Journal articles on the topic 'Automatic cell types annotation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Automatic cell types annotation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hia, Nazifa Tasnim, and Sumon Ahmed. "Automatic cell type annotation using supervised classification: A systematic literature review." Systematic Literature Review and Meta-Analysis Journal 3, no. 3 (2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Full textXu, Yang, Simon J. Baumgart, Christian M. Stegmann, and Sikander Hayat. "MACA: marker-based automatic cell-type annotation for single-cell expression data." Bioinformatics 38, no. 6 (2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Full textShao, Xin, Jie Liao, Xiaoyan Lu, Rui Xue, Ni Ai, and Xiaohui Fan. "scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data." iScience 23, no. 3 (2020): 100882. http://dx.doi.org/10.1016/j.isci.2020.100882.
Full textTang, Yachen, Xuefeng Li, and Mingguang Shi. "LIDER: cell embedding based deep neural network classifier for supervised cell type identification." PeerJ 11 (August 16, 2023): e15862. http://dx.doi.org/10.7717/peerj.15862.
Full textXiong, Yi-Xuan, Meng-Guo Wang, Luonan Chen, and Xiao-Fei Zhang. "Cell-type annotation with accurate unseen cell-type identification using multiple references." PLOS Computational Biology 19, no. 6 (2023): e1011261. http://dx.doi.org/10.1371/journal.pcbi.1011261.
Full textLiu, Huaitian, Alexandra Harris, Brittany Jenkins-Lord, et al. "Abstract LB240: Cell type annotation using singleR with custom reference for single-nucleus multiome data derived from frozen human breast tumors." Cancer Research 84, no. 7_Supplement (2024): LB240. http://dx.doi.org/10.1158/1538-7445.am2024-lb240.
Full textZhang, Yuping, Gabriel Cruz, Hanbyul Cho, et al. "Abstract 1063: CellMap: a comprehensive human single cell gene expression reference for automated cell annotation and cancer cell-of-origin analysis." Cancer Research 85, no. 8_Supplement_1 (2025): 1063. https://doi.org/10.1158/1538-7445.am2025-1063.
Full textDoddahonnaiah, Deeksha, Patrick J. Lenehan, Travis K. Hughes, et al. "A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets." Genes 12, no. 6 (2021): 898. http://dx.doi.org/10.3390/genes12060898.
Full textPham, Son, Tri Le, Tan Phan, et al. "484 Bioturing browser: interactively explore public single cell sequencing data." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A520. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0484.
Full textMao, Shunfu, Yue Zhang, Georg Seelig, and Sreeram Kannan. "CellMeSH: probabilistic cell-type identification using indexed literature." Bioinformatics 38, no. 5 (2021): 1393–402. http://dx.doi.org/10.1093/bioinformatics/btab834.
Full textChuang, Tsung Hsien, Liang-Chuan Lai, Tzu-Pin Lu, Mong-Hsun Tsai, Hsiang-Han Chen, and Eric Y. Chuang. "Abstract 878: Enhancing single-cell RNA sequencing analysis in cancer research: A machine learning framework based on LightGBM for automated cell type annotation." Cancer Research 84, no. 6_Supplement (2024): 878. http://dx.doi.org/10.1158/1538-7445.am2024-878.
Full textKim, Seongryong, Sungmin Cheong, Suho Lee, Yeju Kim, and Jong-Eun Park. "Abstract 6265: Cross-tissue atlas of human disease identifies tumor-specific components in tumor microenvironment." Cancer Research 85, no. 8_Supplement_1 (2025): 6265. https://doi.org/10.1158/1538-7445.am2025-6265.
Full textWong, Siao-Han, Benedikt Brors, and Sonja Loges. "Abstract B053: Empowering AI-driven prediction of the tumor microenvironment from histopathology images via molecular annotation." Clinical Cancer Research 31, no. 13_Supplement (2025): B053. https://doi.org/10.1158/1557-3265.aimachine-b053.
Full textPatino, Cesar A., Prithvijit Mukherjee, Vincent Lemaitre, Nibir Pathak, and Horacio D. Espinosa. "Deep Learning and Computer Vision Strategies for Automated Gene Editing with a Single-Cell Electroporation Platform." SLAS TECHNOLOGY: Translating Life Sciences Innovation 26, no. 1 (2021): 26–36. http://dx.doi.org/10.1177/2472630320982320.
Full textShapiro, Joshua A., Stephanie J. Spielman, Allegra G. Hawkins, et al. "Abstract 2615: The Open Single-cell Pediatric Cancer Atlas project: Collaborative analysis of pediatric tumor data." Cancer Research 85, no. 8_Supplement_1 (2025): 2615. https://doi.org/10.1158/1538-7445.am2025-2615.
Full textMa, Ji, Qiang He, Qian Wu, Lili Feng, Y. Lynn Wang, and Linna Xie. "Uncovering Therapeutic Resistance in BPDCN through Single-Cell Transcriptome Profiling." Blood 144, Supplement 1 (2024): 1557. https://doi.org/10.1182/blood-2024-204227.
Full textBell, Alexander T., Kohei Fujikura, Jacob Stern, et al. "Abstract 637: Spatial transcriptomics for FFPE characterizes the molecular and cellular architecture of malignant changes in pancreatic pre-malignant lesions." Cancer Research 82, no. 12_Supplement (2022): 637. http://dx.doi.org/10.1158/1538-7445.am2022-637.
Full textRakesh and Puru Naik Dr. "A study on automated unsupervised identification of cone photoreceptor cells in adaptive optics scanning laser ophthalmoscope images." International Journal of Advance Research in Multidisciplinary 1, no. 1 (2023): 729–37. https://doi.org/10.5281/zenodo.13897058.
Full textChang, Cadence, Egmidio Medina, Sarah Samordnitsky, et al. "Abstract 2505: Semi-automated image registration and cell typing integrates multiplexed imaging data to investigate the tumor microenvironment in clinical biopsies." Cancer Research 85, no. 8_Supplement_1 (2025): 2505. https://doi.org/10.1158/1538-7445.am2025-2505.
Full textWasser, Martin, Joo Guan Yeo, Pavanish Kumar, et al. "The EPIC data analytics platform for clinical mass cytometry." Journal of Immunology 204, no. 1_Supplement (2020): 159.7. http://dx.doi.org/10.4049/jimmunol.204.supp.159.7.
Full textBalzategui, Julen, Luka Eciolaza, and Daniel Maestro-Watson. "Anomaly Detection and Automatic Labeling for Solar Cell Quality Inspection Based on Generative Adversarial Network." Sensors 21, no. 13 (2021): 4361. http://dx.doi.org/10.3390/s21134361.
Full textAmiji, Hatim, Todd Brinsley Sheridan, Jeffrey Chuang, and Jill Carol Rubinstein. "Deep learning tumor heterogeneity metric from histopathology images vs next generation sequencing-derived scores for colon cancer prognostication." Journal of Clinical Oncology 41, no. 16_suppl (2023): 3537. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.3537.
Full textLecat, Catherine SY, Yeman Brhane Hagos, Dominic Patel, et al. "Spatial Mapping of Myeloma Bone Marrow Microenvironment Using a Deep Learning Approach." Blood 142, Supplement 1 (2023): 903. http://dx.doi.org/10.1182/blood-2023-179810.
Full textFriedmann, Drew, Albert Pun, Eliza L. Adams, et al. "Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network." Proceedings of the National Academy of Sciences 117, no. 20 (2020): 11068–75. http://dx.doi.org/10.1073/pnas.1918465117.
Full textKapoor, Muskan, Christopher K. Tuggle, Tony Burdett, et al. "PSII-6 Computational Tools and Resources for Analysis and Exploration of Single-Cell Rnaseq Data in Agriculture." Journal of Animal Science 101, Supplement_2 (2023): 267–68. http://dx.doi.org/10.1093/jas/skad341.303.
Full textShapiro, Joshua A., Stephanie J. Spielman, Deepashree V. Prasad, et al. "Abstract B075: The Open Single-cell Pediatric Cancer Atlas project: Collaborative analysis of pediatric tumor data." Cancer Research 84, no. 17_Supplement (2024): B075. http://dx.doi.org/10.1158/1538-7445.pediatric24-b075.
Full textBozorgui, Behnaz, Zeynep Dereli, Guillaume Thibault, John N. Weinstein, and Anil Korkut. "Abstract 3765: Single cell spatial proteomics analysis and computational evaluation pipeline." Cancer Research 84, no. 6_Supplement (2024): 3765. http://dx.doi.org/10.1158/1538-7445.am2024-3765.
Full textXu, Chuanyun, Mengwei Li, Gang Li, Yang Zhang, Chengjie Sun, and Nanlan Bai. "Cervical Cell/Clumps Detection in Cytology Images Using Transfer Learning." Diagnostics 12, no. 10 (2022): 2477. http://dx.doi.org/10.3390/diagnostics12102477.
Full textKang Lai, Colwyn Jia, Wei Kit Tan, Marcia Zhang, et al. "Abstract 6316: Predictive performance comparison of foundational and CNN models for single-cell immune profiling." Cancer Research 85, no. 8_Supplement_1 (2025): 6316. https://doi.org/10.1158/1538-7445.am2025-6316.
Full textTan, Benedict, Yi Yang, Chun Chau Lawrence Cheung, et al. "626 Dissecting the spatial heterogeneity of SARS-CoV-2-infected tumour microenvironment reveals a lymphocyte-dominant immune response in a HBV-associated HCC patient with COVID-19 history." Journal for ImmunoTherapy of Cancer 9, Suppl 2 (2021): A656. http://dx.doi.org/10.1136/jitc-2021-sitc2021.626.
Full textHryhorenko, N., N. Larionov, and V. Bredikhin. "RESEARCH OF THE PROCESS OF VISUAL ART TRANSMISSION IN MUSIC AND THE CREATION OF COLLECTIONS FOR PEOPLE WITH VISUAL IMPAIRMENTS." Municipal economy of cities 6, no. 180 (2023): 2–6. http://dx.doi.org/10.33042/2522-1809-2023-6-180-2-6.
Full textEweje, Feyisope, Zhe Li, Matthew Gopaulchan, et al. "Use of artificial intelligence–based digital pathology to predict outcomes for immune checkpoint inhibitor therapy in advanced gastro-esophageal cancer." Journal of Clinical Oncology 42, no. 16_suppl (2024): 4013. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.4013.
Full textMai, Yun, Kyeryoung Lee, Zongzhi Liu, et al. "Phenotyping of clinical trial eligibility text from cancer studies into computable criteria in electronic health records." Journal of Clinical Oncology 39, no. 15_suppl (2021): 6592. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.6592.
Full textSong, Hanbing, Junxiang Xu, Paul Allegakoen, et al. "Abstract 7506: A gene program association study (GPAS) in prostate cancer reveals novel gene modules associated with plasticity and metastasis." Cancer Research 85, no. 8_Supplement_1 (2025): 7506. https://doi.org/10.1158/1538-7445.am2025-7506.
Full textEweje, Feyisope, Zhe Li, Yuchen Li, et al. "Digital pathology–based AI spatial biomarker to predict outcomes for immune checkpoint inhibitors in advanced non-small cell lung cancer." Journal of Clinical Oncology 43, no. 16_suppl (2025): 8569. https://doi.org/10.1200/jco.2025.43.16_suppl.8569.
Full textMagidey, Ksenia, Ksenya Kveler, Rachelly Normand, et al. "A Unique Crosstalk between Tumor Cells and Hematopoietic Stem Cells Reveals a Myeloid Differentiation Pattern Signature Contributing to Metastasis." Blood 134, Supplement_1 (2019): 2465. http://dx.doi.org/10.1182/blood-2019-128126.
Full textWang, Panwen, Haidong Dong, Yue Yu, et al. "Abstract 4959: Immunopipe: A comprehensive and flexible scRNA-seq and scTCR-seq data analysis pipeline." Cancer Research 84, no. 6_Supplement (2024): 4959. http://dx.doi.org/10.1158/1538-7445.am2024-4959.
Full textEnglbrecht, Fabian, Iris E. Ruider, and Andreas R. Bausch. "Automatic image annotation for fluorescent cell nuclei segmentation." PLOS ONE 16, no. 4 (2021): e0250093. http://dx.doi.org/10.1371/journal.pone.0250093.
Full textda Costa, André Luiz N. Targino, Jingxian Liu, Chia-Kuei Mo, et al. "Abstract 2341: Morph: A feature extraction toolset for spatial transcriptomics." Cancer Research 84, no. 6_Supplement (2024): 2341. http://dx.doi.org/10.1158/1538-7445.am2024-2341.
Full textA., Salamov, and Grigoriev I. "Automatic Annotation of Mitochondrial Genomes in Fungi." Journal of Life Sciences and Biomedicine 67, no. 1 (2012): 20–24. https://doi.org/10.5281/zenodo.8352506.
Full textA., Salamov, and Grigoriev I. "Automatic Annotation of Mitochondrial Genomes in Fungi." Journal of Life Sciences and Biomedicine 67, no. 1 (2012): 20–24. https://doi.org/10.5281/zenodo.8362243.
Full textHarris, Alexandra R., Huaitian Liu, Brittany Jenkins-Lord, et al. "Abstract C044: Investigation of breast tumor biology and microenvironment in women of African descent using a single cell multiomic approach." Cancer Epidemiology, Biomarkers & Prevention 32, no. 12_Supplement (2023): C044. http://dx.doi.org/10.1158/1538-7755.disp23-c044.
Full textLi, Siyu, Songming Tang, Yunchang Wang, Sijie Li, Yuhang Jia, and Shengquan Chen. "Accurate cell type annotation for single‐cell chromatin accessibility data via contrastive learning and reference guidance." Quantitative Biology, February 8, 2024. http://dx.doi.org/10.1002/qub2.33.
Full textDong, Sherry, Kaiwen Deng, and Xiuzhen Huang. "Single-Cell Type Annotation With Deep Learning in 265 Cell Types For Humans." Bioinformatics Advances, April 8, 2024. http://dx.doi.org/10.1093/bioadv/vbae054.
Full textHou, Wenpin, and Zhicheng Ji. "Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis." Nature Methods, March 25, 2024. http://dx.doi.org/10.1038/s41592-024-02235-4.
Full textXu, Congmin, Huyun Lu, and Peng Qiu. "Comparison of cell type annotation algorithms for revealing immune response of COVID-19." Frontiers in Systems Biology 2 (October 24, 2022). http://dx.doi.org/10.3389/fsysb.2022.1026686.
Full textBusarello, Emma, Giulia Biancon, Ilaria Cimignolo, et al. "Cell Marker Accordion: interpretable single-cell and spatial omics annotation in health and disease." Nature Communications 16, no. 1 (2025). https://doi.org/10.1038/s41467-025-60900-4.
Full textQi, Qi, Yunhe Wang, Yujian Huang, Yi Fan, and Xiangtao Li. "PredGCN: A Pruning-enabled Gene-Cell Net for Automatic Cell Annotation of Single Cell Transcriptome Data." Bioinformatics, June 26, 2024. http://dx.doi.org/10.1093/bioinformatics/btae421.
Full textTheunissen, Lauren, Thomas Mortier, Yvan Saeys, and Willem Waegeman. "Evaluation of out-of-distribution detection methods for data shifts in single-cell transcriptomics." Briefings in Bioinformatics 26, no. 3 (2025). https://doi.org/10.1093/bib/bbaf239.
Full textCeccarelli, Francesco, Pietro Liò, and Sean B. Holden. "AnnoGCD: a generalized category discovery framework for automatic cell type annotation." NAR Genomics and Bioinformatics 6, no. 4 (2024). https://doi.org/10.1093/nargab/lqae166.
Full text