Dissertations / Theses on the topic 'Automorphisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Automorphisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sutherland, David C. (David Craig). "Automorphism Groups of Strong Bruhat Orders of Coxeter Groups." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc330906/.
Full textDavies, D. H. "Automorphisms of designs." Thesis, University of East Anglia, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304043.
Full textKarlsson, Jesper. "Symplectic Automorphisms of C2n." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-144390.
Full textDen här uppsatsen är en detaljerad undersökning av en artikel från 1996 publicerad av Franc Forstneric där han studerar symplektiska automorfismer av C2n. Visionen är att introducera täthetsegenskapen för holomorfa symplektiska mångfalder. Våran idé är som den av Dror Varolin när han 2001 introducerade täthetsegenskapen för Stein mångfalder. Huvudresultatet här är införandet av symplektiska skjuvningar på C2n med en holomorfisk symplektisk form och att visa att gruppen som genereras av ändliga sammansättningar av symplektiska skjuvningar är tät i gruppen av symplektiska automorfismer av C2n i den kompakt-öppna topologin. Vi ger en fullständig bakgrund av de verktyg från teorin om ordinära differentialekvationer, släta mångfalder och komplex och symplektisk geometri som behövs för att visa detta.
CARVALHO, LEONARDO NAVARRO DE. "GENERIC AUTOMORPHISMS OF HANDLEBODIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3970@1.
Full textAutomorfismos genéricos de cubos com alças (handlebodies) aparecem do estudo de classes the isotopia de automorfismos de variedades orientáveis de dimensão três. Automorfismos genéricos permanecem como uma das partes menos entendidas desse estudo.Dado um automorfismo genérico de um cubo com alças, é conhecida uma forma de se construir uma laminação bidimensional que é invariante pelo automorfismo. A essa laminação se associa um fator de crescimento. É sabido que, no caso de tal fator de crescimento ser minimal - uma característica importante, pois mede a complexidade essencial do automorfismo - a laminação deve gozar de uma certa propriedade de incompressibilidade. Nessa tese mostramos que o processo de se achar uma laminação com tal propriedade é algoritmico. Por outro lado, mostramos que tal propriedade não garante que o respectivo fator de crescimento seja minimal. Propomos uma outra propriedade, tensão transversal, mais forte que incompressibilidade, que conjecturamos também ser condição necessária para que o fator de crescimento seja minimal. Provamos a conjectura em alguns casos.Além dos resultados mencionados acima, desenvolvemos métodos para gerar automorfismos genéricos de cubos com alcas, que usamos para apresentar alguma variedade de exemplos.
Generic automorphisms of handlebodies appear naturally in the study of isotopy classes of automophisms of orientable three-dimensional manifolds. Generic automorphisms remain as one of the least understood parts of this study. Given a generic automorphism of a handlebody one can construct a bidimensional lamination that is invariant under the automorphism. There is a growth rate associated to this lamination. It is known that, when this growth rate is minimal among all possible choices (an important property, for it measures the essential complexity of the automorphism), the lamination must have a certain incompressibility property. On this thesis we show that the process of
Grossi, Annalisa <1992>. "Automorphisms of O'Grady's sixfolds." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9441/1/Tesi%20Dottorato.pdf.
Full textBonfanti, M. A. "ALGEBRAIC SURFACES WITH AUTOMORPHISMS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/345557.
Full textFullarton, Neil James. "Palindromic automorphisms of free groups and rigidity of automorphism groups of right-angled Artin groups." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5323/.
Full textTabbaa, Dima al. "On the classification of some automorphisms of K3 surfaces." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2299/document.
Full textA non-symplectic automorphism of finite order n on a K3 surface X is an automorphism σ ∈ Aut(X) that satisfies σ*(ω) = λω where λ is a primitive n−root of the unity and ω is a generator of H2,0(X). In this thesis we study the non-symplectic automorphisms of order 8 and 16 on K3 surfaces. First we classify the non-symplectic automorphisms σ of order eight when the fixed locus of its fourth power σ⁴ contains a curve of positive genus, we show more precisely that the genus of the fixed curve by σ is at most one. Then we study the case of the fixed locus of σ that contains at least a curve and all the curves fixed by its fourth power σ⁴ are rational. Finally we study the case when σ and its square σ² act trivially on the Néron-Severi group. We classify all the possibilities for the fixed locus of σ and σ² in these three cases. We obtain a complete classifiction for the non-symplectic automorphisms of order 8 on a K3 surfaces.In the second part of the thesis, we classify K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and isolated points and we completely classify the seven possible configurations. If the Néron-Severi group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular ifthe action of the automorphism is trivial on the Néron-Severi group, then we show that its rank is six.Finally, we construct several examples corresponding to several cases in the classification of the non-symplectic automorphisms of order 8 and we give an example for each case in the classification of the non-symplectic automorphisms of order 16
Sebille, Michel. "Design :construction, automorphisms and colourings." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211428.
Full textBidwell, Jonni, and n/a. "Computing automorphisms of finite groups." University of Otago. Department of Mathematics & Statistics, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070320.162909.
Full textKestner, Charlotte Hastings. "Measurability, modules and generic automorphisms." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.578647.
Full textWebb, B. S. "Automorphisms of finite incidence structures." Thesis, University of East Anglia, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306212.
Full textMyhill, Richard Graham. "Automorphisms and twisted vertex operators." Thesis, Durham University, 1987. http://etheses.dur.ac.uk/6674/.
Full textBrown, Christian. "Petit algebras and their automorphisms." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49613/.
Full textMatthews, David. "Automorphisms of random recursive trees." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415900/.
Full textLind, Andreas. "Holomorphic automorphisms of Danielewski surfaces." Doctoral thesis, Sundsvall : Dep. of Natural Sciences, Engineering and Mathematics, Mid Sweden University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-10360.
Full textDOSE, VALERIO. "Modular Curves and their Automorphisms." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2015. http://hdl.handle.net/2108/202163.
Full textAurand, Eric William. "Infinite Planar Graphs." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc2545/.
Full textPerepechko, Aleksandr. "Automorphismes des variétés affines." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM065/document.
Full textThe thesis consists of two parts. The first part is dedicated to transformations of finite-dimensional algebras. It is easy to see that the automorphism group of a finite-dimensional algebra is an affine algebraic group. N.L.~Gordeev and V.L.~Popov proved that any affine algebraic group is isomorphic to the automorphism group of some finite-dimensional algebra. We use a similar approach to prove that any affine algebraic monoid can be obtained as the endomorphisms' monoid of a finite-dimensional algebra. Next, we study the solvability of automorphism groups of commutative Artin algebras. We introduce a criterion of their solvability and apply it to complete intersections and to isolated hypersurface singularities. We also study extremal cases of the introduced criterion. The second part of the thesis is dedicated to the infinite transitivity of special automorphism groups of affine and quasiaffine varieties. This property is equivalent to the flexibility for affine varieties. Firstly, we prove the equivalence of transitivity and infinite transitivity of special automorphism groups over algebraically closed field of arbitrary characteristic. Then we provide the criterion of flexibility for affine cones over projective varieties and apply it to del Pezzo surfaces of degree 4 and 5. Finally, we study flexibility of universal torsors over varieties covered by affine spaces and provide a wide range of families of flexible varieties
Popov, Vladimir L., and popov@ppc msk ru. "On Polynomial Automorphisms of Affine Spaces." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi938.ps.
Full textWermer, Markus-Ludwig [Verfasser]. "Automorphisms of buildings / Markus-Ludwig Wermer." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1077438818/34.
Full textGriffin, James Thomas. "Automorphisms of free products of groups." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244265.
Full textLaurence, Michael Rupen. "Automorphisms of graph products of groups." Thesis, Queen Mary, University of London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412581.
Full textSaleh, Ibrahim A. "Cluster automorphisms and hyperbolic cluster algebras." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/14195.
Full textDepartment of Mathematics
Zongzhu Lin
Let A[subscript]n(S) be a coefficient free commutative cluster algebra over a field K. A cluster automorphism is an element of Aut.[subscript]KK(t[subscript]1,[dot, dot, dot],t[subscript]n) which leaves the set of all cluster variables, [chi][subscript]s invariant. In Chapter 2, the group of all such automorphisms is studied in terms of the orbits of the symmetric group action on the set of all seeds of the field K(t[subscript]1,[dot,dot, dot],t[subscript]n). In Chapter 3, we set up for a new class of non-commutative algebras that carry a non-commutative cluster structure. This structure is related naturally to some hyperbolic algebras such as, Weyl Algebras, classical and quantized universal enveloping algebras of sl[subscript]2 and the quantum coordinate algebra of SL(2). The cluster structure gives rise to some combinatorial data, called cluster strings, which are used to introduce a class of representations of Weyl algebras. Irreducible and indecomposable representations are also introduced from the same data. The last section of Chapter 3 is devoted to introduce a class of categories that carry a hyperbolic cluster structure. Examples of these categories are the categories of representations of certain algebras such as Weyl algebras, the coordinate algebra of the Lie algebra sl[subscript]2, and the quantum coordinate algebra of SL(2).
Toinet, Emmanuel. "Automorphisms of right-angled Artin groups." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS003.
Full textThe purpose of this thesis is to study the automorphisms of right-angled Artin groups. Given a finite simplicial graph G, the right-angled Artin group GG associated to G is the group defined by the presentation whose generators are the vertices of G, and whose relators are commuta-tors of pairs of adjacent vertices. The first chapter is intended as a general introduction to the theory of right-angled Artin groups and their automor-phisms. In a second chapter, we prove that every subnormal subgroup ofp-power index in a right-angled Artin group is conjugacy p-separable. As an application, we prove that every right-angled Artin group is conjugacy separable in the class of torsion-free nilpotent groups. As another applica-tion, we prove that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. We also prove that the Torelli group ofa right-angled Artin group is residually torsion-free nilpotent, hence residu-ally p-finite and bi-orderable. In a third chapter, we give a presentation of the subgroup Conj(GG) of Aut(GG) consisting of the automorphisms thats end each generator to a conjugate of itself
Praggastis, Brenda L. "Markov partitions for hyperbolic toral automorphisms /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/5773.
Full textLee, Kyung Il. "Automorphisms and linearisations of computable orderings." Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/2166/.
Full textNguyen, Aude. "Constructions and automorphisms of Kac-Moody groups." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210072.
Full textL'intérêt de l'étude des algèbres de Lie semi-simples réside dans le fait qu'elles induisent la plupart des groupes simples finis, comme le montre la construction de Chevalley. Il se fait que cette construction se généralise aux algèbres de Kac-Moody.
L'ingrédient principal de cette construction est l'utilisation d'un système de sous-groupes dans un groupe de Kac-Moody, ceux-ci étant indicés par les racines du système de Coxeter associé à la matrice de Cartan généralisée. Tits a réalisé l'axiomatique de ce système de sous-groupes, une donnée radicielle jumelée, pour un système de Coxeter quelconque. Par définition, les groupes de Kac-Moody sur un corps commutatif admettent une donnée radicielle jumelée.
En réalité les notions de donnée radicielle jumelée et d'immeuble jumelé de Moufang sont essentiellement équivalentes.
Au vu de la classification des immeubles sphériques et des polygones de Moufang, on obtient une classification complète des données radicielles sphériques irréductibles de rang au moins 2. Il se trouve qu'elles sont toutes d'origine algébrique (i.e. obtenues par constructions algébriques à partir de groupes de Chevalley).
Dans le cas sphérique, la situation est différente. D'une part, des résultats de Mühlherr semblent indiquer que les données radicielles jumelées 2-sphériques seraient d'origine algébrique. D'autre part Rémy et Ronan ont construit des exemples exotiques à angles droits pour lesquels l'adjectif "d'origine algébrique" est inapproprié.
Néanmoins ces exemples sont toujours relativement proches d'une construction algébrique. On ne peut donc rien conclure sur les données radicielles jumelées. Afin de répondre à cette question, on peut essayer de prouver des théorèmes structurels sur les données radicielles jumelées ou en donner des constructions permettant plus de flexibilité.
Les principaux résultats de cette thèse sont motivés par ces lignes directrices:
- nous prouvons un critère d'existence général pour les données radicielles jumelées;
- nous donnons une réponse affirmative à une question sur les automorphismes des groupes de Kac-Moody laissée ouverte dans un article de Caprace;
- nous proposons une définition d'une donnée radicielle jumelée sur un corps commutatif de caractéristique p.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Brewis, Louis Hugo. "Automorphisms of curves and the lifting conjecture." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1050.
Full textJoumaah, Malek [Verfasser]. "Automorphisms of irreducible symplectic manifolds / Malek Joumaah." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2015. http://d-nb.info/1068920580/34.
Full textSchlemmer, Tobias. "Annotating Lattice Orbifolds with Minimal Acting Automorphisms." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-96517.
Full textKnipe, David Michael. "Automorphisms of the countable generic partial order." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493772.
Full textBrightwell, Mark. "Lattices and automorphisms of compact complex manifolds." Thesis, University of Glasgow, 1999. http://theses.gla.ac.uk/2803/.
Full textWatson, Paul Daniel. "Symmetries and automorphisms of compact Riemann surfaces." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294489.
Full textGagnon-Bischoff, Jérémie. "Approximately Inner Automorphisms of von Neumann Factors." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41879.
Full textSchlemmer, Tobias. "Annotating Lattice Orbifolds with Minimal Acting Automorphisms." Technische Universität Dresden, 2012. https://tud.qucosa.de/id/qucosa%3A26138.
Full textColeman, Thomas. "Automorphisms and endomorphisms of first-order structures." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/64074/.
Full textChrétien, Pierre. "Groupes d’Inertie et Variétés Jacobiennes." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14785/document.
Full textLet k be an algebraically closed field of characteristic p > 0 and C/k be a projective,smooth, integral curve of genus g > 1 endowed with a p-group of automorphisms G such that |G| > 2p/(p-1)g. The pair (C,G) is called big action. If (C,G) is a big action, then |G|<=4p/(p-1)^2g^2 (*). In this thesis, one studies arithmetical repercussions of geometric properties of big actions. One studies the arithmetic of the maximal wild monodromy extension of curves over a local field K of mixed characteristic p with algebraically closed residue field, with arbitrarily high genus having for potential good reduction a big action achieving equality in (*). One studies the associated Swan conductors. Then, one gives the first examples, to our knowledge, of big actions (C,G) with non abelian derived group D(G). These curves are obtained as coverings of S-ray class fields of P1(Fq) where S is a finite non empty subset of P1(Fq). Finally, one describes a method to compute S-Hilbert class fields of supersingular abelian covers of the projective line having exponent p and one illustrates it for some Deligne-Lusztig curves
Donoso, Sebastian Andres. "Contributions to ergodic theory and topological dynamics : cube structures and automorphisms." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1007/document.
Full textThis thesis is devoted to the study of different problems in ergodic theory and topological dynamics related to og cube structures fg. It consists of six chapters. In the General Presentation we review some general results in ergodic theory and topological dynamics associated in some way to cubes structures which motivates this thesis. We start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove the convergence in $L^2$ of multiple ergodic averages. Then we present its extension to topological dynamics developed by Host, Kra and Maass (2010), which gives tools to understand the topological structure of topological dynamical systems. Finally we present the main implications and extensions derived of studying these structures, we motivate the new objects introduced in the thesis and sketch out our contributions. In Chapter 1 we give a general background in ergodic theory and topological dynamics given emphasis to the treatment of special factors. % We give basic definitions and describe special factors associated to a From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is devoted to a different topic and related questions, both in ergodic theory and topological dynamics. Each one is associated to a scientific article. In Chapter 2 we introduce a novel cube structure to study the actions of two commuting transformations $S$ and $T$ on a compact metric space $X$. In the same chapter we study the topological and dynamical properties of such structure and we use it to characterize products systems and their factors. We also provide some applications, like the construction of special factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise convergence of a cubic average in a system with two commuting transformations. In Chapter 4, we study the enveloping semigroup of a very important class of dynamical systems, the nilsystems. We use cube structures to show connexions between algebraic properties of the enveloping semigroup and the geometry and dynamics of the system. In particular, we characterize nilsystems of order 2 by its enveloping semigroup. In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional symbolic spaces. First, we consider low complexity symbolic systems and use special factors, some related to the introduced cube structures, to study the group of automorphisms. Our main result states that for minimal systems with sublinear complexity such groups are spanned by the shift action and a finite set. Also, using factors associated to the cube structures introduced in Chapter 2 we study the automorphism group of a representative tiling system. The bibliography is defer to the end of this document
梁以豪 and Yee-ho Genthew Leung. "Results related to the embedding conjecture." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B3122474X.
Full textLeung, Yee-ho Genthew. "Results related to the embedding conjecture." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22713396.
Full textHall, Toby Dixon Harold. "Periodicity in chaos : the dynamics of surface automorphisms." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387125.
Full textYasemin, Talu E. "p-groups of automorphisms of compact Riemann surfaces." Thesis, University of Aberdeen, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357987.
Full textCattaneo, Alberto. "Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2322/document.
Full textWe study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution
Shi, Yi. "Perturbations of partially hyperbolic automorphisms on Heisenberg nilmanifold." Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS048/document.
Full textIn this thesis, we show that all the partially hyperbolic automorphisms on the Heisenbergnilmanifold can be C1-approximated by structurally stable C∞ diffeomorphisms which exhibitone attractor and one repeller. This implies that all these automorphisms are not robustly transitive.Our constructions of attractors and repellers need the analysis of dynamical invariantcontact structures and fiber isotopic invariant Birkhoff sections for these automorphisms. Asa corollary, the holonomy maps of stable and unstable foliations of the approximating diffeomorphismsare twisted quasiperiodically forced circle homeomorphisms which are transitive butnon-minimal and satisfying certain fiberwise regularity properties
Hummel, Timo [Verfasser]. "Automorphisms of rational projective K*-surfaces / Timo Hummel." Tübingen : Universitätsbibliothek Tübingen, 2021. http://d-nb.info/1228858241/34.
Full textBasson, Dirk (Dirk Johannes). "Parametrizing finite order automorphisms of power series rings." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5243.
Full textENGLISH ABSTRACT: In the work of Green and Matignon it was shown that the Oort-Sekiguchi conjecture is equivalent to a local question of lifting automorphisms of power series rings. The Oort-Sekiguchi conjecture asks when an algebraic curve in characteristic p can be lifted to a relative curve in characteristic 0, while keeping the same automorphism group. The local formulation asks when an automorphism of a power series ring over a field k of characteristic p can be lifted to an automorphism of a power series ring over a discrete valuation ring with residue field k of the same order as the original automorphism. This thesis looks at the local formulation and surveys many of the results for this case. At the end it presents a new theorem giving a Hensel's Lemma type sufficient condition under which lifting is possible.
AFRIKAANSE OPSOMMING: Green en Matignon het bewys dat die Oort-Sekiguchi vermoede ekwivalent is aan `n lokale vraag oor of outomorfismes van magsreeksringe gelig kan word. Die Oort-Sekiguchi vermoede vra of `n algebra ese kromme in karakteristiek p gelig kan word na `n relatiewe kromme in karakteristiek 0, terwyl dit dieselfde outomorfisme groep behou. Die lokale vraag vra wanneer `n outomorfisme van `n magsreeksring oor `n liggaam k van karakteristiek p gelig kan word na `n outomorfisme van `n magsreeksring oor `n diskrete waarderingsring met residuliggaam k, terwyl dit dieselfde orde behou as die aanvanklike outomorfisme. Hierdie tesis fokus op die lokale vraag en bied `n opsomming van baie bekende resultate vir hierdie geval. Aan die einde word `n nuwe stelling aangebied wat voorwaardes stel waaronder hierdie vraag positief beantwoord kan word.
Derakhshan, Parisa. "Automorphisms generating disjoint Hamilton cycles in star graphs." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/16779.
Full textCostantini, Mauro. "On the lattice automorphisms of certain algebraic groups." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/101705/.
Full textSaleh, Bashar. "Formality and homotopy automorphisms in rational homotopy theory." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-160835.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.