Contents
Academic literature on the topic 'Automatic Aircraft Recognition System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Automatic Aircraft Recognition System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Automatic Aircraft Recognition System"
Jia, Jiaqi, and Haibin Duan. "Automatic target recognition system for unmanned aerial vehicle via backpropagation artificial neural network." Aircraft Engineering and Aerospace Technology 89, no. 1 (2017): 145–54. http://dx.doi.org/10.1108/aeat-07-2015-0171.
Full textBobin, A. V., V. A. Azarov, S. A. Bulgakov, and D. A. Savin. "Technique for recognition of aircrafts and radar traps in the control circuit of airspace control system based on neural network technology." Izvestiya MGTU MAMI 7, no. 1-4 (2013): 124–30. http://dx.doi.org/10.17816/2074-0530-67843.
Full textSilva Filho, P., E. H. Shiguemori, and O. Saotome. "UAV VISUAL AUTOLOCALIZATON BASED ON AUTOMATIC LANDMARK RECOGNITION." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W3 (August 18, 2017): 89–94. http://dx.doi.org/10.5194/isprs-annals-iv-2-w3-89-2017.
Full textRoopa, K., T. V. Rama Murthy, and P. Cyril Prasanna Raj. "Neural Network Classifier for Fighter Aircraft Model Recognition." Journal of Intelligent Systems 27, no. 3 (2018): 447–63. http://dx.doi.org/10.1515/jisys-2016-0087.
Full textСафтли, Ф. Х. А., and С. Т. Баланян. "Methodology for assessing the control system of aircraft weapons in the process of aiming controlled aircraft weapons equipped with optelectronic homing heads." Vestnik of Russian New University. Series «Complex systems: models, analysis, management», no. 1 (March 23, 2022): 64–75. http://dx.doi.org/10.18137/rnu.v9187.22.01.p.064.
Full textZhang, Li Ping, Chao Wang, Hong Zhang, and Bo Zhang. "Aircraft Type Recognition in High-Resolution SAR Images Using Multi-Scale Autoconvolution." Key Engineering Materials 439-440 (June 2010): 1475–80. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.1475.
Full textBohouta, Gamal. "Automatic speech recognition for unmanned aerial vehicles." Journal of the Acoustical Society of America 152, no. 4 (2022): A98. http://dx.doi.org/10.1121/10.0015671.
Full textShabelnik, Tetyana, Serhii Krivenko, and Olena Koneva. "AUTOMATIC PILOT SYSTEM FOR UNMANNED OF AIRCRAFT IN THE ABSENCE OF RADIO COMMUNICATION." Cybersecurity: Education, Science, Technique 1, no. 9 (2020): 93–103. http://dx.doi.org/10.28925/2663-4023.2020.9.93103.
Full textKniaz, V. V. "A Fast Recognition Algorithm for Detection of Foreign 3D Objects on a Runway." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3 (August 11, 2014): 151–56. http://dx.doi.org/10.5194/isprsarchives-xl-3-151-2014.
Full textSun, Yuchuang, Wen Jiang, Jiyao Yang, and Wangzhe Li. "SAR Target Recognition Using cGAN-Based SAR-to-Optical Image Translation." Remote Sensing 14, no. 8 (2022): 1793. http://dx.doi.org/10.3390/rs14081793.
Full text