Academic literature on the topic 'Au/Cu nanowire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Au/Cu nanowire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Au/Cu nanowire"
Orgen, Salvacion B., and Mary Donnabelle L. Balela. "Characterization of the Mechanical Integrity of Cu Nanowire-Based Transparent Conducting Electrode." Key Engineering Materials 775 (August 2018): 132–38. http://dx.doi.org/10.4028/www.scientific.net/kem.775.132.
Full textZuo, Yan, Juan Tang, Xiao Tian Li, Yan Zhao, Hai Lan Gong, and Shi Lun Qiu. "Electrodeposition of Ni and Ni-Cu Nanowires in Rectified Porous Anodic Alumina Membrane." Materials Science Forum 663-665 (November 2010): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1121.
Full textShi, Liangjing, Ranran Wang, Haitao Zhai, Yangqiao Liu, Lian Gao, and Jing Sun. "A long-term oxidation barrier for copper nanowires: graphene says yes." Physical Chemistry Chemical Physics 17, no. 6 (2015): 4231–36. http://dx.doi.org/10.1039/c4cp05187d.
Full textZhang, Wei, Xin Min Huang, Yong Jiu Zhao, Yu Cheng Wu, Guang Qing Xu, Kang Xu, Peng Li, and Peng Jie Zhang. "Direct Electrodeposition of Highly Ordered Au-Cu Alloy Nanowire Arrays." Advanced Materials Research 652-654 (January 2013): 155–58. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.155.
Full textWang, Yuanxing, Cailing Niu, and Yachuan Zhu. "Copper–Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide." Nanomaterials 9, no. 2 (January 30, 2019): 173. http://dx.doi.org/10.3390/nano9020173.
Full textMabuchi, Yota, Norhana Mohamed Rashid, Jian Bo Liang, Naoki Kishi, and Tetsuo Soga. "Direct existence to suggest activity of copper ions surface diffusion on nanowire in growth process." Modern Physics Letters B 33, no. 21 (July 30, 2019): 1950249. http://dx.doi.org/10.1142/s021798491950249x.
Full textDing, Su, and Yanhong Tian. "Recent progress of solution-processed Cu nanowires transparent electrodes and their applications." RSC Advances 9, no. 46 (2019): 26961–80. http://dx.doi.org/10.1039/c9ra04404c.
Full textKamimura, Himeyo, Masamitsu Hayashida, and Takeshi Ohgai. "CPP-GMR Performance of Electrochemically Synthesized Co/Cu Multilayered Nanowire Arrays with Extremely Large Aspect Ratio." Nanomaterials 10, no. 1 (December 18, 2019): 5. http://dx.doi.org/10.3390/nano10010005.
Full textCETINEL, A., and Z. ÖZCELIK. "INFLUENCE OF NANOWIRE DIAMETER ON STRUCTURAL AND OPTICAL PROPERTIES OF Cu NANOWIRE SYNTHESIZED IN ANODIC ALUMINIUM OXIDE FILM." Surface Review and Letters 23, no. 01 (February 2016): 1550093. http://dx.doi.org/10.1142/s0218625x15500936.
Full textChen, Cai Feng, Hao Wang, Zhi Dan Ding, and An Dong Wang. "Fabrication of Copper Nanowire Arrays by Electrolytic Deposition." Journal of Nano Research 32 (May 2015): 25–31. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.25.
Full textDissertations / Theses on the topic "Au/Cu nanowire"
Riminucci, Alberto. "Electrodeposited superconducting Pb, Pb-Cu and Pb-Co nanowires." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404088.
Full textBöhnert, Tim [Verfasser], and Kornelius [Akademischer Betreuer] Nielsch. "Magneto-thermopower and Magnetoresistance of Co-Ni Alloy and Co-Ni/Cu Multilayered Nanowires. / Tim Böhnert. Betreuer: Kornelius Nielsch." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1052996698/34.
Full textHashemi, Hossein [Verfasser], Wolfram [Akademischer Betreuer] Hergert, Kalevi [Akademischer Betreuer] Kokko, and Arthur [Akademischer Betreuer] Ernst. "First principles study of magnetic properties of nanowires on Cu surfaces / Hossein Hashemi. Betreuer: Wolfram Hergert ; Kalevi Kokko ; Arthur Ernst." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2015. http://d-nb.info/1067098690/34.
Full textЛатишев, Віталій Михайлович, Виталий Михайлович Латышев, and Vitalii Mykhailovych Latyshev. "Механизмы роста 3D-структур C, Cu, Zn в условиях околоравновесной стационарной конденсации." Thesis, СумГУ, 2015. http://essuir.sumdu.edu.ua/handle/123456789/39759.
Full textДиссертационная работа посвящена изучению закономерностей структурообразования 3D-систем веществ существенно различной летучести (C, Cu и Zn) в условиях околоравновесной стационарной конденсации. Осаждая конденсаты углерода в условиях, близких к термодинамическому равновесию, с помощью накопительной системы плазма-конденсат (НСПК), на начальном этапе селективного роста (в течение 6 мин) при давлении аргона 6 Па и мощности разряда 50 Вт были получены шарообразные слабосвязанные графитоподобные наноструктуры. При более продолжительной конденсации в течении нескольких часов происходит формирование графитоподобных шарообразных включений. Повышение давления рабочего газа от 6 до 10 Па при слабом изменении всех прочих технологических параметров способствует реализации более стационарного технологического процесса и зарождению на графитоподобных шарообразных включениях нановолокон. Сделано предположение о том, что в качестве активных центров зарождения углеродных нановолокон выступают изогнутые графеновые плоскости шаровидных структур. Установлено, что процесс зарождения и роста различных нановолокон разнесен во времени и определяется наличием шарообразных графитоподобных включений. Создана математическая модель массопереноса распыленного вещества в промежутке между мишенью и подложкой, адекватно описывающая процесс созревания по Оствальду островков меди приблизительно одинакового размера. На примере трех серий экспериментов по осаждению пористых структур меди при помощи магнетронного распыления было показано, что основу процесса образования пор составляют малые значения пересыщения осаждаемых паров, влекущие за собой различные скорости наращивания конденсата в близлежащих точках ростовой поверхности. Подобный селективный рост кристаллов возможен вследствие флуктуаций в распределении активных центров, при избирательной застройке кристаллографических плоскостей с максимальной энергией десорбции адатомов, а также при наличии отрицательного смещения и соответствующей фокусировке осаждаемых ионов на выступающие части ростовой поверхности. В последующем неполное сращивание кристаллов приводит к образованию пор и к появлению активных центров, необходимых для зарождения новых кристаллов. На основании анализа экспериментальных данных по получению конденсатов цинка в НСПК было выявлено существование трех зон (на диаграмме параметров «давление рабочего газа – мощность разряда») в пределах которых формируются одинаковые по характеру пористые структуры. Широкий спектр значений технологических параметров зоны 1 подтверждает процесс самоорганизации малых значений пересыщений и позволяет получать наносистемы цинка с высокой воспроизводимостью структурно-морфологических характеристик при среднем диаметре нанонитей 60 нм. При переходе в зону 2, а затем в зону 3 наблюдается постепенное увеличение пересыщения, которое подтверждается постепенным переходом к формированию структур в виде слабо связанных друг с другом системы ограненных кристаллов. Показано, что сопротивление окисленных систем цинка сильно зависит от газовой среды, в которой они находятся. Так для концентрации 0,7% пропана в воздухе, сопротивление образца снижается в 159 раз по сравнению с сопротивлением в чистом воздухе. Таким образом, полученные структуры могут найти применение в качестве газовых сенсоров, по крайней мере, к смеси пропан-бутан.
Dissertation is devoted to the investigation of the structure formation regularities of the C, Cu and Zn 3D-systems under the condensation conditions of the weakly saturated vapors and by using both the classical method of magnetron sputtering and the plasma-condensate accumulation system (PCAS). Technological conditions of the nanospheres and microspheres formation on the basis of C, on which hereafter the nanowires arise, are determined. A mathematical model that adequately describes the process of Ostwald ripening of the rounded Cu islands of the approximately equal size was created. On the example of three series of experiments on Cu porous structures deposition by using magnetron sputtering it has been shown that the small values of supersaturation of the deposited vapors, which cause different speeds of the condensate’s increase in the nearby situated growth surface points constitute the basis of the porous structures formation. Mechanisms of Zn 3D-systems structure formation by using both classical method of magnetron sputtering and PCAS are studied. It is determined that the oxidized porous zinc condensates can be used as gas sensors.
Chang, Hong-Da, and 張宏達. "The fabrication of Cu nanowire." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/45817584357578501894.
Full text國立清華大學
電子工程研究所
91
We developed the electrochemical displacement method for Cu nanowire formed by replacing the silicon and the amorphous-silicon on SiO2/Si structure with electron beam lithography. The various line width from 0.1μm to 0.2μm were patterned by e-beam resist DSE1010 exposed with dose 6mC/cm2. Oxygen-plasma treatment is used to transfer the surfaces of the e-beam resist DSE1010 from hydrophobia to hydrophilia. The width of the e-beam resist DSE1010 diluted with tolene (1:1) after 30w oxygen-plasma treatment with time 30 sec was 0.18μm. The resist flow process can reduce the line width to 78nm. Then, The copper nanowire can be fabricated by immerse the silicon and amorphous- silicon into solution mixed with cupric sulphate (CuSO4˙5H2O)with 4g/L and various HF atomic percent. We successfully fabricated Cu nanowire with a width/height of 78nm/53 nm and 98nm/68nm by replacing silicon atoms from crystal silicon wafer and amorphous-silicon, respectively.
Chen, Cheng-Chi, and 陳政琦. "The Study of Synthesis of Cu-Doped RuO2 Nanowires and the Electrical Property of a Single Cu-Doped RuO2 Nanowire." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/71673959957270976467.
Full textSutrakar, Vijay Kumar. "A Computational Study of Structural and Thermo-Mechanical Behavior of Metallic Nanowires." Thesis, 2013. http://etd.iisc.ernet.in/2005/3370.
Full textLai, Chien Ming, and 賴建銘. "Bilayer Prelithiated Ge/Cu and Si/Cu Nanowire Fabric as an Anode for Lithium Ion Capacitors." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/zj73x8.
Full text國立清華大學
化學工程學系
104
At present, due to the development of portable device and electric vehicles, high energy density isn’t the only purpose required. Possessing high power density is another issue which needs to be considered. An electrical device containing both high energy density and high power density will be the most wanted result. As a result, a lithium ion capacitor has been designed by using pre-lithiated germanium/copper and silicon/copper nanowire fabric for negative electrodes with activated carbon for positive electrodes. For germanium, the performance is 200 F g-1 at 0.1 A g-1. And at high current density of 100 A g-1, the capacitance can still hold about 50 F g-1. The LIC have 108 W kg-1, when the energy density is 180 W h kg-1. While low energy density, the LIC would have ultrahigh power density of 110kW kg-1. For silicon, the performance of this LIC at 0.1 g-1 is 220 F g-1, which is approximated twice of capacitance of AC in EDLCs. Even at high current density of 50 A g-1, the capacitance can still hold about 80 F g-1. At a low power density of 170 W kg-1, the energy density is as high as 208 W h kg-1. The power density increases to 75 kW kg-1, which is much higher than most results in lithium ion capacitors, while the energy density still remains at 43 W h kg-1. As a result, we believe that this device can be used in numerous applications such as electrical vehicles (EVs) and hybrid electrical vehicles (HEVs).
Fan, Hsin-Hsin, and 范馨心. "Flower-like Cu/CuxO Nanowire Array Electrodes for Non-enzymatic Glucose Sensing." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2s292r.
Full textWu, Chung-Ying, and 吳忠縈. "Fabrication and structure properties of multilayered CoNi/Cu nanowire arrays electrodeposited in AAO templates." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/92260154992008586336.
Full text南台科技大學
化學工程與材枓工程系
97
In this study, the multilayered CoNi/Cu nanowire arrays is prepared by using the arrays nanoporous of anodic aluminum oxide membrane as a template (AAO template ) with electrodeposition method. The diameter of AAO pores is about 250nm, 90nm and 70nm, respectively. The CoNi/Cu nanowire arrays were deposited at various electrolytic condition. The optimum electrolytic conditions had been investigated. Furthermore, we changed in non-ferromagnetic layer thickness, Co/Ni ions concentration and pore diameter of AAO, and its microcrystalline structure and magnetic properties were investigated.. The deposition rates is increased with the increasing of the electrolytic potential. CoNi alloy layers almost not be obtained as the electrolytic potential less then -0.9 V. The CoNi/Cu nanowires were deposited successfully in the electrolytic potential range of -0.9 V to -1.2 V. On the other hand, the multilayered CoNi/Cu nanowires were not grown uniformly as the electrolytic potential above -1.0 V. Therefore, the optimum electrolytic potential was determined of -1.0 V. Crystalline structure of multilayered CoNi/Cu nanowires was always fcc structure with any deposited potential for Co-Ni alloy and Cu. On the other hand, the thickness of Cu layer affect significantly on the magnetization of Co-Ni alloy layers. When the thickness of layer was above 1.5μm and had a bed magnetization. Different Co-Ni deposition potential affects not only the deposition rate of the nanowire, but also the impact of Co-Ni layers of the proportion of elements. In addition, in the control of various Co-Ni ion concentration can also adjust the ratio of elements of Co-Ni alloy layer. In the TEM analysis of the elements also proved for the continuous multilayered nanowires compose of the Co-Ni layers and Cu layers. From VSM pattern the saturate magnetization can be 11000 Oe., the easy magnetization axis are all perpendicular the nanowires, and the coercivity of multilayered CoNi/Cu nanowires are in the soft and hard magnet range. The multilayered CoNi/Cu nanowires with different Cu layer thickness, as well as Co-Ni ratio of ion concentration changes on the magnetic properties also change. Looked in the coercive, because the magnetism crystal make multilayered CoNi/Cu nanowires deviation hard magnetism the material, to this us may know in multilayered CoNi/Cu nanowires may do for outside the magnetically soft material good application, may depend on the demand affiliation in the hard magnetism aspect by the different atom content ratio alloy nanowire, synthesizes must material, regarding future on magnetic recording media its application value.
Book chapters on the topic "Au/Cu nanowire"
Choi, Soon Mee, Jiung Cho, Young Keun Kim, and Cheol Jin Kim. "TEM Analysis of Multilayered Co/Cu Nanowire Synthesized by DC Electrodeposition." In Solid State Phenomena, 1233–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1233.
Full textYamaya, F., N. Settsu, and M. Saka. "Fabrication of Cu Nanowire at the Intended Position by Utilizing Stress Migration." In Experimental Analysis of Nano and Engineering Materials and Structures, 515–16. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_255.
Full textJiménez-Sáez, J. C., A. M. C. Pérez-Martín, and J. J. Jiménez-Rodríguez. "Elastic Properties of Co/Cu Nanocomposite Nanowires." In New Frontiers of Nanoparticles and Nanocomposite Materials, 337–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/8611_2011_62.
Full textGahlaut, U. P. S., Vijay Kumar, R. K. Pandey, and Y. C. Goswami. "Growth of Blue Luminescent Cu Doped ZnO Nanowires by Modified Sol-Gel." In Springer Proceedings in Physics, 341–45. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_43.
Full textChien, N. D., H. V. Chung, P. T. Huy, Do Jin Kim, and Maurizio Ferrari. "Mn, Cu Doping and Optical Properties of Highly Crystalline Ultralong ZnS Nanowires." In Semiconductor Photonics: Nano-Structured Materials and Devices, 114–16. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.114.
Full textZenimoto, Y., T. Ohgai, M. Nakai, and S. Hasuo. "Giant Magnetoresistance of CoNi/Cu Multilayered Nanowires Electrodeposited into Anodized Aluminum Oxide Nanochannels." In PRICM, 2043–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch253.
Full textZenimoto, Y., T. Ohgai, M. Nakai, and S. Hasuo. "Giant Magnetoresistance of CoNi/Cu Multilayered Nanowires Electrodeposited into Anodized Aluminum Oxide Nanochannels." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2043–50. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_253.
Full textLahmer, M. A. "The Effect of Doping with N and Cu Atoms on the Hydrogen Sensing Properties of the ZnO$$ \left( {10\bar{1}\varvec{ }0} \right) $$ Surface and ZnO Nanowires: A First-Principles Study." In Proceedings of the Third International Symposium on Materials and Sustainable Development, 644–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89707-3_68.
Full textPullini, Daniele, David Busquets, and Alessio Tommasi. "Co/Cu Nanowire Systems for GMR Sensing Applications." In Nanowires - Implementations and Applications. InTech, 2011. http://dx.doi.org/10.5772/17155.
Full text"Electrochemical study of Cu nanowire growth in aqueous solution." In Advanced Materials, Structures and Mechanical Engineering, 259–62. CRC Press, 2016. http://dx.doi.org/10.1201/b19693-54.
Full textConference papers on the topic "Au/Cu nanowire"
Jiang, Han, Stuart Robertson, Zhaoxia Zhou, and Changqing Liu. "Cu-Cu Bonding with Cu Nanowire Arrays for Electronics Integration." In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). IEEE, 2020. http://dx.doi.org/10.1109/estc48849.2020.9229670.
Full textAli, M. Yakut, Fanghao Yang, Ruixian Fang, Chen Li, and Jamil Khan. "Effect of 1D Cu Nanostructures on Heat Transfer Characteristics of Single Phase Microchannel Heat Sink." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44563.
Full textSul, Onejae, Seongjin Jang, and Eui-Hyeok Yang. "Characterization of Thermomechanical Properties of Polypyrrole Nanowires." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12371.
Full textYu, Zechun, Ying Zhao Tan, Christoph F. Bayer, Hubert Rauh, Andreas Schletz, Martin Marz, and Olav Birlem. "Cu-Cu Thermocompression Bonding with Cu-Nanowire Films for Power Semiconductor Die-Attach on DBC Substrates." In 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). IEEE, 2021. http://dx.doi.org/10.1109/eptc53413.2021.9663890.
Full textChen, Zhichao, Zhan Yang, Tao Chen, and Lining Sun. "Electron beam introduced Cu melting for CNT/Cu hybrid nanowire based on nanorobotics." In 2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO). IEEE, 2016. http://dx.doi.org/10.1109/arso.2016.7736278.
Full textTeshima, Hiromasa, Kohei Kojima, and Yang Ju. "Fabrication of Anodic Aluminum Oxide Template and Cu Nanowire Surface Fastener." In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73125.
Full textGao, Fan, Qiyue Yin, Jirui Wang, Guangwen Zhou, and Zhiyong Gu. "Synthesis and Characterization of One-Dimensional Cu-Sn Nanowire Diffusion Couples for Nanowire Assembly and Interconnection." In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016. http://dx.doi.org/10.1109/ectc.2016.101.
Full textArmstrong, J. C., and J. B. Cui. "Solution processed Cu(In, Ga)S2 for nanowire solar cells." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744996.
Full textCatenacci, Matthew J., Patrick F. Flowers, Changyong Cao, Joseph B. Andrews, Aaron D. Franklin, and Benjamin J. Wiley. "Fully printed memristors from Cu-SiO2 core-shell nanowire composites." In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999482.
Full textLiu, Meng, Tie Li, and Yuelin Wang. "Low voltage field emission of Cu nanowire with nanogap in air." In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8017036.
Full text