Academic literature on the topic 'Automatic cell types annotation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Automatic cell types annotation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Automatic cell types annotation"
Shao, Xin, Jie Liao, Xiaoyan Lu, Rui Xue, Ni Ai, and Xiaohui Fan. "scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data." iScience 23, no. 3 (March 2020): 100882. http://dx.doi.org/10.1016/j.isci.2020.100882.
Full textDoddahonnaiah, Deeksha, Patrick J. Lenehan, Travis K. Hughes, David Zemmour, Enrique Garcia-Rivera, A. J. Venkatakrishnan, Ramakrishna Chilaka, et al. "A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets." Genes 12, no. 6 (June 10, 2021): 898. http://dx.doi.org/10.3390/genes12060898.
Full textPham, Son, Tri Le, Tan Phan, Minh Pham, Huy Nguyen, Loc Lam, Nam Phung, et al. "484 Bioturing browser: interactively explore public single cell sequencing data." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (November 2020): A520. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0484.
Full textLian, Qiuyu, Hongyi Xin, Jianzhu Ma, Liza Konnikova, Wei Chen, Jin Gu, and Kong Chen. "Artificial-cell-type aware cell-type classification in CITE-seq." Bioinformatics 36, Supplement_1 (July 1, 2020): i542—i550. http://dx.doi.org/10.1093/bioinformatics/btaa467.
Full textPatino, Cesar A., Prithvijit Mukherjee, Vincent Lemaitre, Nibir Pathak, and Horacio D. Espinosa. "Deep Learning and Computer Vision Strategies for Automated Gene Editing with a Single-Cell Electroporation Platform." SLAS TECHNOLOGY: Translating Life Sciences Innovation 26, no. 1 (January 15, 2021): 26–36. http://dx.doi.org/10.1177/2472630320982320.
Full textBalzategui, Julen, Luka Eciolaza, and Daniel Maestro-Watson. "Anomaly Detection and Automatic Labeling for Solar Cell Quality Inspection Based on Generative Adversarial Network." Sensors 21, no. 13 (June 25, 2021): 4361. http://dx.doi.org/10.3390/s21134361.
Full textFriedmann, Drew, Albert Pun, Eliza L. Adams, Jan H. Lui, Justus M. Kebschull, Sophie M. Grutzner, Caitlin Castagnola, Marc Tessier-Lavigne, and Liqun Luo. "Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network." Proceedings of the National Academy of Sciences 117, no. 20 (May 1, 2020): 11068–75. http://dx.doi.org/10.1073/pnas.1918465117.
Full textMai, Yun, Kyeryoung Lee, Zongzhi Liu, Meng Ma, Christopher Gilman, Minghao Li, Mingwei Zhang, et al. "Phenotyping of clinical trial eligibility text from cancer studies into computable criteria in electronic health records." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): 6592. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.6592.
Full textEnglbrecht, Fabian, Iris E. Ruider, and Andreas R. Bausch. "Automatic image annotation for fluorescent cell nuclei segmentation." PLOS ONE 16, no. 4 (April 16, 2021): e0250093. http://dx.doi.org/10.1371/journal.pone.0250093.
Full textMagidey, Ksenia, Ksenya Kveler, Rachelly Normand, Tongwu Zhang, Michael Timaner, Ziv Raviv, Brian James, et al. "A Unique Crosstalk between Tumor Cells and Hematopoietic Stem Cells Reveals a Myeloid Differentiation Pattern Signature Contributing to Metastasis." Blood 134, Supplement_1 (November 13, 2019): 2465. http://dx.doi.org/10.1182/blood-2019-128126.
Full textDissertations / Theses on the topic "Automatic cell types annotation"
Raoux, Corentin. "Review and Analysis of single-cell RNA sequencing cell-type identification and annotation tools." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297852.
Full textWedin, Mattias, and Isak Bengtsson. "A Comparative Study on Machine Learning Models for Automatic Classification of Cell Types from Digitally Reconstructed Neurons." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301744.
Full textUnder det senaste decenniet har användningen av maskininlärning i neurovetenskaplig forskning blivit ett populärt ämne. Exempelvis har bildigenkänning med hjälp av maskininlärning använts för att upptäcka och även förbättra diagnostisering av sjukdomar. I denna studie jämförs noggrannheten i ett Convolutional Neural Network (CNN), en support vector classifier och en random forest classifier för att undersöka vilka som är bättre lämpade för klassificering av celltyper utifrån digitalt rekonstruerade bilder av hjärnceller från möss. Alla modeller tränades på både ett större obalanserad dataset som innehöll 49 olika celltyper och en mindre balanserat dataset som endast innehöll 3 typer. Varje modell utvärderades på hur väl de kunde klassificera alla celltyper men också deras noggrannhet på enskilda celltyper. Resultaten visade att CNN hade bästa medelprecision, med 51 och 83 procent på respektive datamängder. Vid klassificeringen av enskilda celltyper hade alla modeller god noggrannhet på åtminstone några celltyper, även här hade CNN den bästa individuella noggrannheten och var mer konsekvent. Sammanfattningsvis visar resultaten att ett convolutional neural network förmodligen är bättre lämpad vid klassificerar av celltyper från digitalt rekonstruerade bilder av hjärnceller, men även de andra metoderna kan vara lämpliga vid vissa celltyper. Vidare forskning inom ämnet är dock nödvändigt för att nå en högre precision och pålitlighet av resultatet.
Neves, João. "Automatic annotation of cellular data." Master's thesis, 2013. http://hdl.handle.net/10400.6/3696.
Full textA anotação de células é uma tarefa comum a diversas áreas da investigação biomédica. Normalmente, esta tarefa é realizada de forma manual, sendo um processo demorado, cansativo e propício a erros. Neste trabalho, focamos o nosso interesse na anotação de imagens de uorescência com infeções de Leishmania, que representa um destes casos. Leishmania são parasitas unicelulares que infectam mamíferos, sendo responsáveis por um conjunto de doenças conhecidas por leishmanioses. Leishmania usam vertebrados como hospedeiros residindo dentro dos seus macrófagos. Por conseguinte, um modelo adequado para o estudo destes parasitas é infectar in vitro culturas de macrófagos. A capacidade de sobrevivência/replicação da Leishmania nessas condições arti - ciais pode então ser avaliada por parâmetros, como, por exemplo, a percentagem de macrófagos infectados, o número médio de parasitas por macrófagos infectados e o índice de infeção. Essas métricas são geralmente determinadas pela contagem de parasitas e macrófagos ao microscópio. Ambos os tipos de células podem ser facilmente distinguidos com base no seu tamanho e cor, resultante de diferentes a nidades de corantes uorescentes. A passagem desta tarefa do microscópio para o computador já foi conseguida através de aplicações como o CellNote, contudo, apesar de mais fácil e interativa, a anotação continua a ser manual. A evolução da abordagem manual para um processo automático representa um passo natural e lógico, constituindo o principal objetivo deste trabalho. Para isto iniciámos a investigação pela revisão dos principais métodos de deteção e contagem celular. As características das imagens com infeções de Leishmania impossibilitam a utilização dos métodos estudados, de tal modo que optámos por desenvolver uma nova abordagem, capaz de lidar com as várias especi cidades destas imagens. Também durante o processo de revis ão de literatura analisámos os dois métodos previamente propostos para realizar a anotação automática de infeções de Leishmania. Estes revelaram um desempenho abaixo do requerido pelos parasitologistas, justi cando também o desenvolvimento de uma nova abordagem. Durante a concepção do sistema investigámos diversas técnicas de deteção celular, onde a deteção de blobs se destacou pelos resultados positivos. Para segmentar as regiões citoplasmáticas optámos pela utilização de algoritmos de clustering. Estes não foram capazes de solucionar casos em que existia sobreposição de estruturas celulares, motivando assim o método de separação desenvolvido. Este método baseia-se maioritariamente na análise de contorno, sendo as suas concavidades geradoras de separação entre citoplasmas. Através da combinação destas fases foi possível detetar macrófagos e parasitas com mais precisão. Para con rmar esta conclusão testámos não só a nossa abordagem mas também as duas abordagens previamente desenvolvidas para este problema. Os desempenhos alcançados evidenciam não só uma melhoria comparativamente às restantes abordagens como também mostram que a nossa abordagem assegura resultados satisfatórios comparativamente aos obtidos manualmente. Em suma, o trabalho desenvolvido produziu um sistema capaz de realizar a anotação automática de imagens de uorescência com infeções de Leishmania, tendo originado um artigo aceite para publicação na conferência International Conference on Image Analysis and Recognition (ICIAR) 2013.
Books on the topic "Automatic cell types annotation"
Lüdeling, Anke, Julia Ritz, Manfred Stede, and Amir Zeldes. Corpus Linguistics and Information Structure Research. Edited by Caroline Féry and Shinichiro Ishihara. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199642670.013.013.
Full textBook chapters on the topic "Automatic cell types annotation"
Busse, Beatrix. "Toward Developing a Procedure for Automatically Identifying Speech, Writing, and Thought Presentation." In Speech, Writing, and Thought Presentation in 19th-Century Narrative Fiction, 155–64. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190212360.003.0006.
Full textZhou, Xiangrong, and Hiroshi Fujita. "Automatic Organ Localization on X-Ray CT Images by Using Ensemble-Learning Techniques." In Machine Learning in Computer-Aided Diagnosis, 403–18. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0059-1.ch019.
Full textJan, Rafiya, and Afaq Alam Khan. "Emotion Mining Using Semantic Similarity." In Natural Language Processing, 1115–38. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0951-7.ch053.
Full textSinghal, Vanika, and Preety Singh. "Selected Shape and Texture Features for Automatic Detection of Acute Lymphoblastic Leukemia." In Biomedical Signal and Image Processing in Patient Care, 162–83. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2829-6.ch009.
Full textGustafsson, Mika, and Michael Hörnquist. "Integrating Various Data Sources for Improved Quality in Reverse Engineering of Gene Regulatory Networks." In Handbook of Research on Computational Methodologies in Gene Regulatory Networks, 476–97. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-685-3.ch020.
Full textGrossberg, Stephen. "Laminar Computing by Cerebral Cortex." In Conscious Mind, Resonant Brain, 353–69. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190070557.003.0010.
Full textConference papers on the topic "Automatic cell types annotation"
Bryant, Christopher, Mariano Felice, and Ted Briscoe. "Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction." In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/p17-1074.
Full textChowdhury, Aritra, Sujoy K. Biswas, and Simone Bianco. "Active deep learning reduces annotation burden in automatic cell segmentation." In Digital and Computational Pathology, edited by John E. Tomaszewski and Aaron D. Ward. SPIE, 2021. http://dx.doi.org/10.1117/12.2579537.
Full textDyachkov, V. V., I. A. Khomchenkova, P. S. Pleshak, and N. M. Stoynova. "ANNOTATING AND EXPLORING CODE-SWITCHING IN FOUR CORPORA OF MINORITY LANGUAGES OF RUSSIA." In International Conference on Computational Linguistics and Intellectual Technologies "Dialogue". Russian State University for the Humanities, 2020. http://dx.doi.org/10.28995/2075-7182-2020-19-228-240.
Full textYeker, Cengiz, and Ibrahim Zeid. "The Development of an Automatic Three-Dimensional Mesh Generator via Modified Ray Casting." In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0023.
Full textBobbitt, Brock, Stephen Garner, Brenton Cox, John Martens, and Mark Fecke. "Manual vs. Automatic Boiler Controls: A Historical Perspective From Relevant Codes and Standards." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3616.
Full textRupnowski, Peter, Michael Ulsh, and Bhushan Sopori. "High Throughput and High Resolution In-Line Monitoring of PEMFC Materials by Means of Visible Light Diffuse Reflectance Imaging and Computer Vision." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49212.
Full textCheng, Peng, Chasen Tongsh, Jinqiao Liang, Zhi Liu, Qing Du, and Kui Jiao. "Experimental Investigation of Proton Exchange Membrane Fuel Cell With Platinum and Nafion Along the In-Plane Direction." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23430.
Full textKim, Jinseon, Minsoo Kim, Minju Shin, Incheol Nam, Daesun Kim, Hongsun Hwang, Sangjae Rhee, Kangyong Cho, and Seongjin Jang. "A Study on Error Corrected Code Failure-Induced Latent Defect in between High-k MIM Capacitors." In ISTFA 2017. ASM International, 2017. http://dx.doi.org/10.31399/asm.cp.istfa2017p0424.
Full textTischner, Oliver, and A. H. Soni. "Development of a Methodology for Cost Estimation in Robot Assembly." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/flex-6043.
Full textLu, Roberto F. "Design and Configuration of Machine Vision Robotic Cells in a Manufacturing System." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57234.
Full text