Academic literature on the topic 'Australian grain storage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Australian grain storage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Australian grain storage"

1

Wallwork, M. A. B., S. J. Logue, L. C. MacLeod, and C. F. Jenner. "Effects of a period of high temperature during grain filling on the grain growth characteristics and malting quality of three Australian malting barleys." Australian Journal of Agricultural Research 49, no. 8 (1998): 1287. http://dx.doi.org/10.1071/a98004.

Full text
Abstract:
Short periods of high temperatures (up to 35°C) during mid grain filling appear to reduce yield and quality in barley. Plants of 3 malting barley varieties, Schooner, Arapiles, and Sloop (a new South Australian malting variety), were grown under constant environment conditions from germination to maturity and exposed to 5 days of high temperatures (up to 35°C) during mid grain filling. Schooner and Sloop showed similar patterns of accumulation of dry matter under control conditions (21°C/16°C, day/night temperature) and in response to high temperatures. In all varieties, the reduction in starch accumulation represented the most significant detrimental effect of high temperature and made the greatest contribution to the reduction in final grain weight. The reduction in absolute grain nitrogen (N) in heat-treated Arapiles grains represents a potentially important response under high temperature conditions. In this study, water loss did not have a decisive role in the termination of grain filling. Continued accumulation of endosperm dry matter at low moisture levels suggested that water distribution and/or components of water potential may be more important than overall water content in the cessation of grain filling. Final grain composition depended not only on the amount of endosperm storage component present in the grain but also on the contribution of the non-endosperm components (including the embryo and husk) to final grain dry weight. In some cases, changes in the contribution made by the non-endosperm components of the grain to final grain weight masked important high temperature effects on key endosperm storage components. Hot water extract (HWE) values were similar within treatments and ranged from 73% to 78%. High temperature exposure reduced HWE for all varieties. Malt b-glucan was lower in heat-treated grains than in control grains. Despite relatively high malt protein levels in all varieties, higher free amino N levels in heat-treated grains indicated a higher protein modification than in control grains.
APA, Harvard, Vancouver, ISO, and other styles
2

Quiggin, John C. "PEAK-LOAD PRICING AND ON-FARM STORAGE IN THE AUSTRALIAN GRAIN HANDLING SYSTEM." Australian Journal of Agricultural Economics 34, no. 3 (December 1990): 263–79. http://dx.doi.org/10.1111/j.1467-8489.1990.tb00499.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eagles, H. A., Karen Cane, Marie Appelbee, Haydn Kuchel, R. F. Eastwood, and P. J. Martin. "The storage protein activator gene Spa-B1 and grain quality traits in southern Australian wheat breeding programs." Crop and Pasture Science 63, no. 4 (2012): 311. http://dx.doi.org/10.1071/cp12055.

Full text
Abstract:
Grain quality is an important determinant of market value of wheat in southern Australia and in many other parts of the world. Identification of the genes that influence grain quality traits and estimation of effects of alleles of these genes can improve the effectiveness of wheat breeding. An efficient method for estimating the effects of alleles of recently discovered genes is to use mixed-model analyses in large plant breeding datasets that have already been characterised for previously known genes. We used this method to estimate the effects of two alleles of Spa-B1, a storage protein activator gene that is linked to Glu-B1, on grain quality traits. Alleles of the two genes tracked together as haplotypes for generations, but recombination events were identified. These recombination events were used to enhance confidence in identification of the alleles. The effects of the alleles of Spa-B1 were small and statistically not significant for all of the grain quality traits in our population.
APA, Harvard, Vancouver, ISO, and other styles
4

Mikac, K. M., and N. N. FitzSimmons. "Genetic structure and dispersal patterns of the invasive psocid Liposcelis decolor (Pearman) in Australian grain storage systems." Bulletin of Entomological Research 100, no. 5 (February 2, 2010): 521–27. http://dx.doi.org/10.1017/s0007485309990538.

Full text
Abstract:
AbstractMicrosatellite markers were used to investigate the genetic structure among invasive L. decolor populations from Australia and a single international population from Kansas, USA to determine patterns of dispersal. Six variable microsatellites displayed an average of 2.5–4.2 alleles per locus per population. Observed (HO) heterozygosity ranged from 0.12–0.65 per locus within populations; but, in 13 of 36 tests, HO was less than expected. Despite low levels of allelic diversity, genetic structure estimated as θ was significant for all pairwise comparisons between populations (θ=0.05–0.23). Due to suspected null alleles at four loci, ENA (excluding null alleles) corrected FST estimates were calculated overall and for pairwise population comparisons. The ENA-corrected FST values (0.02–0.10) revealed significant overall genetic structure, but none of the pairwise values were significantly different from zero. A Mantel test of isolation by distance indicated no relationship between genetic structure and geographic distance among all populations (r2=0.12, P=0.18) and for Australian populations only (r2=0.19, P=0.44), suggesting that IBD does not describe the pattern of gene flow among populations. This study supports a hypothesis of long distance dispersal by L. decolor at moderate to potentially high levels.
APA, Harvard, Vancouver, ISO, and other styles
5

Rickert, KG, RH Sedgley, and WR Stern. "Environmental response of spring wheat in the south-western Australian cereal belt." Australian Journal of Agricultural Research 38, no. 4 (1987): 655. http://dx.doi.org/10.1071/ar9870655.

Full text
Abstract:
The performance of the spring wheat cultivar Gamenya, the leading cultivar in Western Australia since 1968, was studied to identify key aspects of its response to the environment under typically dry conditions on two contrasting soil types: a heavy clay loam and a light loamy sand overlying clay in the Merredin region.In the rain-fed treatments the total water use was similar on both soils and was of the order of 240 mm. On the heavy-textured soil at high nitrogen, the foliage canopy developed more rapidly than on the light soil, resulting in earlier soil water depletion and haying off. Water use efficiencies of about 10 kg grain ha-1 per mm of water were similar to those reported for winter rainfall areas in south-eastern Australia. This suggests a greater degree of buffering against spring drought than is indicated by the high ratio of pre-anthesis to post-anthesis water use (3-4.7:l) relative to values of 2-2.7:l in other parts of the Australian wheatbelt. Data on the partitioning of dry matter indicated that this buffering of the harsh spring conditions at Merredin may be due to a greater contribution of assimilates from pre-anthesis storage, to grain filling. In dry environments, further critical evaluation is needed of the role of stored assimilates in grain formation.Faster canopy closure on the heavy soil resulted from a higher density of shoots and possibly larger leaves. This led to the suggestion that on heavier, more fertile soils, an ideotype with restricted tillering, may be higher yielding. By the end of the season ear bearing shoot densities and total water use were the same on both soil types, thus masking earlier important differences.
APA, Harvard, Vancouver, ISO, and other styles
6

Wrigley, CW, C. Blumenthal, PW Gras, and EWR Barlow. "Temperature Variation During Grain Filling and Changes in Wheat-Grain Quality." Functional Plant Biology 21, no. 6 (1994): 875. http://dx.doi.org/10.1071/pp9940875.

Full text
Abstract:
There have been a few notable occasions when the Australian wheat segregation system (mainly based on specification of variety and protein content) has failed to produce grain which gives dough properties expected for the wheat grade. The reasons for this are likely to relate to growing and storage conditions; of these, variations in temperature during grain filling appear to be a major factor. Observations of crop statistics, field and glasshouse experiments indicate that as growth temperatures increase up to 30°C, there is a general increase in dough strength (as indicated by Extensograph maximum resistance, Rmax, and as Farinograph development time and stability). However, a decline in dough strength is observed following periods of heat stress (e.g. a few days with maxima of over 35°C). Increasing temperatures during grain filling have also been observed to produce grain with a higher protein content, but this observation is not as consistent nor as marked as the effects on dough strength. We have sought to identify genotypes that do not follow this general trend in response to heat stress, and thus could be used as parents to breed for heat tolerance and greater stability of dough quality. A glasshouse experiment involving 45 genotypes has indicated that there is some variation in the response to heat stress, with a few genotypes being promising sources of tolerance. A second important approach to minimising the effects of heat stress is to develop a model to predict grain-quality changes, thus enabling a marketing authority to be forewarned of significant variation from the quality attributes normally expected for a wheat grade, and assisting breeders to better interpret the results of quality testing of lines grown at various sites.
APA, Harvard, Vancouver, ISO, and other styles
7

Turner, Neil C., and Senthold Asseng. "Productivity, sustainability, and rainfall-use efficiency in Australian rainfed Mediterranean agricultural systems." Australian Journal of Agricultural Research 56, no. 11 (2005): 1123. http://dx.doi.org/10.1071/ar05076.

Full text
Abstract:
Mediterranean environments are characterised by hot, dry summers and cool, wet winters. The native vegetation in Mediterranean-climatic regions is predominantly perennial shrubs and trees intermixed with annual forbs. In south-western Australia, the spread of agriculture has seen the well adapted perennial vegetation replaced by rainfed annual crops and pastures. This has increased waterlogging and secondary salinity, thereby causing loss of productivity in ~10% of the cleared land area. To reduce deep drainage and make the agricultural systems environmentally sustainable requires the re-introduction of perennial vegetation in the form of belts of trees or shrubs, and phase-farming systems with perennials such as lucerne replacing annual pastures between the cropping years. To be economically viable, agricultural productivity needs to increase by at least 3% per annum. Yields of dryland wheat, the predominant crop in the Mediterranean agricultural regions of Australia, have increased at ~1%/year for the century preceding the 1980s and since then by nearly 4%/year. Increases have arisen from both genotypic and agronomic improvements. Genotypic increases have arisen from selection for earliness, early vigour, deep roots, osmotic adjustment, increased transpiration efficiency, improved disease resistance, and an improved harvest index from high ear weight (grain number) at flowering and high assimilate storage and remobilisation. Agronomic increases have arisen from early sowing that has been enabled by minimum tillage, increased fertiliser use, especially nitrogen, weed control, and rotations to improve weed control, minimise disease risk, and increase nitrogen availability. Evidence is presented suggesting that the rapid increase in yield of wheat in the last two decades has likely arisen from the rapid adoption of new technologies. For productivity to be maintained in the face of the increasing requirement to be environmentally sustainable will be a challenge and will require better integration of breeding and agronomy.
APA, Harvard, Vancouver, ISO, and other styles
8

Sprigg, Hayden, Robert Belford, Steve Milroy, Sarita Jane Bennett, and David Bowran. "Adaptations for growing wheat in the drying climate of Western Australia." Crop and Pasture Science 65, no. 7 (2014): 627. http://dx.doi.org/10.1071/cp13352.

Full text
Abstract:
This study investigated the effects of predicted changes in rainfall distribution in marginal (≤325 mm annual rainfall) parts of the south-west Australian wheatbelt and options for management and adaptation of the wheat crop. Field experiments with rain-out shelters and irrigation were conducted in 2008 and 2009 to investigate the interactions of rainfall distribution, row spacing, genotype and timing of nitrogen application on growth, water use and grain yield of spring wheat. Water storage before seeding showed potential to maintain or increase yields despite lower in-season rainfall. Widening row spacing reduced biomass and slowed water use but did not increase grain yield, because of increased soil evaporation and water left in the soil at crop maturity. The Agricultural Production Systems Simulator (APSIM) wheat model was used to investigate the effects of recent and projected climate change on yield in relation to row spacing, phenology and nitrogen. Two climate-change scenarios were applied to historical climatic data to create two plausible future climates (‘optimistic’ and ‘pessimistic’) for the year 2030. None of the strategies tested increased wheat yield under the predicted climate scenarios. Simulated yields at wider row spacings were consistently lower due to insufficient biomass, increased soil evaporation and the inability of the crop to use all of the available water before maturity. Simulated yields of short-season genotypes were always greater than yields of longer season genotypes. Nitrogen regimes had little effect in this study. This study points to several genotypic traits that could improve the performance of wheat grown at wider row spacings. These include early vigour to reduce soil evaporation and increase competition with weeds, greater tillering/biomass to reduce limitation by sink size, and a vigorous root system with appropriate lateral spread and growth to depth to access available soil water.
APA, Harvard, Vancouver, ISO, and other styles
9

Chauhan, Y. S., G. C. Wright, and N. C. Rachaputi. "Modelling climatic risks of aflatoxin contamination in maize." Australian Journal of Experimental Agriculture 48, no. 3 (2008): 358. http://dx.doi.org/10.1071/ea06101.

Full text
Abstract:
Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM’s maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

French, R. J., R. S. Malik, and M. Seymour. "Crop-sequence effects on productivity in a wheat-based cropping system at Wongan Hills, Western Australia." Crop and Pasture Science 66, no. 6 (2015): 580. http://dx.doi.org/10.1071/cp14262.

Full text
Abstract:
Western Australian grain production is dominated by wheat, but growing wheat continually in unbroken sequences leads to increasing problems with soil nutrient depletion, root and leaf disease build-up, high weed burdens, and possibly other less well-defined production constraints. These can adversely affect both production and grain quality. Including breaks in the crop sequence in the form of break crops, pasture, or fallow can reduce these problems, but these breaks can be expensive to implement, in terms of both direct cost and forgone revenue. It is therefore critical to predict the response of subsequent wheat crops to a break in order to choose crop sequences rationally. We conducted a 4-year experiment at Wongan Hills, Western Australia, evaluating how wheat productivity in a wheat-based cropping sequence is affected by including wheat, barley, lupins, triazine-tolerant and Roundup Ready® canola, oaten hay, volunteer pasture, serradella pasture, and chemical fallow. Wheat yield responded positively to fallow, lupins, oaten hay, volunteer pastures and serradella but not to barley or canola when compared with continuous wheat. Responses depended on seasonal conditions; in a dry year, a very large response occurred after fallow but not after lupin or serradella, whereas in a wetter year, there were large responses after these crops. Fallowing, cutting hay, crop-topping lupins, and spray-topping volunteer and serradella pasture all reduced seedset of annual ryegrass dramatically, and reduced weed competition was a major contributor to the observed break crop responses. Nitrogen fixation by lupins and serradella and water storage by fallow in a dry year were also important, but soilborne diseases did not contribute to wheat yield responses. Some yield responses persisted for at least 3 years, and the contribution of effects of weed competition to yield responses increased over this time. These results emphasise the importance of understanding which productivity constraints are present in a cropping system at a given time when deciding whether a break is necessary and which is the most appropriate break. The results also emphasise the importance of managing the wheat crop after a break to maximise the response and its longevity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Australian grain storage"

1

Mikac, Katarina Maryann, and n/a. "The population genetics of the invasive Psocoptera (Liposcelididae) species Liposcelis bostrychophila Badonnel and Liposcelis decolor (Pearman) in Australian grain storage systems." University of Canberra. Institute of Applied Ecology, 2006. http://erl.canberra.edu.au./public/adt-AUC20070301.154014.

Full text
Abstract:
This thesis is a comprehensive treatment of the invasion genetics of two major Liposcelis pest species, Liposcelis bostrychophila Badonnel and L. decolor (Pearman), in Australian grain storage systems. Randomly amplified polymorphic DNA (RAPDs) and microsatellite DNA markers were used to investigate Liposcelis invasions in grain storage systems. The RAPD and microsatellite markers used provided insights into the genetic diversity of L. bostrychophila and L. decolor populations both in Australia and internationally, providing information integral to gaining an understanding of Liposcelis invasions in Australian grain storage systems. The thesis is divided into discrete chapters, and for each chapter an abstract is provided. Chapter 1 provides background on Liposcelis invasions in Australia in relation to the biology of Liposcelis species, the infrastructure of the Australian grain industry and the history of invasions in comparison to other invasive invertebrate species. The use of DNA and PCR technologies to investigate Liposcelis invasions are discussed and the aims and objectives of this thesis are introduced. Chapter 2 uses RAPDs to trace the geographic origin of L. bostrychophila populations in Australia from unknown geographic sources internationally. High levels of clonal genetic diversity among populations of L. bostrychophila in Australia and internationally were found. In addition, multiple introductions, from a wide range of international source populations were detected and this obscured our ability to accurately determine the geographic origin of L. bostrychophila in Australia. Given the high clonal genetic diversity found in populations of parthenogenetic L. bostrychophila in Australia, diagnostic Wolbachia PCR primers were used in Chapter 3 to investigate whether L. bostrychophila individuals from these populations were infected by Wolbachia and if infected, to investigate the strain of Wolbachia characteristic of Australian L. bostrychophila populations. Results from Chapter 3 provide the first evidence of multiple Wolbachia infection from strains A and B in Australian L. bostrychophila populations. Chapter 4 details the extensive molecular procedures undertaken to isolate microsatellite loci from Liposcelis decolor using both enrichment and nonenrichment methods. Microsatellite loci were optimised for use in PCR in single individuals following extensive troubleshooting. Troubleshooting efforts focused on elucidating the factors controlling the specificity, efficiency and sensitivity of the PCR to amplify small Liposcelis individuals known to be rich in lipids and proteins, all inhibitory to PCR. In Chapter 5 lipids and proteins were investigated from L. decolor and L. entomophila to determine total concentrations and characterize the lipids from these species. This chapter discusses whether the lipid and protein concentrations found were of a level that could be inhibitory to PCR in relation to the microsatellite techniques used in this study. From the work conducted in both Chapters 4 and 5 a troubleshooting protocol adapted for use in L. decolor was developed and implemented to determine the endogenous and exogenous parameters responsible for the function and reproducibility of PCR of microsatellite loci in L. decolor. In Chapter 6, the novel microsatellites isolated from L. decolor in Chapter 4 were used to investigate genetic structure and gene flow from Australian and international L. decolor populations. In Chapter 6 the first evidence of population differentiation, gene flow and dispersal in invasive populations of L. decolor was found. In addition, the eleven microsatellites isolated from L. decolor were cross-amplified in five other important Liposcelis pests, L. bostrychophila, L. entomophila, L. paeta, L. rufa, and L. corrodens, from which informative population genetic studies are now possible. Finally, Chapter 7 comprises the thesis synopsis, implications and future research.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Australian grain storage"

1

Troy, Gavan. Grain transport in Western Australia: Government policy and major issues : a submission to the Royal Commission into Grain Storage, Handling, and Transport. [Perth: The Commission, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The Australian grain storage, handling and transport industries: An economic analysis. [Sydney]: Dept. of Agricultural Economics, University of Sydney, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Australian grain storage"

1

Panigrahi, Shubham Subrot, Chandra B. Singh, and John M. Fielke. "<i>Effect of Mediterranean climatic condition during aeration and silo wall coating in on-farm grain storage in South Australia </i>." In 2019 Boston, Massachusetts July 7- July 10, 2019. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2019. http://dx.doi.org/10.13031/aim.201900976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taheri, Saeedeh, Graham Ian Brodie, and Dorin Gupta. "EFFECTIVENESS OF A MICROWAVE FLUIDISED BED DRYER IN ERADICATION OF SEED-BORNE BOTRYTIS GREY MOLD OF LENTILS." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9635.

Full text
Abstract:
Lentil is one of the important pulse crops in the world with a high proportion of easily digestible protein. However, there are several pests and pathogens which cause losses during crop growth, harvesting and post-harvest storage. Microwave processing has shown great potential to eradicate pests and pathogens from grains; however, there is still concerns about its heat uniformity, which is of crucial importance in pest and pathogen control. Fluidization using forced hot air is one of the potential solutions for having uniform temperature during microwave processing. In this study, a single mode microwave cavity, with a 2.45 GHz microwave source, was modified to have a microwave fluidized bed and used to evaluate its potential to eliminate the Botrytis grey mold (BGM) pathogen, which is one of the important seed-borne pathogens of lentil crops in Australia. Air speed was maintained to be constant during the experiment and was just enough to fluidize 100g of red lentils in the sample holder. Two wet based (w.b.) seed moisture contents (m.c.) of 10.5% and 18.5% were prepared and the process parameters were selected as: air temperature at 50 and 60°C; microwave power at 0, 300, 400 W for 18.5% m.c. and 0, 400, 500 W for 10.5% m.c.; and exposure times of 5 and 10 min. These parameters were chosen to reach the final temperature of below 70°C. The effect of process parameters on seed moisture loss, seed germination, electrical conductivity of seed soaking water and percentage of infected seeds (IS%) were analyzed using general factorial regression and analysis of variance. The results showed that the most effective factors on moisture loss, after seed moisture content, was exposure time, followed by microwave power and air temperature. While final bed temperature was affected mostly by air temperature, and then by microwave power. Furthermore, based on general full factorial regression and pareto chart of standardized effects, moisture content had by far the most influence on the reduction of IS%. Seed pathogen inoculum reduction, without significant seed viability loss, was obtained by applying microwave power of 300W and set air temperature of 60°C (actual inlet air temperature of 57±1°C) on seeds with m.c. of 18.5% for 10 min. This gave a 27% reduction in IS% (from 82% to 55%).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography