Academic literature on the topic 'Augmentation de tables'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Augmentation de tables.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Augmentation de tables"
Wu, Junyi, Chen Ye, Haoshi Zhi, and Shihao Jiang. "Column-Type Prediction for Web Tables Powered by Knowledge Base and Text." Mathematics 11, no. 3 (January 20, 2023): 560. http://dx.doi.org/10.3390/math11030560.
Full textWang, Jiayi, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. "Coresets over multiple tables for feature-rich and data-efficient machine learning." Proceedings of the VLDB Endowment 16, no. 1 (September 2022): 64–76. http://dx.doi.org/10.14778/3561261.3561267.
Full textDobra, Adrian, Claudia Tebaldi, and Mike West. "Data augmentation in multi-way contingency tables with fixed marginal totals." Journal of Statistical Planning and Inference 136, no. 2 (February 2006): 355–72. http://dx.doi.org/10.1016/j.jspi.2004.07.002.
Full textChen, Zhiyu. "Dataset Search and Augmentation." ACM SIGIR Forum 56, no. 1 (June 2022): 1–2. http://dx.doi.org/10.1145/3582524.3582544.
Full textBussotti, Jean-Flavien, Enzo Veltri, Donatello Santoro, and Paolo Papotti. "Generation of Training Examples for Tabular Natural Language Inference." Proceedings of the ACM on Management of Data 1, no. 4 (December 8, 2023): 1–27. http://dx.doi.org/10.1145/3626730.
Full textAhmed, Naveed, Umar Khan, Syed Tauseef Mohyud-Din, and Saeed Ullah Jan. "Non-linear radiative squeezed flow in a rotating frame." Engineering Computations 34, no. 8 (November 6, 2017): 2450–62. http://dx.doi.org/10.1108/ec-04-2017-0158.
Full textSajid, Tanveer, Muhammad Sagheer, Shafqat Hussain, and Faisal Shahzad. "Impact of double-diffusive convection and motile gyrotactic microorganisms on magnetohydrodynamics bioconvection tangent hyperbolic nanofluid." Open Physics 18, no. 1 (May 2, 2020): 74–88. http://dx.doi.org/10.1515/phys-2020-0009.
Full textLi, Xiangge, Hong Luo, and Yan Sun. "WordBlitz: An Efficient Hard-Label Textual Adversarial Attack Method Jointly Leveraging Adversarial Transferability and Word Importance." Applied Sciences 14, no. 9 (April 30, 2024): 3831. http://dx.doi.org/10.3390/app14093831.
Full textIsmail, Nur Hilwani, Siti Fatimah Ibrahim, Farah Hanan Fathihah Jaffar, Mohd Helmy Mokhtar, Kok Yong Chin, and Khairul Osman. "Augmentation of the Female Reproductive System Using Honey: A Mini Systematic Review." Molecules 26, no. 3 (January 27, 2021): 649. http://dx.doi.org/10.3390/molecules26030649.
Full textCastelo, Sonia, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati, and Juliana Freire. "Auctus." Proceedings of the VLDB Endowment 14, no. 12 (July 2021): 2791–94. http://dx.doi.org/10.14778/3476311.3476346.
Full textDissertations / Theses on the topic "Augmentation de tables"
Liu, Jixiong. "Semantic Annotations for Tabular Data Using Embeddings : Application to Datasets Indexing and Table Augmentation." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS529.
Full textWith the development of Open Data, a large number of data sources are made available to communities (including data scientists and data analysts). This data is the treasure of digital services as long as data is cleaned, unbiased, as well as combined with explicit and machine-processable semantics in order to foster exploitation. In particular, structured data sources (CSV, JSON, XML, etc.) are the raw material for many data science processes. However, this data derives from different domains for which consumers are not always familiar with (knowledge gap), which complicates their appropriation, while this is a critical step in creating machine learning models. Semantic models (in particular, ontologies) make it possible to explicitly represent the implicit meaning of data by specifying the concepts and relationships present in the data. The provision of semantic labels on datasets facilitates the understanding and reuse of data by providing documentation on the data that can be easily used by a non-expert. Moreover, semantic annotation opens the way to search modes that go beyond simple keywords and allow the use of queries of a high conceptual level on the content of the datasets but also their structure while overcoming the problems of syntactic heterogeneity encountered in tabular data. This thesis introduces a complete pipeline for the extraction, interpretation, and applications of tables in the wild with the help of knowledge graphs. We first refresh the exiting definition of tables from the perspective of table interpretation and develop systems for collecting and extracting tables on the Web and local files. Three table interpretation systems are further proposed based on either heuristic rules or graph representation models facing the challenges observed from the literature. Finally, we introduce and evaluate two table augmentation applications based on semantic annotations, namely data imputation and schema augmentation
Lehmberg, Oliver [Verfasser], and Christian [Akademischer Betreuer] Bizer. "Web table integration and profiling for knowledge base augmentation / Oliver Lehmberg ; Betreuer: Christian Bizer." Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1197143866/34.
Full textHeyder, Jakob Wendelin. "Knowledge Base Augmentation from Spreadsheet Data : Combining layout inference with multimodal candidate classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278824.
Full textKalkylblad består av ett värdefullt och särskilt stort datasätt av dokument inom många företagsorganisationer och på webben. Även om kalkylblad är intuitivt att använda och är utrustad med kraftfulla funktioner, utvinning och transformation av data är fortfarande en besvärlig och manuell uppgift. Den stora flexibiliteten som de ger användaren resulterar i data som är godtyckligt strukturerade och svåra att bearbeta för andra applikationer. I det här förslaget föreslår vi en ny arkitektur som kombinerar övervakad layoutinferens och multimodal kandidatklassificering för att tillåta kunskapsbasförstärkning från godtyckliga kalkylblad. I vår design överväger vi behovet av att reparera felklassificeringar och möjliggöra verifiering och rangordning av tvetydiga kandidater. Vi utvärderar systemets utförande på två datasätt, en med singeltabellkalkylblad, en annan med kalkylblad av godtyckligt format. Utvärderingsresultatet visar att det föreslagna systemet uppnår liknande prestanda på singel-tabellkalkylblad jämfört med state-of-the-art regelbaserade lösningar. Dessutom tillåter systemets flexibilitet oss att bearbeta godtyckliga kalkylark format, inklusive horisontella och vertikala inriktade tabeller, flera kalkylblad och sammanhangsförande metadata. Detta var inte möjligt med existerande rent textbaserade eller tabellbaserade lösningar. Experimenten visar att det kan uppnå hög effektivitet med en F1-poäng på 95.71 på godtyckliga kalkylblad som kräver tolkning av omgivande metadata. Systemets precision kan ökas ytterligare genom att applicera schema-matchning av kandidater baserat på semantisk likhet mellan kolumnrubriker.
Books on the topic "Augmentation de tables"
United States. National Aeronautics and Space Administration., ed. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil. [Stanford, Calif.]: Joint Institute for Aeronautics and Acoustics, National Aeronautics and Space Administration, Ames Research Center, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil. [Stanford, Calif.]: Joint Institute for Aeronautics and Acoustics, National Aeronautics and Space Administration, Ames Research Center, 1996.
Find full textBook chapters on the topic "Augmentation de tables"
Del Bimbo, Davide, Andrea Gemelli, and Simone Marinai. "Data Augmentation on Graphs for Table Type Classification." In Lecture Notes in Computer Science, 242–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-23028-8_25.
Full textKhan, Umar, Sohaib Zahid, Muhammad Asad Ali, Adnan Ul-Hasan, and Faisal Shafait. "TabAug: Data Driven Augmentation for Enhanced Table Structure Recognition." In Document Analysis and Recognition – ICDAR 2021, 585–601. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86331-9_38.
Full textChen, Bangdong, Dezhi Peng, Jiaxin Zhang, Yujin Ren, and Lianwen Jin. "Complex Table Structure Recognition in the Wild Using Transformer and Identity Matrix-Based Augmentation." In Frontiers in Handwriting Recognition, 545–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21648-0_37.
Full textMehl-Schneider, Toby B. "Recent Advances in Augmentative and Alternative Communication." In Advances in Medical Technologies and Clinical Practice, 128–40. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8395-2.ch006.
Full textZhu, Wei, Charles B. Owen, Hairong Li, and Joo-Hyun Lee. "Design of the PromoPad." In Advances in End User Computing, 193–205. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-687-7.ch011.
Full text"Faithful extension of a relation, bivalent tableau, faithful augmentation, Szpilrajn chain." In Theory of Relations, 223–39. Elsevier, 2000. http://dx.doi.org/10.1016/s0049-237x(00)80055-5.
Full textWunder, Iris, and Ruth Maloszek. "Perspective Chapter: iPEAR-MOOC." In Massive Open Online Courses - Current Practice and Future Trends [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1001463.
Full textPlattard, Serge. "L’ONU et l’espace." In Annuaire français de relations internationales, 887–903. Éditions Panthéon-Assas, 2023. http://dx.doi.org/10.3917/epas.ferna.2023.01.0887.
Full textKonstantinou, Gerasimos, and Mohamed Attia. "Perspective Chapter: From the Boom to Gen Z – Has Depression Changed across Generations?" In Depression - What Is New and What Is Old in Human Existence [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003091.
Full textD., Aju, Anil Kumar Kakelli, Ashwin Suresh Varma, and Kishore Rajendiran. "A Comprehensive Perspective on Mobile Forensics." In Advances in Digital Crime, Forensics, and Cyber Terrorism, 1–28. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4900-1.ch001.
Full textConference papers on the topic "Augmentation de tables"
Weger, Marian, Thomas Hermann, and Robert Höldrich. "AltAR/Table: A Platform for Plausible Auditory Augmentation." In ICAD 2022: The 27th International Conference on Auditory Display. icad.org: International Community for Auditory Display, 2022. http://dx.doi.org/10.21785/icad2022.005.
Full textDreossi, Tommaso, Shromona Ghosh, Xiangyu Yue, Kurt Keutzer, Alberto Sangiovanni-Vincentelli, and Sanjit A. Seshia. "Counterexample-Guided Data Augmentation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/286.
Full textKavitha, K. M., Vaishnavi Naik, Sahana Angadi, Sandra Satish, and Suman Nayak. "Hybrid Approaches for Augmentation of Translation Tables for Indian Languages." In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2020. http://dx.doi.org/10.1109/icmla51294.2020.00157.
Full textChen, Haipeng, Sushil Jajodia, Jing Liu, Noseong Park, Vadim Sokolov, and V. S. Subrahmanian. "FakeTables: Using GANs to Generate Functional Dependency Preserving Tables with Bounded Real Data." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/287.
Full textCao, Jianhao, Tamara Munzner, and Rachel Pottinger. "Visualizing a Tabular Data Repository to Facilitate Descriptive Tag Augmentation for New Tables." In SIGMOD/PODS '23: International Conference on Management of Data. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3597465.3605226.
Full textPham, Minh, Craig A. Knoblock, Muhao Chen, Binh Vu, and Jay Pujara. "SPADE: A Semi-supervised Probabilistic Approach for Detecting Errors in Tables." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/488.
Full textFrame, Mary, Jessica Armstrong, and Bradley Schlessman. "Decision Support Systems for Route Planning: Impacts on Performance and Trust." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001562.
Full textPillai, Prashanth, and Purnaprajna Mangsuli. "Document Layout Analysis Using Detection Transformers." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207266-ms.
Full textDai, Chaofan, Qideng Tang, Wubin Ma, Yahui Wu, Haohao Zhou, and Huahua Ding. "PromptER: Prompt Contrastive Learning for Generalized Entity Resolution." In 11th International Conference on Artificial Intelligence and Applications. Academy & Industry Research Collaboration Center, 2024. http://dx.doi.org/10.5121/csit.2024.140102.
Full textWeger, Marian, Thomas Hermann, and Robert Höldrich. "Plausible Auditory Augmentation of Physical Interaction." In The 24th International Conference on Auditory Display. Arlington, Virginia: The International Community for Auditory Display, 2018. http://dx.doi.org/10.21785/icad2018.024.
Full textReports on the topic "Augmentation de tables"
DEPARTMENT OF THE ARMY WASHINGTON DC. Army Policies and Procedures for Establishing Multiple Component Modification Table of Organization and Equipment (MTOE) and Augmentation Tables of Distribution (AUGTDAs) Units. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada402529.
Full text