is oxidized completely as CH4 is converted to carbon monoxide (CO). During CO burnout, some highly corrosive sulfur trioxide (SO3 ) is formed. Quenching of SO 3 formation in the combustor can only be achieved at the expense of higher CO emissions. The modeling of a gas turbine cycle showed that oxy-fuel combustion leads to SO 3 concentrations that are one to two orders of magnitude lower than in air combustion and will thus suffer much less from the associated corrosion problems. Slightly fuel-rich operation is most promising for achieving the low CO and oxygen (02) concentrations required for EOR while further minimizing SO 3. Carbon dioxide dilution is better for achiving low 02 in the EOR stream while H20 gives the better combustion efficiency.
by Dominik Bongartz.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
47

Yozgatligil, Ahmet Choi Mun Young. "Burning and sooting behavior of ethanol droplet combustion under microgravity conditions /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Asay, Rich. "A Five-Zone Model for Direct Injection Diesel Combustion." BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/100.

Full text
Abstract:
Recent imaging studies have provided a new conceptual model of the internal structure of direct injection diesel fuel jets as well as empirical correlations predicting jet development and structure. This information was used to create a diesel cycle simulation model using C language including compression, fuel injection and combustion, and expansion processes. Empirical relationships were used to create a new mixing-limited zero-dimensional model of the diesel combustion process. During fuel injection five zones were created to model the reacting fuel jet: 1) liquid phase fuel 2) vapor phase fuel 3) rich premixed products 4) diffusion flame sheath 5) surrounding bulk gas. Temperature and composition in each zone is calculated. Composition in combusting zones was calculated using an equilibrium model that includes 21 species. Sub models for ignition delay, premixed burn duration, heat release rate, and heat transfer were also included. Apparent heat release rate results of the model were compared with data from a constant volume combustion vessel and two single-cylinder direct injection diesel engines. The modeled heat release results included all basic features of diesel combustion. Expected trends were seen in the ignition delay and premixed burn model studies, but the model is not predictive. The rise in heat release rate due to the diffusion burn is over-predicted in all cases. The shape of the heat release rate for the constant volume chamber is well characterized by the model, as is the peak heat release rate. The shape produced for the diffusion burn in the engine cases is not correct. The injector in the combustion vessel has a single nozzle and greater distance to the wall reducing or eliminating wall effects and jet interaction effects. Interactions between jets and the use of a spray penetration correlation developed for non-reacting jets contribute to inaccuracies in the model.
APA, Harvard, Vancouver, ISO, and other styles
49

Mackrory, Andrew John. "A Mechanistic Investigation of Nitrogen Evolution in Pulverized Coal Oxy-Fuel Combustion." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2640.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Yu. "A Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine Combustion and Emissions Using CFD Model." Thesis, West Virginia University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10845305.

Full text
Abstract:

Natural gas (NG)-diesel dual fuel engines have been highlighted for their fuel flexibility and high thermal efficiency comparable to diesel engines. However, the addition of NG to compression ignition diesel engines was reported to elongate ignition delay and to increase the emissions of carbon monoxide (CO), unburned methane (CH4), and nitrogen dioxide (NO2). Past research on dual fuel engines has focused on the experimental research on the engine performance, combustion process, and exhaust emissions. The research on detailed mechanism dominating the impact of CH4 on formation of CO and NO2 in cylinder, and the mechanism for CH 4 to survive the combustion process and slip through the cylinder is limited. The examinations of these mechanisms require the simulation of dual fuel engine combustion using a CFD model coupled with chemical kinetic mechanism.

This research numerically investigates the combustion process and exhaust emissions from two NG-diesel dual fuel engines using a CFD model coupled with a reduced primary reference fuel (PRF) chemistry. The CFD model used is Converge-SAGE model with a maximum of 300000 grid points. The fuel chemistry used is a reduced PRF mechanism with 45 species and 142 reactions including a reduced NOx mechanism with 4 species and 12 reactions. The CFD model with reduced PRF chemistry has been validated against experimental data measured in a single-cylinder compression-ignition engine over a wide range of CH4 substitution ratio. A post-processing tool has been developed to calculate, analyze, and visualize the instantaneous rate of production (ROP) of key species in each cell with the known temperature, pressure, and species concentration exported by CFD code. The simulation results are further post-processed to numerically investigate the combustion process and the formation mechanism of CO, and NO2 in a dual fuel engine. The mechanism for CH4 to survive the main combustion process and post-combustion oxidation process is numerically examined.

The research on NO2 formation identified NO+HO2→NO 2+OH as the key reaction dominating the increased formation of NO 2 in dual fuel engines. The HO2 necessary for the formation of NO2 emitted by the engine is produced through the post-oxidation of CH4 that survived the main combustion process. The CO emitted from the NG-diesel dual fuel engine is formed through the oxidation of CH 4 during the late combustion process and post-combustion CH4 oxidation. The CH4 that survived the main combustion and post-combustion oxidation process is mainly distributed in region far from the spray plume of the pilot fuel and its combustion products.

This research also examined approaches capable of significantly reducing the emissions of CH4 from a dual fuel engine. The preliminary results concluded that CH4 emissions can be significantly reduced through optimizing injection timing, and the application of two-pulse fuel injection strategy. Adjusting injector fuel spray angle can also significantly reduce CH4 emissions which should be considered in developing dedicated dual fuel engine.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography