Journal articles on the topic 'Au/Cu nanowire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Au/Cu nanowire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Orgen, Salvacion B., and Mary Donnabelle L. Balela. "Characterization of the Mechanical Integrity of Cu Nanowire-Based Transparent Conducting Electrode." Key Engineering Materials 775 (August 2018): 132–38. http://dx.doi.org/10.4028/www.scientific.net/kem.775.132.
Full textZuo, Yan, Juan Tang, Xiao Tian Li, Yan Zhao, Hai Lan Gong, and Shi Lun Qiu. "Electrodeposition of Ni and Ni-Cu Nanowires in Rectified Porous Anodic Alumina Membrane." Materials Science Forum 663-665 (November 2010): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1121.
Full textShi, Liangjing, Ranran Wang, Haitao Zhai, Yangqiao Liu, Lian Gao, and Jing Sun. "A long-term oxidation barrier for copper nanowires: graphene says yes." Physical Chemistry Chemical Physics 17, no. 6 (2015): 4231–36. http://dx.doi.org/10.1039/c4cp05187d.
Full textZhang, Wei, Xin Min Huang, Yong Jiu Zhao, Yu Cheng Wu, Guang Qing Xu, Kang Xu, Peng Li, and Peng Jie Zhang. "Direct Electrodeposition of Highly Ordered Au-Cu Alloy Nanowire Arrays." Advanced Materials Research 652-654 (January 2013): 155–58. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.155.
Full textWang, Yuanxing, Cailing Niu, and Yachuan Zhu. "Copper–Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide." Nanomaterials 9, no. 2 (January 30, 2019): 173. http://dx.doi.org/10.3390/nano9020173.
Full textMabuchi, Yota, Norhana Mohamed Rashid, Jian Bo Liang, Naoki Kishi, and Tetsuo Soga. "Direct existence to suggest activity of copper ions surface diffusion on nanowire in growth process." Modern Physics Letters B 33, no. 21 (July 30, 2019): 1950249. http://dx.doi.org/10.1142/s021798491950249x.
Full textDing, Su, and Yanhong Tian. "Recent progress of solution-processed Cu nanowires transparent electrodes and their applications." RSC Advances 9, no. 46 (2019): 26961–80. http://dx.doi.org/10.1039/c9ra04404c.
Full textKamimura, Himeyo, Masamitsu Hayashida, and Takeshi Ohgai. "CPP-GMR Performance of Electrochemically Synthesized Co/Cu Multilayered Nanowire Arrays with Extremely Large Aspect Ratio." Nanomaterials 10, no. 1 (December 18, 2019): 5. http://dx.doi.org/10.3390/nano10010005.
Full textCETINEL, A., and Z. ÖZCELIK. "INFLUENCE OF NANOWIRE DIAMETER ON STRUCTURAL AND OPTICAL PROPERTIES OF Cu NANOWIRE SYNTHESIZED IN ANODIC ALUMINIUM OXIDE FILM." Surface Review and Letters 23, no. 01 (February 2016): 1550093. http://dx.doi.org/10.1142/s0218625x15500936.
Full textChen, Cai Feng, Hao Wang, Zhi Dan Ding, and An Dong Wang. "Fabrication of Copper Nanowire Arrays by Electrolytic Deposition." Journal of Nano Research 32 (May 2015): 25–31. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.25.
Full textRavi Kumar, D. V., Inhyuk Kim, Zhaoyang Zhong, Kyujin Kim, Daehee Lee, and Jooho Moon. "Cu(ii)–alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: exploring the dual role of alkyl amines." Phys. Chem. Chem. Phys. 16, no. 40 (2014): 22107–15. http://dx.doi.org/10.1039/c4cp03880k.
Full textMarchal, Nicolas, Tristan da Câmara Santa Clara Gomes, Flavio Abreu Araujo, and Luc Piraux. "Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected NixFe1−x/Cu Multilayered Nanowire Networks." Nanomaterials 11, no. 5 (April 27, 2021): 1133. http://dx.doi.org/10.3390/nano11051133.
Full textHwang, Byungil, Yurim Han, and Paolo Matteini. "BENDING FATIGUE BEHAVIOR OF AG NANOWIRE/CU THIN-FILM HYBRID INTERCONNECTS FOR WEARABLE ELECTRONICS." Facta Universitatis, Series: Mechanical Engineering 20, no. 3 (November 30, 2022): 553. http://dx.doi.org/10.22190/fume220730040h.
Full textXu, Panpan, Ke Ye, Mengmeng Du, Jijun Liu, Kui Cheng, Jinling Yin, Guiling Wang, and Dianxue Cao. "One-step synthesis of copper compounds on copper foil and their supercapacitive performance." RSC Advances 5, no. 46 (2015): 36656–64. http://dx.doi.org/10.1039/c5ra04889c.
Full textChoi, Soon Mee, Jiung Cho, Young Keun Kim, and Cheol Jin Kim. "TEM Analysis of Multilayered Co/Cu Nanowire Synthesized by DC Electrodeposition." Solid State Phenomena 124-126 (June 2007): 1233–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1233.
Full textLiu, Xingmin, and Yanchun Zhou. "Electrochemical Synthesis and Room Temperature Oxidation Behavior of Cu Nanowires." Journal of Materials Research 20, no. 9 (September 2005): 2371–78. http://dx.doi.org/10.1557/jmr.2005.0288.
Full textWang, Xi Zhi, Liang Cai Ma, Ling Ma, and Xue Ling Lin. "Influence of the Thickness of Nonmagnetic Spacer on the Magnetic Properties of Fe/Cu Multilayered Nanowires." Key Engineering Materials 787 (November 2018): 93–98. http://dx.doi.org/10.4028/www.scientific.net/kem.787.93.
Full textSong, Jinkyu, Mee-Ree Kim, Youngtae Kim, Darae Seo, Kyungryul Ha, Tae-Eun Song, Wan-Gyu Lee, et al. "Fabrication of junction-free Cu nanowire networks via Ru-catalyzed electroless deposition and their application to transparent conducting electrodes." Nanotechnology 33, no. 6 (November 18, 2021): 065303. http://dx.doi.org/10.1088/1361-6528/ac353d.
Full textRen, Shan, Li Qiang Li, Zhu Feng Liu, Ming Li, and Lan Hong. "The Light Absorption Properties of Cu2S Nanowire Arrays." Advanced Materials Research 528 (June 2012): 272–76. http://dx.doi.org/10.4028/www.scientific.net/amr.528.272.
Full textKorobova, Julia, Dmitry Bazhanov, and Irina Kamynina. "Oxygen Effect on Magnetic Anisotropy Energy of Co Nanowires on Cu(210) Surface - An Ab Initio Study." Solid State Phenomena 233-234 (July 2015): 530–33. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.530.
Full textSun, Xiu Yu, and Fa Qiang Xu. "Controlling Aspect Ratio of Copper Group Nanowire Arrays by Electrochemical Deposition in the Nanopores of AAO." Advanced Materials Research 335-336 (September 2011): 429–32. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.429.
Full textBalela, Mary Donnabelle L., Salvacion B. Orgen, and Michael R. Tan. "Fabrication of Highly Flexible Copper Nanowires in Dual Surfactant Hydrothermal Process." Journal of Nanoscience and Nanotechnology 19, no. 11 (November 1, 2019): 7156–62. http://dx.doi.org/10.1166/jnn.2019.16714.
Full textThankalekshmi, Ratheesh R., Samwad Dixit, In-Tae Bae, Daniel VanHart, and A. C. Rastogi. "Synthesis and Characterization of Cu-doped ZnO Film in Nanowire like Morphology Using Low Temperature Self-Catalytic Vapor-Liquid-Solid (VLS) Method." MRS Proceedings 1494 (2012): 37–42. http://dx.doi.org/10.1557/opl.2012.1696.
Full textHan, Juan, Xiufang Qin, Zhiyong Quan, Lanfang Wang, and Xiaohong Xu. "Perpendicular Giant Magnetoresistance and Magnetic Properties of Co/Cu Nanowire Arrays Affected by Period Number and Copper Layer Thickness." Advances in Condensed Matter Physics 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/9019806.
Full textHuang, Xinwen, Yingying Zhu, Wanquan Yang, Anhua Jiang, Xiaoqiang Jin, Yirong Zhang, Liang Yan, Geshan Zhang, and Zongjian Liu. "A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement." Molecules 24, no. 17 (August 28, 2019): 3132. http://dx.doi.org/10.3390/molecules24173132.
Full textManning, Hugh G., Patrick F. Flowers, Mutya A. Cruz, Claudia Gomes da Rocha, Colin O' Callaghan, Mauro S. Ferreira, Benjamin J. Wiley, and John J. Boland. "The resistance of Cu nanowire–nanowire junctions and electro-optical modeling of Cu nanowire networks." Applied Physics Letters 116, no. 25 (June 22, 2020): 251902. http://dx.doi.org/10.1063/5.0012005.
Full textHarsojo, Harsojo, Lutfi Ayu Puspita, Dedi Mardiansyah, Roto Roto, and Kuwat Triyana. "The Roles of Hydrazine and Ethylenediamine in Wet Synthesis of Cu Nanowire." Indonesian Journal of Chemistry 17, no. 1 (April 1, 2017): 43. http://dx.doi.org/10.22146/ijc.23618.
Full textChen, Jung-Hsuan, Shen-Chuan Lo, Shu-Chi Hsu, and Chun-Yao Hsu. "Fabrication and Characteristics of SnAgCu Alloy Nanowires for Electrical Connection Application." Micromachines 9, no. 12 (December 5, 2018): 644. http://dx.doi.org/10.3390/mi9120644.
Full textLi, Xiaoxin, Xiaogan Li, Ning Chen, Xinye Li, Jianwei Zhang, Jun Yu, Jing Wang, and Zhenan Tang. "CuO-In2O3Core-Shell Nanowire Based Chemical Gas Sensors." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/973156.
Full textCaspani, Sofia, Suellen Moraes, David Navas, Mariana P. Proenca, Ricardo Magalhães, Cláudia Nunes, João Pedro Araújo, and Célia T. Sousa. "The Magnetic Properties of Fe/Cu Multilayered Nanowires: The Role of the Number of Fe Layers and Their Thickness." Nanomaterials 11, no. 10 (October 15, 2021): 2729. http://dx.doi.org/10.3390/nano11102729.
Full textAlouach, H., and G. J. Mankey. "Epitaxial growth of copper nanowire arrays grown on H-terminated Si(110) using glancing-angle deposition." Journal of Materials Research 19, no. 12 (December 1, 2004): 3620–25. http://dx.doi.org/10.1557/jmr.2004.0465.
Full textShen, Yan, Li-Wei Bao, Fang-Zhou Sun, and Tong-Liang Hu. "A novel Cu-nanowire@Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air." Materials Chemistry Frontiers 3, no. 11 (2019): 2363–73. http://dx.doi.org/10.1039/c9qm00277d.
Full textYao, J. L., G. P. Pan, K. H. Xue, D. Y. Wu, B. Ren, D. M. Sun, J. Tang, X. Xu, and Z. Q. Tian. "A complementary study of surface-enhanced Raman scattering and metal nanorod arrays." Pure and Applied Chemistry 72, no. 1-2 (January 1, 2000): 221–28. http://dx.doi.org/10.1351/pac200072010221.
Full textCostas, Andreea, Camelia Florica, Elena Matei, Maria Eugenia Toimil-Molares, Ionel Stavarache, Andrei Kuncser, Victor Kuncser, and Ionut Enculescu. "Magnetism and magnetoresistance of single Ni–Cu alloy nanowires." Beilstein Journal of Nanotechnology 9 (August 30, 2018): 2345–55. http://dx.doi.org/10.3762/bjnano.9.219.
Full textLi, Jun Shou, Xiao Juan Wu, Ming Yuan Wang, and Fang Zhao. "The Preparation Technology of SnO2 Nanowires Based on the System of Al-SnO-Cu2O." Advanced Materials Research 1058 (November 2014): 20–24. http://dx.doi.org/10.4028/www.scientific.net/amr.1058.20.
Full textYang, Guangjie, Mengmeng Cui, Tao Han, Dong Fang, Xingjie Lu, Sui Peng, Olim Ruzimuradov, and Jianhong Yi. "Discharged Na5V12O32 Nanowire Arrays Coated with Cu-Cu2O for High Performance Lithium-Ion Batteries." Journal of The Electrochemical Society 168, no. 11 (November 1, 2021): 110546. http://dx.doi.org/10.1149/1945-7111/ac39dc.
Full textPryjmaková, Jana, Mariia Hryhoruk, Martin Veselý, Petr Slepička, Václav Švorčík, and Jakub Siegel. "Engineered Cu-PEN Composites at the Nanoscale: Preparation and Characterisation." Nanomaterials 12, no. 7 (April 5, 2022): 1220. http://dx.doi.org/10.3390/nano12071220.
Full textChopra, Nitin, Bing Hu, and Bruce J. Hinds. "Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures." Journal of Materials Research 22, no. 10 (October 2007): 2691–99. http://dx.doi.org/10.1557/jmr.2007.0377.
Full textDinh, Cam Thi Mong, Thang Bach Phan, and Hoang Thanh Nguyen. "Synthesis of ZnO nanowires on Ti/glass substrates by DC magnetron sputter deposition." Science and Technology Development Journal 17, no. 2 (June 30, 2014): 47–55. http://dx.doi.org/10.32508/stdj.v17i2.1314.
Full textLi, Lijie, Yan Zhang, and Zhengjun Chew. "A Cu/ZnO Nanowire/Cu Resistive Switching Device." Nano-Micro Letters 5, no. 3 (July 25, 2013): 159–62. http://dx.doi.org/10.1007/bf03353745.
Full textZhang, Yaya, Wen Xu, Shaohui Xu, Guangtao Fei, Yiming Xiao, and Jiaguang Hu. "Optical properties of Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays." Nanoscale Research Letters 7, no. 1 (2012): 569. http://dx.doi.org/10.1186/1556-276x-7-569.
Full textPatella, Bernardo, Carmelo Sunseri, and Rosalinda Inguanta. "Nanostructured Based Electrochemical Sensors." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3459–70. http://dx.doi.org/10.1166/jnn.2019.16110.
Full textChoi, Won Young, Jeong Won Kang, and Ho Jung Hwang. "Cu Nanowire Structures Inside Carbon Nanotubes." Materials Science Forum 449-452 (March 2004): 1229–32. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1229.
Full textBrun, Christophe, Corentin Carmignani, Cheikh Tidiane-Diagne, Simona Torrengo, Pierre-Henri Elchinger, Patrick Reynaud, Aurélie Thuaire, et al. "First Integration Steps of Cu-based DNA Nanowires for interconnections." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, DPC (January 1, 2016): 000650–79. http://dx.doi.org/10.4071/2016dpc-tp15.
Full textHe, Xin, Ruihui He, Qiuming Lan, Feng Duan, Jundong Xiao, Mingxia Song, Mei Zhang, Yeqing Chen, and Yang Li. "A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement." Journal of Nanomaterials 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/2127980.
Full textKimura, Yoshinari, and Hironori Tohmyoh. "Fabrication of Cu oxide/TiO2 p–n nanojunctions by stress-induced migration." Journal of Applied Physics 133, no. 11 (March 21, 2023): 114302. http://dx.doi.org/10.1063/5.0136274.
Full textRobinson, A., and W. Schwarzacher. "Magnetic interactions in Ni–Cu/Cu superlattice nanowire arrays." Journal of Applied Physics 93, no. 10 (May 15, 2003): 7250–51. http://dx.doi.org/10.1063/1.1543895.
Full textLotey, Gurmeet Singh, and N. K. Verma. "Fabrication and characterization of Cu–CdSe–Cu nanowire heterojunctions." Journal of Nanoparticle Research 13, no. 10 (August 5, 2011): 5397–405. http://dx.doi.org/10.1007/s11051-011-0526-5.
Full textda Câmara Santa Clara Gomes, Tristan, Nicolas Marchal, Flavio Abreu Araujo, and Luc Piraux. "Flexible thermoelectric films based on interconnected magnetic nanowire networks." Journal of Physics D: Applied Physics 55, no. 22 (February 3, 2022): 223001. http://dx.doi.org/10.1088/1361-6463/ac4d47.
Full textWang, Yinhai, Jingjing Yang, Changhui Ye, Xiaosheng Fang, and Lide Zhang. "Thermal expansion of Cu nanowire arrays." Nanotechnology 15, no. 11 (August 24, 2004): 1437–40. http://dx.doi.org/10.1088/0957-4484/15/11/009.
Full text