Academic literature on the topic 'Automatic control- Power system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Automatic control- Power system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Automatic control- Power system"
Dobarina, O. V., and K. V. Beglov. "AUTOMATIC POWER CONTROL SYSTEM OF NPP POWER UNIT." Scientific notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences 3, no. 1 (2019): 91–96. http://dx.doi.org/10.32838/2663-5941/2019.3-1/16.
Full textAziz, Asma, Amanullah Mto, and Alex Stojsevski. "Automatic Generation Control of Multigeneration Power System." Journal of Power and Energy Engineering 02, no. 04 (2014): 312–33. http://dx.doi.org/10.4236/jpee.2014.24043.
Full textAmirov, Sultan, and Shavkat Mukhsimov. "INVESTIGATION OF THE CURRENT TRANSFORMER CONTROL SYSTEM WITH AUTOMATIC RANGE CONTROL." Technical Sciences 4, no. 1 (January 30, 2021): 4–12. http://dx.doi.org/10.26739/2181-9696-2021-1-1.
Full textEfremova, Tatiana, and Sergey Shchegolev. "Boiler drum automatic power management system." E3S Web of Conferences 222 (2020): 01009. http://dx.doi.org/10.1051/e3sconf/202022201009.
Full textDai, Shi Yong, Fan Pan, and Fei Liu. "Application of Wide-Area Automatic Switchover System Based on EMS." Applied Mechanics and Materials 325-326 (June 2013): 573–76. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.573.
Full textZhang, Rui, Yan Hong Shen, Cun Yu, Feng Long Li, Ke Wei Pang, and Ling Zhang. "Realization of Automatic Power Control in HVDC Control and Protection System." Applied Mechanics and Materials 716-717 (December 2014): 1226–29. http://dx.doi.org/10.4028/www.scientific.net/amm.716-717.1226.
Full textDushutin, K. A., V. A. Ageyev, and Yu A. Vantyusov. "Duplex electromechanical transmission with automatic control system." Traktory i sel hozmashiny 80, no. 8 (August 15, 2013): 12–13. http://dx.doi.org/10.17816/0321-4443-65706.
Full textChen, Wei Hua, and Yan Wei Chen. "Automatic Voltage Control and Application." Applied Mechanics and Materials 687-691 (November 2014): 3195–98. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.3195.
Full textLv, Li Ya, and Yong Jun Min. "Power Batteries Pack Test System Based on GPIB Protocol." Advanced Materials Research 328-330 (September 2011): 614–18. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.614.
Full textBairi, B. R., and D. Das. "Automatic Power Control System of Dhruva Nuclear Reactor." IFAC Proceedings Volumes 19, no. 16 (December 1986): 107–12. http://dx.doi.org/10.1016/s1474-6670(17)59367-2.
Full textDissertations / Theses on the topic "Automatic control- Power system"
Falkner, Catherine M. "Robust output feedback controllers for power system stabilization." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/14802.
Full textUurtonen, Tommi. "Optimized Power Control for CDMA System using Channel Prediction." Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3697.
Full textIn an optimal power control scheme for a Code Division Multiple Access (CDMA) system all mobile stations signals should arrive to the base station at equal power. If not, stronger singals may cause too much interference and block out weaker ones. Commonly used power control schemes utilizes the Signal to Interference Ratio (SIR) to design a Power Control Command (PCC) to adjust the transmit power of the mobile station. A significant problem within the conventional methods is the slow SIR recovery due to deep channel fades. Conventional methods base the PCC on the previous channel state when in fact, the channel state may have significantly changed when transmission occurs. These channel changes may cause the SIR to drop or rise drastically and lead to uncontrollable Multi Access Interference (MAI) resulting in power escalation and making the system unstable. In order to overcome power escalation and improve the recovery from deep fades a novel power control method has been developed. Based on Linear Quadratic Control and Kalman filtering for channel prediction this method designs the PCC based on the coming channel state instead of the current. This optimizes the PCC for the channel state where transmission occurs. Simulations show that this control scheme outperforms previous methods by making the impacts of the deep fades less severe on the SIR and also improves the overall SIR behaviour.
Hicks, Glenn V. "An investigation of automatic generation control for an isolated power system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0011/MQ34184.pdf.
Full textPrinsloo, Gerhardus Johannes. "Automatic positioner and control system for a motorized parabolic solar reflector." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96137.
Full textENGLISH ABSTRACT: Most rural African villages enjoy high levels of sunlight, but rolling out solar power generation technology to tap into this renewable energy resource at remote rural sites in Africa pose a number of design challenges. To meet these challenges, a project has been initiated to design, build and test/evaluate a knock down 3 kW peak electrical stand-alone self-tracking dual-axis concentrating solar power system. This study focusses on the mechatronic engineering aspects in the design and development of a dynamic mechatronic platform and digital electronic control system for the stand-alone concentrating solar power system. Design specifications require an accurate automatic positioner and control system for a motorized parabolic solar reflector with an optical solar harnessing capacity of 12 kWt at solar noon. It must be suitable for stand-alone rural power generation. This study presents a conceptual design and engineering prototype of a balanced cantilever tilt-and-swing dual-axis slew drive actuation means as mechatronic solar tracking mobility platform for a ∼12 m2 lightweight parabolic solar concentrator. Digital automation of the concentrated solar platform is implemented using an industrial Siemens S7-1200 programmable logic controller (PLC) with digital remote control interfacing, pulse width modulated direct current driving, and electronic open loop/closed loop solar tracking control. The design and prototype incorporates off-the-shelf components to support local manufacturing at reduced cost and generally meets the goal of delivering a dynamic mechatronic platform for a concentrating solar power system that is easy to transport, assemble and install at remote rural sites in Africa. Real-time experiments, conducted in the summer of South Africa, validated and established the accuracy of the engineering prototype positioning system. It shows that the as-designed and -built continuous solar tracking performs to an optical accuracy of better than 1.0◦ on both the azimuth and elevation tracking axes; and which is also in compliance with the pre-defined design specifications. Structural aspects of the prototype parabolic dish are evaluated and optimized by other researchers while the Stirling and power handling units are under development in parallel projects. Ultimately, these joint research projects aim to produce a locally manufactured knock down do-it-yourself concentrated solar power generation kit, suitable for deployment into Africa.
AFRIKAANSE OPSOMMING: Landelike gebiede in Afrika geniet hoë vlakke van sonskyn, maar die ontwerp van betroubare sonkrag tegnologie vir die benutting van hierdie hernubare energie hulpbron by afgeleë gebiede in Afrika bied verskeie uitdagings. Om hierdie uitdagings te oorkom, is ’n projek van stapel gestuur om ’n afbreekbare 3 kW piek elektriese alleenstaande selfaangedrewe dubbel-as son-konsentreeder te ontwerp, bou en te toets. Hierdie studies fokus op die megatroniese ingenieurs-aspekte in die ontwerp en ontwikkeling van ’n dinamiese megatroniese platform en ’n digitale elektroniese beheerstelsel vir die alleenstaande gekonsentreerde sonkrag stelsel. Ontwerp spesifikasies vereis ’n akkurate outomatiese posisionering en beheer stelsel vir ’n motor aangedrewe paraboliese son reflekteerder met ’n optiesekollekteer- kapasiteit van 12 kWt by maksimum sonhoogte, en veral geskik wees vir afgeleë sonkrag opwekking. Hierdie studie lewer ’n konsepsuele ontwerp en ingenieurs-prototipe van ’n gebalanseerde dubbelas swaai-en-kantel swenkrat aandrywingsmeganisme as megatroniese sonvolg platform vir ’n ∼12 m2 liggewig paraboliese son konsentreerder. Digitale outomatisering van die son konsentreerder platform is geimplementeer op ’n industriële Siemens S7-1200 programmeerbare logiese beheerder (PLB) met ’n digitale afstandbeheer koppelvlak, puls-wydte-gemoduleerde gelykstroom aandrywing en elektroniese ooplus en geslote-lus sonvolg beheer. Die ontwerp en prototipe maak gebruik van beskikbare komponente om lae-koste plaaslike vervaardiging te ondersteun en slaag in die algemeen in die doel om ’n dinamiese megatroniese platform vir ’n gekonsentreerde sonkrag stelsel te lewer wat maklik vervoer, gebou en opgerig kan word op afgeleë persele in Afrika. Intydse eksperimente is gedurende die somer uitgevoer om die akkuraatheid van die prototipe posisionering sisteem te evalueer. Dit toon dat die sisteem die son deurlopend volg met ’n akkuraatheid beter as 1.0◦ op beide die azimut en elevasie sonvolg asse, wat voldoen aan die ontwerp spesifikasies. Strukturele aspekte van die prototipe paraboliese skottel word deur ander navorsers geëvalueer en verbeter terwyl die Stirling-eenheid en elektriese sisteme in parallelle projekte ontwikkel word. Die uiteindelike doel met hierdie groepnavorsing is om ’n plaaslik vervaardigde doen-dit-self sonkrag eenheid te ontwikkel wat in Afrika ontplooi kan word.
Zhou, Huafeng, and 周華鋒. "Design of grid service-based power system control centers for future electricity systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40687429.
Full textZhou, Huafeng. "Design of grid service-based power system control centers for future electricity systems." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40687429.
Full textOukati, Sadegh Mahmoud. "Control of power electronic devices (FACTS) to enhance power system stability." Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275177.
Full textZonetti, Daniele. "Energy-based modelling and control of electric power systems with guaranteed stability properties." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS118/document.
Full textTo deal with nonlinear, large scale, multidomain, systems, as power systems are, we have witnessed in the last few years an increasing interest in energy–based modeling, analysis and controller design techniques. Energy is one of the fundamental concepts in science and engineering practice, where it is common to view dynamical systems as energy-transformation devices. This perspective is particularly useful in studying complex nonlinear systems by decomposing them into simpler subsystems which, upon interconnection, add up their energies to determine the full systems behavior. This is obviously the most natural and intuitive language to represent power systems. In particular, the use of port–Hamiltonian (pH) systems has been already proven highly successful in many applications, namely for mechanical, electrical and electromechanical systems. The port-Hamiltonian systems paradigm theremore provides a solid foundation, which suggests new ways to look at power systems analysis and control problems.Based on this framework, this thesis is structured in three main steps.1 - Modelling of a generalized class of electric power systems, based on graph theory and port-Hamiltonian representation of the individual components.2 - Modelling, analysis and control of multiterminal hvdc transmission systems. With the intention to bridge the gap between theory and applications, one of the main concerns is to establish connections between existing engineering solutions, usually derived via ad hoc considerations, and the solutions stemming from theoretical analysis.3 - Additional contributions of the author in other fields of electric power systems, including traditional ac power systems an microgrids
Yoon, Hyungjoo. "Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4850.
Full textChoi, Sungyun. "Autonomous state estimation and its application to the autonomous operation of the distribution system with distributed generations." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50250.
Full textBooks on the topic "Automatic control- Power system"
1954-, Sun Yuanzhang, and Mei Shengwei 1964-, eds. Nonlinear control systems and power system dynamics. Boston, MA: Kluwer Academic Publishers, 2001.
Find full textBai, Shushan. Dynamic analysis and control system design of automatic transmissions. Warrendale, Pennsylvania, USA: SAE International, 2013.
Find full textBevrani, Hassan. Robust Power System Frequency Control. Boston, MA: Springer Science+Business Media, LLC, 2009.
Find full textAutomatic learning techniques in power systems. Boston: Kluwer Academic, 1998.
Find full textPower system control technology. Englewood Cliffs: Prentice-Hall, 1986.
Find full textXu, Zhao, and Zhun Fan. Evolutionary computing for intelligent power system optimization and control. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textBrown, David. Control engineering: Control system power and grounding better practice. Burlington, MA: Newnes, 2004.
Find full textTakashi, Hiyama, ed. Intelligent automatic generation control. Boca Raton: Taylor & Francis, 2011.
Find full textMomoh, James A. Electric power distribution, automation, protection, and control. Boca Raton: CRC Press, 2008.
Find full textControl of electric machine drive system. Hoboken, N.J: Wiley-IEEE, 2011.
Find full textBook chapters on the topic "Automatic control- Power system"
Sil, Amitava, and Saikat Maity. "Automatic Generation and Control." In Industrial Power Systems, 183–87. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003231240-18.
Full textDebs, Atif S. "Automatic Generation Control." In Modern Power Systems Control and Operation, 203–37. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1073-0_6.
Full textPavlovsky, V., and A. Steliuk. "Modeling of Automatic Generation Control in Power Systems." In PowerFactory Applications for Power System Analysis, 157–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12958-7_7.
Full textDevarapalli, Teresa, and M. S. Krishnarayalu. "Automatic Generation Control of Multi-Area Power System." In Energy and Exergy for Sustainable and Clean Environment, Volume 2, 245–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8274-2_17.
Full textPota, Hemanshu Roy. "Design of the Automatic Voltage Regulator." In The Essentials of Power System Dynamics and Control, 155–72. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8914-5_4.
Full textXie, Xiqiang. "Design of Automatic Control System for VSCF Wind Power Generation." In Advances in Intelligent Systems and Computing, 623–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43309-3_89.
Full textBuduma, Parusharamulu, Madan Kumar Das, Ashwani Kumar Sharma, Gayadhar Panda, and Sukumar Mishra. "Automatic Generation Control for Hybrid Power System in Deregulated Environment." In Advances in Sustainability Science and Technology, 381–94. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9033-4_29.
Full textAdewole, Adeyemi Charles, and Raynitchka Tzoneva. "Substation Automation and Control." In Power System Protection in Smart Grid Environment, 453–82. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429401756-13.
Full textZhang, Guoqin. "PSCAD Simulation for the Maximum Power Point Tracking Control of a Photovoltaic Power System." In 2011 International Conference in Electrics, Communication and Automatic Control Proceedings, 1151–58. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8849-2_147.
Full textVrakopoulou, Maria, Peyman Mohajerin Esfahani, Kostas Margellos, John Lygeros, and Göran Andersson. "Cyber-Attacks in the Automatic Generation Control." In Cyber Physical Systems Approach to Smart Electric Power Grid, 303–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45928-7_11.
Full textConference papers on the topic "Automatic control- Power system"
Bobbitt, Brock, Stephen Garner, Brenton Cox, John Martens, and Mark Fecke. "Manual vs. Automatic Boiler Controls: A Historical Perspective From Relevant Codes and Standards." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3616.
Full textEjegi, E. E., J. A. Rossiter, and P. Trodden. "A survey of techniques and opportunities in power system automatic generation control." In 2014 UKACC International Conference on Control (CONTROL). IEEE, 2014. http://dx.doi.org/10.1109/control.2014.6915197.
Full textTai-Ping Sun, Chia-Hung Wang, and Jia-Hao Li. "Digital automatic power control system design." In International Conference on Automatic Control and Artificial Intelligence (ACAI 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1122.
Full textLiu, Chenlei, and Xin Liu. "Inductive Power Transfer System with Automatic Control." In 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). IEEE, 2019. http://dx.doi.org/10.1109/wow45936.2019.9030678.
Full textVlad, Ciprian, Marian Barbu, and Silviu Epure. "Low power autonomous wind system automatic control." In 2016 International Conference on Development and Application Systems (DAS). IEEE, 2016. http://dx.doi.org/10.1109/daas.2016.7492548.
Full textZhu, Jianchun, and Zhixiong Huang. "Automatic Power Adjustment in MROF System." In 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mecae-17.2017.37.
Full textS, Mohan, Rajkumar K, Rajakumar P, Hari Pradosh S M, Gandhi S, and Balasakthishwaran M. "Automatic Solar Tracking System." In 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE, 2022. http://dx.doi.org/10.1109/icpects56089.2022.10047670.
Full textWang, Haiyan, Chengyong Huang, Junhong Zhou, Wenzhuo Lian, and Kang Hou. "Automatic Control System of Transportation Equipment for Power Transmission Line." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002324.
Full textZhao, Xia. "Research on automatic tracking solar power system." In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6057014.
Full textDurai, C. Ramesh Babu, B. Vipulan, T. Abbas Khan, and T. S. Rishi Prakash. "Solar Powered Automatic Irrigation System." In 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). IEEE, 2018. http://dx.doi.org/10.1109/icpects.2018.8521604.
Full textReports on the topic "Automatic control- Power system"
Fowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 1996. http://dx.doi.org/10.55274/r0010363.
Full textZykov, A. V., and V. A. Junín. AUTOMATIC CONTROL SYSTEM FOR THE DRUM DRYER. The scientific heritage, 2020. http://dx.doi.org/10.18411/2071-9485-2020-4666.
Full textNeiers, James W. Harmonizing Automatic Test System Assets, Drivers, and Control Methodologies. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/adb247996.
Full textAuthor, Not Given. Integrated control of next generation power system. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1025118.
Full textMathur, A., and C. Koch. Solar central receiver power plant control system concept. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6914107.
Full textDagle, J. E., D. W. Winiarski, and M. K. Donnelly. End-use load control for power system dynamic stability enhancement. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/484515.
Full textKirby, B. J. Frequency Control Concerns in the North American Electric Power System. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/885842.
Full textUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/785168.
Full textUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/788930.
Full textUnknown. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/789054.
Full text