Academic literature on the topic 'AUTOMATIC EVALUATING'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'AUTOMATIC EVALUATING.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "AUTOMATIC EVALUATING"
Fabbri, Alexander R., Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and Dragomir Radev. "SummEval: Re-evaluating Summarization Evaluation." Transactions of the Association for Computational Linguistics 9 (2021): 391–409. http://dx.doi.org/10.1162/tacl_a_00373.
Full textLiu, Zhixiang, Huan Liu, Yuanji Chen, Wenbo Zhang, Wei Song, Liping Zhou, Quanmiao Wei, and Jingxiang Xu. "Evaluating Airfoil Mesh Quality with Transformer." Aerospace 10, no. 2 (January 23, 2023): 110. http://dx.doi.org/10.3390/aerospace10020110.
Full textShinar, David, Meir Meir, and Israel Ben-Shoham. "How Automatic Is Manual Gear Shifting?" Human Factors: The Journal of the Human Factors and Ergonomics Society 40, no. 4 (December 1998): 647–54. http://dx.doi.org/10.1518/001872098779649346.
Full textSai, Ananya B., Akash Kumar Mohankumar, and Mitesh M. Khapra. "A Survey of Evaluation Metrics Used for NLG Systems." ACM Computing Surveys 55, no. 2 (March 31, 2023): 1–39. http://dx.doi.org/10.1145/3485766.
Full textSungdo Moon, Byoungro So, and M. W. Hall. "Evaluating automatic parallelization in SUIF." IEEE Transactions on Parallel and Distributed Systems 11, no. 1 (2000): 36–49. http://dx.doi.org/10.1109/71.824639.
Full textGonzalez-Rodriguez, Joaquin. "Evaluating Automatic Speaker Recognition systems: An overview of the NIST Speaker Recognition Evaluations (1996-2014)." Loquens 1, no. 1 (June 30, 2014): e007. http://dx.doi.org/10.3989/loquens.2014.007.
Full textOña, Edwin, Patricia Sánchez-Herrera, Alicia Cuesta-Gómez, Santiago Martinez, Alberto Jardón, and Carlos Balaguer. "Automatic Outcome in Manual Dexterity Assessment Using Colour Segmentation and Nearest Neighbour Classifier." Sensors 18, no. 9 (August 31, 2018): 2876. http://dx.doi.org/10.3390/s18092876.
Full textWhite, Hannah, Joshua Penney, Andy Gibson, Anita Szakay, and Felicity Cox. "Evaluating automatic creaky voice detection methods." Journal of the Acoustical Society of America 152, no. 3 (September 2022): 1476–86. http://dx.doi.org/10.1121/10.0013888.
Full textBernstein, Jared, and Elizabeth Rosenfeld. "Evaluating automatic speech-to-speech interpreting." Journal of the Acoustical Society of America 132, no. 3 (September 2012): 2079. http://dx.doi.org/10.1121/1.4755669.
Full textvan Diepen, Merel, and Philip Hans Franses. "Evaluating chi-squared automatic interaction detection." Information Systems 31, no. 8 (December 2006): 814–31. http://dx.doi.org/10.1016/j.is.2005.03.002.
Full textDissertations / Theses on the topic "AUTOMATIC EVALUATING"
PENG, SISI. "Evaluating Automatic Model Selection." Thesis, Uppsala universitet, Statistiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-154449.
Full textDoe, Hope L. "Evaluating the Effects of Automatic Speech Recognition Word Accuracy." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36956.
Full text
Results indicated that word recognition accuracy
achieved does affect user satisfaction. It was also found that with
increased error-correction time, word accuracy results improved. Additionally,
the results found that Personal Correspondence achieved the highest mean word
accuracy rate for both systems and that Dragon Systems achieved the highest mean
word accuracy recognition for the Correspondences explored in this research.
Results were discussed in terms of subjective and objective measures,
advantages and disadvantages of speech input, and design recommendations were
provided.
Master of Science
Nguyen, Christofer. "Priority automation engineering : Evaluating a tool for automatic code generation and configuration of PLC-Applications." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85797.
Full textVatn, Niklas, and Julia Byström. "Evaluating automatic colour equalization to preprocess dermoscopic images for classification using a CNN." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302502.
Full textHudcancer är en av de vanligaste typerna av cancer och diagnostisering av hudåkommor utförs primärt genom visuell inspektion av en läkare. På senare tid har computer-aided diagnosis (CAD) blivit vanligare och tidigare studier har med bra resultat använt convolutional neural network (CNN) för att klassificera dermatoskopiska bilder av olika god- och elakartade hudåkommor. Andra studier med CAD-verktyg har undersökt effekterna av att använda förbehandling på bilddata innan den används vid diagnos. Däremot har lite forskning fokuserat på effekten av förbehandling på experiment som använder CNN. Därför är syftet med vår studie att undersöka om förbehandling av dermatoskopiska bilder av hudåkommor innan ett CNN tränas i klassificering kan förbättra klassificeringens noggrannhet. Undersökningen genomfördes genom att träna ett CNN på att klassificera dermatoskopiska bilder av fyra olika hudåkommor. Malignt melanom och basalcellscancer som är elakartade och seborroiska keratoser och melanocytiska nevi som är godartade. De dermatoskopiska bilderna förbehandlades med automatisk algoritmen automatic colour equalization (ACE).ACE-förbehandlingen applicerades på hela datasetet fem gånger, varje gång med olika nivåer på algoritmens kontrastförstärkare. Dessa fem datamängder och en datamängd som inte förbehandlats med ACE användes för att träna olika CNN-modeller. Efter 50 epoker utvärderades modellen med avseende på noggrannhet samt precision, sensitivitet och specificitet hos de fyra klasserna. Resultatet indikerar att förbehandling av bilder med ACE inte förbättrar klassificeringsnoggrannheten för hudåkommor. Dessutom antyder resultatet att ingen klass påverkas mer med ACE-förbehandling än de andra. För att ytterligare undersöka om förbehandling kan förbättra klassificeringens noggrannhet bör effekterna av ACE på andra CNN-modeller genomföras. Om ytterligare undersökningar av effekterna av bildförbehandling för klassificering av hudskador ska genomföras, kan hårborttagning vara intressant att undersöka.
Gilbert, Michael Stephen. "A Small-Perturbation Automatic-Differentiation (SPAD) Method for Evaluating Uncertainty in Computational Electromagnetics." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354742230.
Full textSkoglund, Martin. "Evaluating SLAM algorithms for Autonomous Helicopters." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-12282.
Full textNavigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously localize itself within this map, thus a solution does not require position from the GPS receiver.
This thesis presents a visual feature based SLAM solution using a low resolution video camera, a low-cost inertial measurement unit (IMU) and a barometric pressure sensor. State estimation in made with a extended information filter (EIF) where sparseness in the information matrix is enforced with an approximation.
An implementation is evaluated on real flight data and compared to a EKF-SLAM solution. Results show that both solutions provide similar estimates but the EIF is over-confident. The sparse structure is exploited, possibly not fully, making the solution nearly linear in time and storage requirements are linear in the number of features which enables evaluation for a longer period of time.
Breakiron, Daniel Aubrey. "Evaluating the Integration of Online, Interactive Tutorials into a Data Structures and Algorithms Course." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23107.
Full textMaster of Science
Ivarsson, Anton, and Jacob Stachowicz. "Evaluating machine learning methods for detecting sleep arousal." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259996.
Full textSömnstörningar är en samling hälsotillstånd som påverkar sömnkvaliteten hos en stor mängd människor. Ett exempel på en sömnstörning är sömnapne. Detektion av dessa händelser är idag en manuell uppgift utförd av certifierade teknologer, det har dock på senare tid gjorts studier som visar att Artificella Neurala Nätverk (ANN) klarar att detektera händelserna med stor träffsäkerhet. Denna studie undersöker hur väl en Support Vector Machine (SVM) kan detektera dessa händelser jämfört med en ANN. Datat som används för att klassificera sömnstörningar kommer från en typ av sömnstudie kallad polysomnografi (PSG). Den PSG-data som används i denna avhandling består av 13 vågformer där 12 spelats in i 200Hz och en rekonstruerats till 200Hz. Datan som används i denna avhandling innehåller inspelningar från 994 patienter, vilket ger totalt ungefär·6.98 1010 datapunkter. Att behandla en så stor mängd data var en utmaning. 2000 punkter från vare vågform användes vid konstruktionen av det dataset som användes för modellerna. De attribut som extraherades innehöll bland annat: Median, Max, Min, Skewness, Kurtosis, amplitud av EEG-bandfrekvenser m.m. Metoden Recursive Feature Elimination användes för att välja den optimala antalet av de bästa attributen. Det extraherade datasetet användes sedan för att träna två standard-konfigurerade modeller, en SVM och en ANN. På grund av en begräning av arbetsminne så var vi tvungna att dela upp träningen och testandet i fyra segment. Medelvärdet av de fyra testen blev en ROC AUC på 0,575 för en SVM, respektive 0,569 för ANN. Eftersom skillnaden i de två resultaten var väldigt marginella kunde vi inte dra slutsatsen att endera modellen var bättre lämpad för uppgiften till hands. Vi kan dock dra slutsatsen att en SVM kan prestera lika väl som ANN på PSG-data utan konfiguration. Mer arbete krävs inom extraheringen av attributen, attribut-eliminationen och justering av modellerna. Framtida avhandlingar skulle kunna göras med frågeställningarna: “Vilka attributer fungerar bäst för en SVM inom detektionen av sömnstörningar på PSG-data” eller ”Vilken teknik för attribut-elimination fungerar bäst för en SVM inom detektionen av sömnstörningar på PSG-data”, med mera.
LUNDIN, FORSSÉN WILLIAM. "Automatic Grading System in Microsoft .NETFramework : Evaluating the performance of different programming languages on the Microsoft.NET platform." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155892.
Full textLu, Ming. "System Dynamics Model for Testing and Evaluating Automatic Headway Control Models for Trucks Operating on Rural Highways." Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-01292008-113749/.
Full textBooks on the topic "AUTOMATIC EVALUATING"
Evaluating control systems reliability: Techniques and applications. Research Triangle Park, N.C: Instrument Society of America, 1992.
Find full textJohn, Karat, ed. Designing and evaluating usable technology in industrial research: Three case studies. [San Rafael, Calif.]: Morgan & Claypool, 2010.
Find full textS, Aden Teresa, Bevelheimer Susan J, and Construction Engineering Research Laboratories (U.S.), eds. Evaluation of automatic aqueous parts washers. Champaign, IL: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1997.
Find full textK, Gomard Carsten, and Sestoft Peter, eds. Partial evaluation and automatic program generation. New York: Prentice Hall, 1993.
Find full textIvory, Melody Y. Automated Web Site Evaluation. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0375-8.
Full textSkimmons, Brian E. Automated performance evaluation technique. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textR, Kaplunov D., ed. Razvitie mekhanizat͡s︡ii prokhodcheskikh i ochistnykh rabot na podzemnykh rudnikakh. Moskva: IPKON AN SSSR, 1989.
Find full textYeoh, Swee Mei. Automated maintainability quality evaluation system. Birmingham: University of Birmingham, 1986.
Find full textKim, David S. Technology evaluation for implementation of VMT based revenue collection systems: Final report. Salem, OR: Oregon Dept. of Transportation, Research Group, 2002.
Find full textTinker, Amanda Jayne. Automatic abstracting: A review and an empirical evaluation. Loughborough: Loughborough University, 1997.
Find full textBook chapters on the topic "AUTOMATIC EVALUATING"
Torres-Moreno, Juan-Manuel. "Evaluating Document Summaries." In Automatic Text Summarization, 243–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119004752.ch8.
Full textBouix, Sylvain, Lida Ungar, Chandlee C. Dickey, Robert W. McCarley, and Martha E. Shenton. "Evaluating Automatic Brain Tissue Classifiers." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, 1038–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30136-3_127.
Full textKorkontzelos, Ioannis, Ioannis P. Klapaftis, and Suresh Manandhar. "Reviewing and Evaluating Automatic Term Recognition Techniques." In Advances in Natural Language Processing, 248–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85287-2_24.
Full textSchlachter, Jason, David Van Brackle, Luis Asencios Reynoso, James Starz, and Nathanael Chambers. "Evaluating Automatic Learning of Structure for Event Extraction." In Advances in Intelligent Systems and Computing, 145–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41636-6_12.
Full textLiddy, Elizabeth D., Jiangping Chen, Christina M. Finneran, Anne R. Diekema, Sarah C. Harwell, and Ozgur Yilmazel. "Generating and Evaluating Automatic Metadata for Educational Resources." In Research and Advanced Technology for Digital Libraries, 513–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11551362_60.
Full textO'Toole, Alice, and P. Jonathon Phillips. "Evaluating Automatic Face Recognition Systems with Human Benchmarks." In Forensic Facial Identification, 263–83. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118469538.ch11.
Full textAthanasakos, Konstantinos, Vassilios Stathopoulos, and Joemon M. Jose. "A Framework for Evaluating Automatic Image Annotation Algorithms." In Lecture Notes in Computer Science, 217–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12275-0_21.
Full textCaparrós-Laiz, Camilo, José Antonio García-Díaz, and Rafael Valencia-García. "Evaluating Extractive Automatic Text Summarization Techniques in Spanish." In Communications in Computer and Information Science, 79–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88262-4_6.
Full textCampr, Michal, and Karel Ježek. "Comparing Semantic Models for Evaluating Automatic Document Summarization." In Text, Speech, and Dialogue, 252–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24033-6_29.
Full textNasr Azadani, Mozhgan, and Nasser Ghadiri. "Evaluating Different Similarity Measures for Automatic Biomedical Text Summarization." In Advances in Intelligent Systems and Computing, 305–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76348-4_30.
Full textConference papers on the topic "AUTOMATIC EVALUATING"
Martins, Antonio S., and Ronaldo A. L. Goncalves. "Implementing and Evaluating Automatic Checkpointing." In 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/ipdps.2007.370557.
Full textTong, Sibo, Nanxin Chen, Yanmin Qian, and Kai Yu. "Evaluating vad for automatic speech recognition." In 2014 12th International Conference on Signal Processing (ICSP 2014). IEEE, 2014. http://dx.doi.org/10.1109/icosp.2014.7015406.
Full textHenderson, Tim A. D., Andy Podgurski, and Yigit Kucuk. "Evaluating Automatic Fault Localization Using Markov Processes." In 2019 IEEE 19th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2019. http://dx.doi.org/10.1109/scam.2019.00021.
Full textMayer-Patel, Ketan, and Wesley Miaw. "Evaluating the effectiveness of automatic PVR management." In Electronic Imaging 2004, edited by Minerva M. Yeung, Rainer W. Lienhart, and Chung-Sheng Li. SPIE, 2003. http://dx.doi.org/10.1117/12.527252.
Full textKilickaya, Mert, Aykut Erdem, Nazli Ikizler-Cinbis, and Erkut Erdem. "Re-evaluating Automatic Metrics for Image Captioning." In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/e17-1019.
Full textFederico, Marcello, Yogesh Virkar, Robert Enyedi, and Roberto Barra-Chicote. "Evaluating and Optimizing Prosodic Alignment for Automatic Dubbing." In Interspeech 2020. ISCA: ISCA, 2020. http://dx.doi.org/10.21437/interspeech.2020-2983.
Full textGranada, Roger L., Renata Vieira, and Vera Lucia Strube de Lima. "Evaluating co-occurrence order for automatic thesaurus construction." In 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI). IEEE, 2012. http://dx.doi.org/10.1109/iri.2012.6303046.
Full textŠajatović, Antonio, Maja Buljan, Jan Šnajder, and Bojana Dalbelo Bašić. "Evaluating Automatic Term Extraction Methods on Individual Documents." In Proceedings of the Joint Workshop on Multiword Expressions and WordNet (MWE-WN 2019). Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/w19-5118.
Full textAlham, Nasullah Khalid, Maozhen Li, Suhel Hammoud, and Hao Qi. "Evaluating Machine Learning Techniques for Automatic Image Annotations." In 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, 2009. http://dx.doi.org/10.1109/fskd.2009.531.
Full textWhetten, Ryan, and Casey Kennington. "Evaluating and Improving Automatic Speech Recognition using Severity." In The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.bionlp-1.6.
Full textReports on the topic "AUTOMATIC EVALUATING"
Mathew, Jijo K., Christopher M. Day, Howell Li, and Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Full textKress, Marin. Automatic Identification System (AIS) data case study : identifying unofficial mooring areas along the Upper Mississippi River. Engineer Research and Development Center (U.S.), May 2023. http://dx.doi.org/10.21079/11681/47081.
Full textEl-Rayes, Khaled, and Ernest-John Ignacio. Evaluating the Benefits of Implementing Mobile Road Weather Information Sensors. Illinois Center for Transportation, February 2022. http://dx.doi.org/10.36501/0197-9191/22-004.
Full textDiJoseph, Patricia, Brian Tetreault, and Marin Kress. AIS data case Study : identifying AIS coverage gaps on the Ohio River in CY2018. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40886.
Full textTetreault, Brian, Marin Kress, and Patricia DiJoseph. AIS data case study : evaluating reception of AIS position reports on the Missouri River by LOMA AIS sites in April and August 2020. Engineer Research and Development Center (U.S.), January 2022. http://dx.doi.org/10.21079/11681/42980.
Full textBukreiev, Dmitriy, Pavlo Chornyi, Evgeniy Kupchak, and Andrey Sender. Features of the development of an automated educational and control complex for checking the quality of students. [б. в.], March 2021. http://dx.doi.org/10.31812/123456789/4426.
Full textTeGrotenhuis, Ward. Clothes Dryer Automatic Termination Evaluation. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159793.
Full textTeGrotenhuis, Ward. Clothes Dryer Automatic Termination Sensor Evaluation. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159794.
Full textHanson, Michelle J., Teresa S. Aden, and Susan J. Bevelheimer. Evaluation of Automatic Aqueous Parts Washers. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada336543.
Full textLassahn, G. D., J. K. Partin, and J. R. Davidson. Automatic TLI recognition system evaluation using AMPS data. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/130622.
Full text