Academic literature on the topic 'Automorphisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Automorphisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Automorphisms"
Clemens, John D. "Classifying Borel automorphisms." Journal of Symbolic Logic 72, no. 4 (December 2007): 1081–92. http://dx.doi.org/10.2178/jsl/1203350774.
Full textMASHEVITZKY, G., and B. I. PLOTKIN. "ON AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP OF A FREE UNIVERSAL ALGEBRA." International Journal of Algebra and Computation 17, no. 05n06 (August 2007): 1085–106. http://dx.doi.org/10.1142/s0218196707003974.
Full textDUNCAN, BENTON L. "AUTOMORPHISMS OF NONSELFADJOINT DIRECTED GRAPH OPERATOR ALGEBRAS." Journal of the Australian Mathematical Society 87, no. 2 (October 2009): 175–96. http://dx.doi.org/10.1017/s1446788708081007.
Full textNurkhaidarov, Ermek. "On Generic Automorphisms." WSEAS TRANSACTIONS ON MATHEMATICS 23 (January 26, 2024): 68–71. http://dx.doi.org/10.37394/23206.2024.23.8.
Full textHakuta, Keisuke, and Tsuyoshi Takagi. "Sign of Permutation Induced by Nagata Automorphism over Finite Fields." Journal of Mathematics Research 9, no. 5 (September 7, 2017): 54. http://dx.doi.org/10.5539/jmr.v9n5p54.
Full textJORDAN, DAVID A., and NONGKHRAN SASOM. "REVERSIBLE SKEW LAURENT POLYNOMIAL RINGS AND DEFORMATIONS OF POISSON AUTOMORPHISMS." Journal of Algebra and Its Applications 08, no. 05 (October 2009): 733–57. http://dx.doi.org/10.1142/s0219498809003564.
Full textYAPTI ÖZKURT, Zeynep. "Normal automorphisms of free metabelian Leibniz algebras." Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics 73, no. 1 (October 9, 2023): 147–52. http://dx.doi.org/10.31801/cfsuasmas.1265768.
Full textSheng, Yuqiu, Wende Liu, and Yang Liu. "Local Automorphisms and Local Superderivations of Model Filiform Lie Superalgebras." Journal of Mathematics 2024 (March 27, 2024): 1–9. http://dx.doi.org/10.1155/2024/6650997.
Full textSeifizadeh, Parisa, and Amirali Farokhniaee. "The absolute Frattini automorphisms." MATHEMATICA 65 (88), no. 1 (June 15, 2023): 133–38. http://dx.doi.org/10.24193/mathcluj.2023.1.14.
Full textCurran, M. J., and D. J. McCaughan. "Central automorphisms of finite groups." Bulletin of the Australian Mathematical Society 34, no. 2 (October 1986): 191–98. http://dx.doi.org/10.1017/s0004972700010054.
Full textDissertations / Theses on the topic "Automorphisms"
Sutherland, David C. (David Craig). "Automorphism Groups of Strong Bruhat Orders of Coxeter Groups." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc330906/.
Full textDavies, D. H. "Automorphisms of designs." Thesis, University of East Anglia, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304043.
Full textKarlsson, Jesper. "Symplectic Automorphisms of C2n." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-144390.
Full textDen här uppsatsen är en detaljerad undersökning av en artikel från 1996 publicerad av Franc Forstneric där han studerar symplektiska automorfismer av C2n. Visionen är att introducera täthetsegenskapen för holomorfa symplektiska mångfalder. Våran idé är som den av Dror Varolin när han 2001 introducerade täthetsegenskapen för Stein mångfalder. Huvudresultatet här är införandet av symplektiska skjuvningar på C2n med en holomorfisk symplektisk form och att visa att gruppen som genereras av ändliga sammansättningar av symplektiska skjuvningar är tät i gruppen av symplektiska automorfismer av C2n i den kompakt-öppna topologin. Vi ger en fullständig bakgrund av de verktyg från teorin om ordinära differentialekvationer, släta mångfalder och komplex och symplektisk geometri som behövs för att visa detta.
CARVALHO, LEONARDO NAVARRO DE. "GENERIC AUTOMORPHISMS OF HANDLEBODIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2002. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3970@1.
Full textAutomorfismos genéricos de cubos com alças (handlebodies) aparecem do estudo de classes the isotopia de automorfismos de variedades orientáveis de dimensão três. Automorfismos genéricos permanecem como uma das partes menos entendidas desse estudo.Dado um automorfismo genérico de um cubo com alças, é conhecida uma forma de se construir uma laminação bidimensional que é invariante pelo automorfismo. A essa laminação se associa um fator de crescimento. É sabido que, no caso de tal fator de crescimento ser minimal - uma característica importante, pois mede a complexidade essencial do automorfismo - a laminação deve gozar de uma certa propriedade de incompressibilidade. Nessa tese mostramos que o processo de se achar uma laminação com tal propriedade é algoritmico. Por outro lado, mostramos que tal propriedade não garante que o respectivo fator de crescimento seja minimal. Propomos uma outra propriedade, tensão transversal, mais forte que incompressibilidade, que conjecturamos também ser condição necessária para que o fator de crescimento seja minimal. Provamos a conjectura em alguns casos.Além dos resultados mencionados acima, desenvolvemos métodos para gerar automorfismos genéricos de cubos com alcas, que usamos para apresentar alguma variedade de exemplos.
Generic automorphisms of handlebodies appear naturally in the study of isotopy classes of automophisms of orientable three-dimensional manifolds. Generic automorphisms remain as one of the least understood parts of this study. Given a generic automorphism of a handlebody one can construct a bidimensional lamination that is invariant under the automorphism. There is a growth rate associated to this lamination. It is known that, when this growth rate is minimal among all possible choices (an important property, for it measures the essential complexity of the automorphism), the lamination must have a certain incompressibility property. On this thesis we show that the process of
Grossi, Annalisa <1992>. "Automorphisms of O'Grady's sixfolds." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9441/1/Tesi%20Dottorato.pdf.
Full textBonfanti, M. A. "ALGEBRAIC SURFACES WITH AUTOMORPHISMS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/345557.
Full textFullarton, Neil James. "Palindromic automorphisms of free groups and rigidity of automorphism groups of right-angled Artin groups." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5323/.
Full textTabbaa, Dima al. "On the classification of some automorphisms of K3 surfaces." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2299/document.
Full textA non-symplectic automorphism of finite order n on a K3 surface X is an automorphism σ ∈ Aut(X) that satisfies σ*(ω) = λω where λ is a primitive n−root of the unity and ω is a generator of H2,0(X). In this thesis we study the non-symplectic automorphisms of order 8 and 16 on K3 surfaces. First we classify the non-symplectic automorphisms σ of order eight when the fixed locus of its fourth power σ⁴ contains a curve of positive genus, we show more precisely that the genus of the fixed curve by σ is at most one. Then we study the case of the fixed locus of σ that contains at least a curve and all the curves fixed by its fourth power σ⁴ are rational. Finally we study the case when σ and its square σ² act trivially on the Néron-Severi group. We classify all the possibilities for the fixed locus of σ and σ² in these three cases. We obtain a complete classifiction for the non-symplectic automorphisms of order 8 on a K3 surfaces.In the second part of the thesis, we classify K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and isolated points and we completely classify the seven possible configurations. If the Néron-Severi group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular ifthe action of the automorphism is trivial on the Néron-Severi group, then we show that its rank is six.Finally, we construct several examples corresponding to several cases in the classification of the non-symplectic automorphisms of order 8 and we give an example for each case in the classification of the non-symplectic automorphisms of order 16
Sebille, Michel. "Design :construction, automorphisms and colourings." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211428.
Full textBidwell, Jonni, and n/a. "Computing automorphisms of finite groups." University of Otago. Department of Mathematics & Statistics, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070320.162909.
Full textBooks on the topic "Automorphisms"
van den Essen, Arno. Polynomial Automorphisms. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8440-2.
Full textDavies, D. H. Automorphisms of designs. Norwich: University of East Anglia, 1987.
Find full textPassi, Inder Bir Singh, Mahender Singh, and Manoj Kumar Yadav. Automorphisms of Finite Groups. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2895-4.
Full textvan den Essen, Arno, ed. Automorphisms of Affine Spaces. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8555-2.
Full textTakhar, Rita. Automorphisms of free products. Birmingham: University of Birmingham, 1989.
Find full textWebb, Bridget S. Automorphisms of finite incidence structures. Norwich: University of East Anglia, 1992.
Find full textHudson, Sebastian Thomas. Rigid automorphisms of generalised trees. Birmingham: University of Birmingham, 1997.
Find full textMcCullough, Darryl. Symmetric automorphisms of free products. Providence, R.I: American Mathematical Society, 1996.
Find full textRichard, Kaye, and Macpherson Dugald, eds. Automorphisms of first-order structures. Oxford: Clarendon Press, 1994.
Find full textKhukhro, Evgenii I. Nilpotent groups and their automorphisms. Berlin: W. de Gruyter, 1993.
Find full textBook chapters on the topic "Automorphisms"
Bonnafé, Cédric. "Automorphisms." In Algebra and Applications, 235–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70736-5_20.
Full textCharlap, Leonard S. "Automorphisms." In Bieberbach Groups and Flat Manifolds, 167–231. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8687-2_5.
Full textArmstrong, M. A. "Automorphisms." In Undergraduate Texts in Mathematics, 131–35. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-4034-9_23.
Full textBirkenhake, Christina, and Herbert Lange. "Automorphisms." In Complex Abelian Varieties, 411–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_15.
Full textCǎlugǎreanu, Grigore, and Peter Hamburg. "Automorphisms." In Kluwer Texts in the Mathematical Sciences, 35–36. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9004-4_8.
Full textKitchens, Bruce P. "Automorphisms." In Universitext, 63–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58822-8_3.
Full textTits, Jacques, and Richard M. Weiss. "Automorphisms." In Springer Monographs in Mathematics, 397–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04689-0_37.
Full textGeorgi, Howard. "Automorphisms." In Lie Algebras in Particle Physics, 291–96. Boca Raton: CRC Press, 2018. http://dx.doi.org/10.1201/9780429499210-26.
Full textHibbard, Allen C., and Kenneth M. Levasseur. "Automorphisms." In Exploring Abstract Algebra With Mathematica®, 74–80. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1530-1_9.
Full textKhattar, Dinesh, and Neha Agrawal. "Automorphisms." In Group Theory, 223–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21307-6_8.
Full textConference papers on the topic "Automorphisms"
Guo, Xiuyun. "Power Automorphisms and Induced Automorphisms in Finite Groups." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0021.
Full textWagh, Meghanad D., and Khadidja Bendjilali. "Butterfly Automorphisms and Edge Faults." In 2010 9th International Symposium on Parallel and Distributed Computing (ISPDC). IEEE, 2010. http://dx.doi.org/10.1109/ispdc.2010.11.
Full textShabunov, Kirill. "Monomial Codes With Predefined Automorphisms." In 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE, 2022. http://dx.doi.org/10.1109/icccworkshops55477.2022.9896648.
Full textRakhimov, Abdugafur Abdumadjidovich, and Khasanbek Avazbekogli Nazarov. "Local automorphisms of real B(X)." In NOVEL TRENDS IN RHEOLOGY IX. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0145081.
Full textKalandarov, Turabay, Purxanatdin Nasirov, Rano Arziyeva, and Raxim Ongarbayev. "2-local automorphisms of arens algebras." In INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE ON ACTUAL PROBLEMS OF MATHEMATICAL MODELING AND INFORMATION TECHNOLOGY. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0210130.
Full textHasan, Fatin Hanani, Mohd Sham Mohamad, and Yuhani Yusof. "Automorphisms of finite cyclic 3-groups." In THE 7TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: The 15th Asian Congress on Biotechnology in conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192365.
Full textKHUKHRO, E. I. "SOME NEW METHODS FOR ALMOST REGULAR AUTOMORPHISMS." In Proceedings of a Conference in Honor of Akbar Rhemtulla. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708670_0019.
Full textAgnis, ku kovniks, and Freivalds R si. "Quantum Query Algorithms for Automorphisms of Galois Groups." In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/3ca-13.2013.10.
Full textCANTAT, SERGE. "AUTOMORPHISMS AND DYNAMICS: A LIST OF OPEN PROBLEMS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0070.
Full textCHRISTODOULAKIS, T. "AUTOMORPHISMS AND QUANTUM HAMILTONIAN DYNAMICS IN BIANCHI COSMOLOGIES." In Proceedings of the 10th Hellenic Relativity Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791238_0006.
Full textReports on the topic "Automorphisms"
Abe, Kojun. On the Structure of Automorphisms of Manifolds. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-7-16.
Full text