Dissertations / Theses on the topic 'Automatic Motion Detection and Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Automatic Motion Detection and Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Richards, Mark Andrew. "An intuitive motion-based input model for mobile devices." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16556/.
Full textRichards, Mark Andrew. "An intuitive motion-based input model for mobile devices." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16556/1/Mark_Richards_Thesis.pdf.
Full textBrulin, Mathieu. "Analyse sémantique d'un trafic routier dans un contexte de vidéo-surveillance." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14589/document.
Full textAutomatic traffic monitoring plays an important role in traffic surveillance. Video cameras are relatively inexpensive surveillance tools, but necessitate robust, efficient and automated video analysis algorithms. The loss of information caused by the formation of images under perspective projection made the automatic task of detection and tracking vehicles a very challenging problem, but essential to extract a semantic interpretation of vehicles behaviors. The work proposed in this thesis comes from a collaboration between the LaBRI (Laboratoire Bordelais de Recherche en Informatique) and the company Adacis. The aim is to elaborate a complete video-surveillance system designed for automatic incident detection.To reach this objective, traffic scene analysis proceeds from low-level processing to high-level descriptions of the traffic, which can be in a wide variety of type: vehicles entering or exiting the scene, vehicles collisions, vehicles' speed that are too fast or too low, stopped vehicles or objects obstructing part of the road... A large number of road traffic monitoring systems are based on background subtraction techniques to segment the regions of interest of the image. Resulted regions are then tracked and trajectories are used to extract a semantic interpretation of the vehicles behaviors.The motion detection is based on a statistical model of background color. The model used is a mixture model of probabilistic laws, which allows to characterize multimodal distributions for each pixel. Estimation of optical flow, a gradient difference estimation and shadow and highlight detection are used to confirm or invalidate the segmentation results.The tracking process is based on a predictive filter using a motion model with constant velocity. A simple Kalman filter is employed, which allow to predict state of objets based on a \textit{a priori} information from the motion model.The behavior analysis step contains two approaches : the first one consists in exploiting information from low-level and mid-level analysis. Objects and their trajectories are analysed and used to extract abnormal behavior. The second approach consists in analysing a spatio-temporal slice in the 3D video volume. The extracted maps are used to estimate statistics about traffic and are used to detect abnormal behavior such as stopped vehicules or wrong way drivers.In order to help the segmentaion and the tracking processes, a structure model of the scene is proposed. This model is constructed using an unsupervised learning step. During this learning step, gradient information from the background image and typical trajectories of vehicles are estimated. The results are combined to estimate the vanishing point of the scene, the lanes boundaries and a rough depth estimation is performed. In parallel, a statistical model of the trafic flow direction is proposed. To deal with periodic data, a von-Mises mixture model is used to characterize the traffic flow direction
Mawla, Aya Abdul. "Real time automatic intruder detection system (RAIDS)." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319332.
Full textHayfron-Acquah, James Ben. "Automatic gait recognition by symmetry analysis." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274080.
Full textCase, Isaac. "Automatic object detection and tracking in video /." Online version of thesis, 2010. http://hdl.handle.net/1850/12332.
Full textAleixo, de Matos SeÌrgio Guilherme. "Automatic detection and analysis of cough sounds." Thesis, University of Leicester, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437913.
Full textShankaranarayanan, S. "Detection of Coreferences in Automatic Specifications Analysis." Thesis, Virginia Tech, 1994. http://hdl.handle.net/10919/42360.
Full textMaster of Science
Li, Yunming. "Machine vision algorithms for mining equipment automation." Thesis, Queensland University of Technology, 2000.
Find full textLiu, Chang. "Human motion detection and action recognition." HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1108.
Full textSantos, Paulo Alexandre Vieira Jacinto dos. "Automatic detection of user transitionality by analysis of interaction." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/9154.
Full textTurabzadeh, Saeed. "Automatic emotional state detection and analysis on embedded devices." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12072.
Full textUllah, Habib. "Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification." Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/369001.
Full textUllah, Habib. "Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification." Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1406/1/PhD_Thesis_Habib.pdf.
Full textYe, Ming. "Robust visual motion analysis : piecewise-smooth optical flow and motion-based detection and tracking /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/6077.
Full textPruthi, Tarun. "Analysis, vocal-tract modeling, and automatic detection of vowel nasalization." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/4273.
Full textThesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Simonin, David. "Automatic detection and analysis of internal waves on SAR images." Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420213.
Full textForsberg, Viktor. "AUTOMATIC ANOMALY DETECTION AND ROOT CAUSE ANALYSIS FOR MICROSERVICE CLUSTERS." Thesis, Umeå universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-164740.
Full textZhou, Huiyu. "Efficient ego-motion tracking and obstacle detection using gait analysis." Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/141.
Full textHe, Shu. "Facial motion analysis for facial paralysis assessment and lie detection." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501886.
Full textLumbreras, Alberto. "Automatic role detection in online forums." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE2111/document.
Full textThis thesis addresses the problem of detecting user roles in online discussion forums. A role may be defined as the set of behaviors characteristic of a person or a position. In discussion forums, behaviors are primarily observed through conversations. Hence, we focus our attention on how users discuss. We propose three methods to detect groups of users with similar conversational behaviors.Our first method for the detection of roles is based on conversational structures. Weapply different notions of neighborhood for posts in tree graphs (radius-based, order-based, and time-based) and compare the conversational patterns that they detect as well as the clusters of users with similar conversational patterns.Our second method is based on stochastic models of growth for conversation threads.Building upon these models we propose a method to find groups of users that tend to reply to the same type of posts. We show that, while there are clusters of users with similar replying patterns, there is no strong evidence that these behaviors are predictive of future behaviors |except for some groups of users with extreme behaviors.In out last method, we integrate the type of data used in the two previous methods(feature-based and behavioral or functional-based) and show that we can find clusters using fewer examples. The model exploits the idea that users with similar features have similar behaviors
Partsinevelos, Panayotis. "Detection and Generalization of Spatio-temporal Trajectories for Motion Imagery." Fogler Library, University of Maine, 2002. http://www.library.umaine.edu/theses/pdf/PartsinevelosP2002.pdf.
Full textSyal, Astha. "Automatic Network Traffic Anomaly Detection and Analysis using SupervisedMachine Learning Techniques." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1578259840945109.
Full textBodnarova, Adriana. "Texture analysis for automatic visual inspection and flaw detection in textiles." Thesis, Queensland University of Technology, 2000.
Find full textRabe, Clemens [Verfasser]. "Detection of Moving Objects by Spatio-Temporal Motion Analysis / Clemens Rabe." Kiel : Universitätsbibliothek Kiel, 2011. http://d-nb.info/1020202637/34.
Full textZhu, Winstead Xingran. "Hotspot Detection for Automatic Podcast Trailer Generation." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444887.
Full textStanford, Derek C. "Fast automatic unsupervised image segmentation and curve detection in spatial point patterns /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8976.
Full textZelmann, Rina. "Automatic detection and analysis of high frequency oscillations in the human electroencephalogram." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114313.
Full textLes oscillations de haute fréquence (OHF; 80-500 Hz) constituent des évènements EEG spontanés de courte durée et de faible amplitude qui émergent en tant que biomarqueur du tissu pouvant générer les crises épileptiques. Afin de promouvoir l'utilisation clinique et l'étude systématique des OHF, il est important de développer des détecteurs automatiques fiables et de fournir un cadre visant à garantir la stabilité de leurs résultats. Il s'agit là du premier objectif de la présente thèse. Les OHF ont principalement été étudiées à partir d'électrodes intracrâniennes, mais elles ont également été enregistrées à l'aide d'électrodes placées sur le cuir chevelu. Il convient alors de comprendre comment l'on peut observer ces évènements de faible envergure du fait de l'atténuation importante du crâne, ce qui constitue le second objectif de cette thèse. Pour répondre au premier objectif, nous avons conçu une procédure visant à systématiser l'étude des OHF et avons élaboré un détecteur automatique. Ainsi, nous présentons d'abord une procédure permettant d'assurer l'uniformité entre les lecteurs et d'évaluer si un intervalle choisi offre des renseignements stables pour un repérage visuel et automatique des OHF. À l'heure actuelle, cette procédure est communément utilisée quand les OHF interictales sont repérées. Cette étude est la première à évaluer la durée minimale nécessaire à l'obtention de renseignements cohérents pour le marquage des EEG et elle a démontré que l'analyse de 5 minutes d'EEG interictal offre la même information que des intervalles de plus longue durée. Cette approche est applicable à tout type d'évènements EEG. Nous avons ensuite décrit un détecteur automatique d'OHF, qui suit une approche originale en détectant d'abord des segments de base dénués d'activités oscillatoires avant d'utiliser un seuil statistique obtenu à partir de ces valeurs de base locales pour déterminer les OHF. Ce détecteur est plus efficace que d'autres détecteurs, notamment pour les canaux actifs et les canaux sans valeur de base claire. Une comparaison entre les détecteurs existants pour le même ensemble de données est présentée afin d'analyser leur performance respective, de démontrer que l'optimisation d'un certain type de données améliore l'efficacité de tous les détecteurs et de mettre en évidence les problèmes en jeu dans la validation. Le second objectif de la présente thèse est d'étudier la distribution spatiale de l'activité corticale au moment des OHF enregistrées sur le cuir chevelu. Dans la mesure où les OHF sont produites par de petites régions cérébrales et que l'EEG est fortement atténué avant d'arriver au cuir chevelu, les OHF sont surtout enregistrées à l'aide d'électrodes intracrâniennes. Il est étonnant que dernièrement, des OHF aient également été observées sur des EEG enregistrés sur le cuir chevelu. En se basant sur les enregistrements simultanés sur le cuir chevelu et intracrâniens, nous avons démontré que, même si les régions génératrices d'OHF sont faiblement étendues sur le plan spatial, les OHF peuvent être observées à l'aide d'électrodes placées sur le cuir chevelu avec une faible amplitude et une étendue focale. Nous avons établi que ces évènements de faible étendue sont sous-échantillonnés sur le cuir chevelu avec la densité des systèmes standards d'électrodes et sur les grilles corticales avec l'espacement standard de 1 cm entre les électrodes. Il semble nécessaire d'avoir une répartition dense des électrodes sur le cuir chevelu afin de représenter spatialement de façon exhaustive les OHF enregistrées sur le cuir chevelu. Cela ouvrirait la voie à une étude systématique non invasive des OHF. Avec l'élaboration de méthodes de détection et d'analyse des OHF, nous souhaitons améliorer l'étude systématique des OHF intracrâniennes et du cuir chevelu, dans l'optique d'une application clinique en tant que biomarqueur du tissu épileptogène.
Nickels, Michael R. "IMPROVING MOTION IMAGERY ANALYSIS: INVESTIGATING DETECTION FAILURES, REMEMBERING TO PERFORM DEFERRED INTENTIONS." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1409316622.
Full textCesbron, Fred́eŕique Chantal. "Pitch detection using the short-term phase spectrum." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/15503.
Full textPokric, Boris. "Laser based machine vision for three-dimensional surface analysis." Thesis, Leeds Beckett University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297358.
Full textAldwihe, Ramez. "Computer vision for driving support systems: automatic traffic signs detection and proximity analysis." Master's thesis, Universidade de Évora, 2018. http://hdl.handle.net/10174/23063.
Full textAbedan, Kondori Farid. "Bring Your Body into Action : Body Gesture Detection, Tracking, and Analysis for Natural Interaction." Doctoral thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-88508.
Full textHerman, Stephanie. "Automatic detection of protein degradation markers in mass spectrometry imaging." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-275072.
Full textFoghammar, Nömtak Carl. "Automatic SLAMS detection and magnetospheric classification in MMS data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285533.
Full textKorta magnetiska strukturer med hög amplitud (SLAMS) har observeratsav satelliter nära jordens kvasi-parallella bogchock. En kortoch plötslig höjning av magnetfältsstyrkan är ett typiskt drag förSLAMS, vanligtvis med en faktor 2 eller mer. Forskning om SLAMShar tidigare varit begränsad till mindre fallstudier eftersom SLAMSidentifierats genom manuell inspektion av satellitdata. Detta gör detsvårt att dra generella slutsatser och det subjektiva elementet försvårarsamarbetet mellan forskare. En lösning till detta problem presenteras idenna avhandling; en automatisk identifieringsalgoritm för SLAMS. Viundersöker flera metoder och mäter deras prestanda på en uppsättningmanuellt identifierade SLAMS. Den bästa algoritmen används sedan föratt identifiera 98406 SLAMS i data från MMS-uppdraget. Av dessa upptäcktes66210 SLAMS när FPI-instrumentet var aktivt. Vi är dessutomintresserade av att veta om en upptäckt SLAMS finns i förshocken ellermagnetoskiktet. Därför implementerar vi en Gaussisk klassificeraresom bygger på hierarkisk klustring av FPI-data. Den kan separerade fyra distinkta regionerna av magnetosfären som MMS observerar;magnetosfär, magnetoskikt, solvind och (jon) förchock. De identifieradeSLAMS:en sammanställs till en databas som innehåller deras start- ochstoppdatum, positionskoordinater, B-fältsinformation och informationfrån magnetosfärsklassificeraren för att möjliggöra enkel filtrering tillen specifik SLAMS-population. För att visa potentialen av databasenutför vi en preliminär statistisk undersökning av hur egenskapernaav SLAMS påverkas av deras rumsliga och/eller magnetosfäriska position.Databasen och Matlab-implementationen är tillgängliga på Github:https://github.com/cfognom/MMS_SLAMS_detection_and_magnetospheric_classification.
Moussa, Georges Fouad Mr. "EARLY FOREST FIRE DETECTION USING TEXTURE, BLOB THRESHOLD, AND MOTION ANALYSIS OF PRINCIPAL COMPONENTS." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/881.
Full textLabuschagne, P. J. "Automatic clustering with application to time dependent fault detection in chemical processes." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-07062009-142237.
Full textLennartsson, Richard. "Automatic diagnostic system for I-shift transmission using vibration analysis." Thesis, Linköping University, Automatic Control, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57732.
Full textThis master’s thesis work was performed at Volvo Powertrain in Köping, Sweden, which manufactures gearboxes and integrated transmission systems for heavy vehicles. The thesis is a continuation of a previous master’s thesis performed at the Köping factory in 2009. After manufacturing and assembly, each gearbox is manually validated to ensure the gearbox quality and functionality. When validating the gearbox gears, the operator shifts the gearbox in a predefined manner and listens for irregularities. If an error sound is heard the operator must then locate the source of error. With numerous of cog wheels rotating at the same time this task requires extensive knowledge and experience of the operator. The main objective is to develop an automatic diagnostic system for detection of cog errors and assist the operator in the process of locating the faulty component.
The work consists of two parts. In the first part the automatic diagnostic system is developed and a database of gearbox recordings is stored. The amounts of logged non-faulty gearboxes are significantly much larger (50) than the logged faulty gearboxes (1). Therefore, when determining thresholds needed for the diagnosis, the data obtained from the non-faulty gearboxes are used. Two statistical methods are presented to extract the thresholds. The first method uses an extremevalue distribution and the other method a Gaussian distribution. When validated, both methods did successfully detect on cog faults. In the second part an investigation is made of how shaft imbalance can be detected and implemented in the developed system.
Volvo Powertrain continually follows-up all faults found at the validation station to ensure the quality of their work and eliminate the sources of error. During system testing one logged gearbox was found faulty. The automatic diagnostic system did successfully detect and locate the faulty component which later also was confirmed when the gearbox was dismounted. With only one detected error it is difficult to conclude the system performance and further testing is required. However, during the testing no false detections were made.
Azarbarzin, Ali. "Snoring sounds analysis: automatic detection, higher order statistics, and its application for sleep apnea diagnosis." IEEE, 2011. http://hdl.handle.net/1993/9593.
Full textChen, Huaqing. "Analysis and processing of HRCT images of the lung for automatic segmentation and nodule detection." Thesis, University of Canterbury. Computer Science and Software Engineering, 2012. http://hdl.handle.net/10092/6742.
Full textKHAN, SULTAN DAUD. "Automatic Detection and Computer Vision Analysis of Flow Dynamics and Social Groups in Pedestrian Crowds." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/102644.
Full textD'AMATO, VINCENZO STEFANO. "Deep Multi Temporal Scale Networks for Human Motion Analysis." Doctoral thesis, Università degli studi di Genova, 2023. https://hdl.handle.net/11567/1104759.
Full textPark, Dong-Jun. "Video event detection framework on large-scale video data." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/2754.
Full textNawarathna, Ruwan D. "Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc283849/.
Full textAl, saddik Hania. "Spectral and textural analysis of high resolution data for the automatic detection of grape vine diseases." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK050/document.
Full text‘Flavescence dorée’ is a contagious and incurable disease present on the vine leaves. The DAMAV project (Automatic detection of Vine Diseases) aims to develop a solution for automated detection of vine diseases using a micro-drone. The goal is to offer a turnkey solution for wine growers. This tool will allow the search for potential foci, and then more generally any type of detectable vine disease on the foliage. To enable this diagnosis, the foliage is proposed to be studied using a dedicated high-resolution multispectral camera.The objective of this PhD-thesis in the context of DAMAV is to participate in the design and implementation of a Multi-Spectral (MS) image acquisition system and to develop the image pre-processing algorithms, based on the most relevant spectral and textural characteristics related to ‘Flavescence dorée’.Several grapevine varieties were considered such as red-berried and white-berried ones; furthermore, other diseases than ‘Flavescence dorée’ (FD) such as Esca and ‘Bois noir’ (BN) were also tested under real production conditions. The PhD work was basically performed at a leaf-level scale and involved an acquisition step followed by a data analysis step.Most imaging techniques, even MS, used to detect diseases in field crops or vineyards, operate in the visible electromagnetic radiation range. In DAMAV, it is advised to detect the disease as early as possible. It is therefore necessary to investigate broader information in particular in the infra-red. Reflectance responses of plants leaves can be obtained from short to long wavelengths. These reflectance signatures describe the internal constituents of leaves. This means that the presence of a disease can modify the internal structure of the leaves and hence cause an alteration of its reflectance signature.A spectrometer is used in our study to characterize reflectance responses of leaves in the field. Several samples at different growth stages were used for the tests. To define optimal reflectance features for grapevine disease detection (FD, Esca, BN), a new methodology that designs spectral disease indices based on two dimension reduction techniques, coupled with a classifier, has been developed. The first feature selection technique uses the Genetic Algorithms (GA) and the second one relies on the Successive Projection Algorithm (SPA). The new resulting spectral disease indices outperformed traditional vegetation indices and GA performed in general better than SPA. The features finally chosen can thus be implemented as filters in the MS sensor.In general, the reflectance information was satisfying for finding infections (higher than 90% of accuracy for the best method) but wasn’t enough. Thus, the images acquired with the developed MS device can further be pre-processed by low level techniques based on the calculation of texture parameters injected into a classifier. Several texture processing techniques have been tested but only on colored images. A method that combines many texture features is elaborated, allowing to choose the best ones. We found that the combination of optimal textural information could provide a complementary mean for not only differentiating healthy from infected grapevine leaves (higher than 85% of accuracy), but also for grading the disease severity stages (higher than 73% of accuracy) and for discriminating among diseases (higher than 72% of accuracy). This is in accordance with the hypothesis that a multispectral camera can enable detection and identification of diseases in grapevine fields
Feng, Qianli. "Automatic American Sign Language Imitation Evaluator." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461233570.
Full textShreve, Matthew Adam. "Automatic Macro- and Micro-Facial Expression Spotting and Applications." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4770.
Full textKorzhova, Valentina N. "Motion Analysis of Fluid Flow in a Spinning Disk Reactor." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/3478.
Full textPérez, Rúa Juan Manuel. "Hierarchical motion-based video analysis with applications to video post-production." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S125/document.
Full textThe manuscript that is presented here contains all the findings and conclusions of the carried research in dynamic visual scene analysis. To be precise, we consider the ubiquitous monocular camera computer vision set-up, and the natural unconstrained videos that can be produced by it. In particular, we focus on important problems that are of general interest for the computer vision literature, and of special interest for the film industry, in the context of the video post-production pipeline. The tackled problems can be grouped in two main categories, according to the whether they are driven user interaction or not : user-assisted video processing tools and unsupervised tools for video analysis. This division is rather synthetic but it is in fact related to the ways the proposed methods are used inside the video post-production pipeline. These groups correspond to the main parts that form this manuscript, which are subsequently formed by chapters that explain our proposed methods. However, a single thread ties together all of our findings. This is, a hierarchical analysis of motion composition in dynamic scenes. We explain our exact contributions, together with our main motivations, and results in the following sections. We depart from a hypothesis that links the ability to consider a hierarchical structure of scene motion, with a deeper level of dynamic scene understanding. This hypothesis is inspired by plethora of scientific research in biological and psychological vision. More specifically, we refer to the biological vision research that established the presence of motion-related sensory units in the visual cortex. The discovery of these specialized brain units motivated psychological vision researchers to investigate how animal locomotion (obstacle avoidance, path planning, self-localization) and other higher-level tasks are directly influenced by motion-related percepts. Interestingly, the perceptual responses that take place in the visual cortex are activated not only by motion itself, but by occlusions, dis-occlusions, motion composition, and moving edges. Furthermore, psychological vision have linked the brain's ability to understand motion composition from visual information to high level scene understanding like object segmentation and recognition
Chu, Wen-Sheng. "Automatic Analysis of Facial Actions: Learning from Transductive, Supervised and Unsupervised Frameworks." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/929.
Full text