Academic literature on the topic 'Attosecond'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Attosecond.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Attosecond"

1

Jordan, Inga, Martin Huppert, Dominik Rattenbacher, Michael Peper, Denis Jelovina, Conaill Perry, Aaron von Conta, Axel Schild, and Hans Jakob Wörner. "Attosecond spectroscopy of liquid water." Science 369, no. 6506 (August 20, 2020): 974–79. http://dx.doi.org/10.1126/science.abb0979.

Full text
Abstract:
Electronic dynamics in liquids are of fundamental importance, but time-resolved experiments have so far remained limited to the femtosecond time scale. We report the extension of attosecond spectroscopy to the liquid phase. We measured time delays of 50 to 70 attoseconds between the photoemission from liquid water and that from gaseous water at photon energies of 21.7 to 31.0 electron volts. These photoemission delays can be decomposed into a photoionization delay sensitive to the local environment and a delay originating from electron transport. In our experiments, the latter contribution is shown to be negligible. By referencing liquid water to gaseous water, we isolated the effect of solvation on the attosecond photoionization dynamics of water molecules. Our methods define an approach to separating bound and unbound electron dynamics from the structural response of the solvent.
APA, Harvard, Vancouver, ISO, and other styles
2

Wikmark, Hampus, Chen Guo, Jan Vogelsang, Peter W. Smorenburg, Hélène Coudert-Alteirac, Jan Lahl, Jasper Peschel, et al. "Spatiotemporal coupling of attosecond pulses." Proceedings of the National Academy of Sciences 116, no. 11 (March 1, 2019): 4779–87. http://dx.doi.org/10.1073/pnas.1817626116.

Full text
Abstract:
The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high-quality focusing while retaining the broadband/ultrashort characteristics of the radiation.
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, Zhensheng, Cong Chen, Tibor Szilvási, Mark Keller, Manos Mavrikakis, Henry Kapteyn, and Margaret Murnane. "Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids." Science 353, no. 6294 (June 2, 2016): 62–67. http://dx.doi.org/10.1126/science.aaf6793.

Full text
Abstract:
Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. We report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron–like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to the final-state band dispersion as a function of electron transverse momentum. This finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yindong, Jing Zhao, Zheng Shu, Yalei Zhu, Jinlei Liu, Wenpu Dong, Xiaowei Wang, et al. "Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry." Ultrafast Science 2021 (July 7, 2021): 1–12. http://dx.doi.org/10.34133/2021/9837107.

Full text
Abstract:
Understanding the evolution of molecular electronic structures is the key to explore and control photochemical reactions and photobiological processes. Subjected to strong laser fields, electronic holes are formed upon ionization and evolve in the attosecond timescale. It is crucial to probe the electronic dynamics in real time with attosecond-temporal and atomic-spatial precision. Here, we present molecular attosecond interferometry that enables the in situ manipulation of holes in carbon dioxide molecules via the interferometry of the phase-locked electrons (propagating in opposite directions) of a laser-triggered rotational wave packet. The joint measurement on high-harmonic and terahertz spectroscopy (HATS) provides a unique tool for understanding electron dynamics from picoseconds to attoseconds. The optimum phases of two-color pulses for controlling the electron wave packet are precisely determined owing to the robust reference provided with the terahertz pulse generation. It is noteworthy that the contribution of HOMO-1 and HOMO-2 increases reflecting the deformation of the hole as the harmonic order increases. Our method can be applied to study hole dynamics of complex molecules and electron correlations during the strong-field process. The threefold control through molecular alignment, laser polarization, and the two-color pulse phase delay allows the precise manipulation of the transient hole paving the way for new advances in attochemistry.
APA, Harvard, Vancouver, ISO, and other styles
5

Leone, Stephen R., and Daniel M. Neumark. "Attosecond science in atomic, molecular, and condensed matter physics." Faraday Discussions 194 (2016): 15–39. http://dx.doi.org/10.1039/c6fd00174b.

Full text
Abstract:
Attosecond science represents a new frontier in atomic, molecular, and condensed matter physics, enabling one to probe the exceedingly fast dynamics associated with purely electronic dynamics in a wide range of systems. This paper presents a brief discussion of the technology required to generate attosecond light pulses and gives representative examples of attosecond science carried out in several laboratories. Attosecond transient absorption, a very powerful method in attosecond science, is then reviewed and several examples of gas phase and condensed phase experiments that have been carried out in the Leone/Neumark laboratories are described.
APA, Harvard, Vancouver, ISO, and other styles
6

Hammond, T. J., Graham G. Brown, Kyung Taec Kim, D. M. Villeneuve, and P. B. Corkum. "Attosecond pulses measured from the attosecond lighthouse." Nature Photonics 10, no. 3 (January 18, 2016): 171–75. http://dx.doi.org/10.1038/nphoton.2015.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lara-Astiaso, Manuel, David Ayuso, Ivano Tavernelli, Piero Decleva, Alicia Palacios, and Fernando Martín. "Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook." Faraday Discussions 194 (2016): 41–59. http://dx.doi.org/10.1039/c6fd00074f.

Full text
Abstract:
The sudden ionization of a molecule by an attosecond pulse is followed by charge redistribution on a time scale from a few femtoseconds down to hundreds of attoseconds. This ultrafast redistribution is the result of the coherent superposition of electronic continua associated with the ionization thresholds that are reached by the broadband attosecond pulse. Thus, a correct theoretical description of the time evolution of the ensuing wave packet requires the knowledge of the actual ionization amplitudes associated with all open ionization channels, a real challenge for large and medium-size molecules. Recently, the first calculation of this kind has come to light, allowing for interpretation of ultrafast electron dynamics observed in attosecond pump–probe experiments performed on the amino acid phenylalanine [Calegari et al., Science 2014, 346, 336]. However, as in most previous theoretical works, the interpretation was based on various simplifying assumptions, namely, the ionized electron was not included in the description of the cation dynamics, the nuclei were fixed at their initial position during the hole migration process, and the effect of the IR probe pulse was ignored. Here we go a step further and discuss the consequences of including these effects in the photoionization of the glycine molecule. We show that (i) the ionized electron does not affect hole dynamics beyond the first femtosecond, and (ii) nuclear dynamics has only a significant effect after approximately 8 fs, but does not destroy the coherent motion of the electronic wave packet during at least few additional tens of fs. As a first step towards understanding the role of the probe pulse, we have considered an XUV probe pulse, instead of a strong IR one, and show that such an XUV probe does not introduce significant distortions in the pump-induced dynamics, suggesting that pump–probe strategies are suitable for imaging and manipulating charge migration in complex molecules. Furthermore, we show that hole dynamics can be changed by shaping the attosecond pump pulse, thus opening the door to the control of charge dynamics in biomolecules.
APA, Harvard, Vancouver, ISO, and other styles
8

Morimoto, Yuya, and Peter Baum. "Microscopy and diffraction with attosecond electron pulse trains." EPJ Web of Conferences 205 (2019): 08008. http://dx.doi.org/10.1051/epjconf/201920508008.

Full text
Abstract:
Attosecond imaging with electron beams can access optical-field-driven electron dynamics in space and time. Here we report first diffraction and microscopy experiments with attosecond electron pulses. We study attosecond-level timing of Bragg-spot emission and visualize light-wave propagation in space and time.
APA, Harvard, Vancouver, ISO, and other styles
9

Georgescu, Iulia. "Attosecond beacons." Nature Physics 9, no. 1 (December 21, 2012): 9. http://dx.doi.org/10.1038/nphys2522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vrakking, Marc J. J. "Attosecond imaging." Physical Chemistry Chemical Physics 16, no. 7 (2014): 2775. http://dx.doi.org/10.1039/c3cp53659a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Attosecond"

1

Fieß, Markus. "Advancing attosecond metrology." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-119134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gagnon, Justin. "Attosecond Electron Spectroscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-125375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eckle, Petrissa Roberta. "Attosecond angular streaking /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lupetti, Mattia. "Plasmonic generation of attosecond pulses and attosecond imaging of surface plasmons." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183678.

Full text
Abstract:
Attosecond pulses are ultrashort radiation bursts produced via high harmonic generation (HHG) during a highly nonlinear excitation process driven by a near infrared (NIR) laser pulse. Attosecond pulses can be used to probe the electron dynamics in ultrafast processes via the attosecond streaking technique, with a resolution on the attosecond time scale. In this thesis it is shown that both the generation of attosecond (AS) pulses and the probing of ultrafast processes by means of AS pulses, can be extended to cases in which the respective driving and streaking fields are produced by surface plasmons excited on nanostructures at NIR wavelengths. Surface plasmons are optical modes generated by collective oscillations of the surface electrons in resonance with an external source. In the first part of this thesis, the idea of high harmonic generation (HHG) in the enhanced field of a surface plasmon is analyzed in detail by means of numerical simulations. A NIR pulse is coupled into a surface plasmon propagating in a hollow core tapered waveguide filled with noble gas. The plasmon field intensity increases for decreasing waveguide radius, such that at the apex the field enhancement is sufficient for producing high harmonic radiation. It is shown that with this setup it is possible to generate isolated AS pulses with outstanding spatial and temporal structure, but with an intensity of orders of magnitude smaller than in standard gas harmonic arrangements. In the second part, an experimental technique for the imaging of surface plasmonic excitations on nanostructured surfaces is proposed, where AS pulses are used to probe the surface field by means of photoionization. The concept constitutes an extension of the attosecond streak camera to ``Attosecond Photoscopy'', which allows space- and time-resolved imaging of the plasmon dynamics during the excitation process. It is numerically demonstrated that the relevant parameters of the plasmonic resonance buildup phase can be determined with subfemtosecond precision. Finally, the method used for the numerical solution of the Maxwell's equations is discussed, with particular attention to the problem of absorbing boundary conditions. New insights into the mathematical formulation of the absorbing boundary conditions for Maxwell's equations are provided.
Attosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik eines ultraschnellen Prozesses durch die ``Attosecond Streaking'' Technik zu messen, mit einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mittels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz mit einer externen Quelle entstehen. Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Generation (HHG) in plasmonisch erhöhten Feldern durch numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon, das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonische Strahlung zu generieren. Es wird nachgewiesen, dass die Herstellung von isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in Experimenten mit fokussierten Laserpulsen erreicht werden kann. Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer Oberflächenanregungen vorgeschlagen, wobei Attosekundenpulse verwendet werden, um das Feld an der Oberfläche mittels ``Momentum Streaking'' der photoionisierten Elektronen zu messen. Dieses Konzept ist eine Erweiterung der ``Attosecond Streak Camera'', welches ich ``Attosecond Photoscopy'' nenne. Es ermöglicht die Abbildung eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von numerischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können. Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen diskutiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden vorgestellt.
APA, Harvard, Vancouver, ISO, and other styles
5

Flögel, Martin [Verfasser]. "Raising the XUV Intensity towards Attosecond-Attosecond Pump-Probe Experiments / Martin Flögel." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1133492347/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wirth, Adrian. "Attosecond transient absorption spectroscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-140120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chirla, Razvan Cristian. "Attosecond Pulse Generation and Characterization." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313429461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hageman, Stephen James. "Complex Attosecond Transient-absorption Spectroscopy." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1608050018545904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schapper, Florian. "Attosecond structure of high-order harmonics." Konstanz Hartung-Gorre, 2010. http://d-nb.info/1000540448/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Yi. "High flux isolated attosecond pulse generation." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6038.

Full text
Abstract:
This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a chirped pulse amplifier up to the current date. Second, using this laser as a driving laser source, the generalized double optical gating method is employed to generate isolated attosecond pulses. Detailed gate width analysis of the ellipticity dependent pulse were performed. Calculation of electron light interaction dynamics on the atomic level was carried out to demonstrate the mechanism of isolated pulse generation. Third, a complete diagnostic apparatus was built to extract and analyze the generated attosecond pulse in spectral domain. The result confirms that an extreme ultraviolet super continuum supporting 230 as isolated attosecond pulses at 35 eV was generated using the generalized double optical gating technique. The extreme ultraviolet pulse energy was ~100 nJ at the exit of the argon gas target.
Ph.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Attosecond"

1

Hommelhoff, Peter, and Matthias F. Kling, eds. Attosecond Nanophysics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plaja, Luis, Ricardo Torres, and Amelle Zaïr, eds. Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37623-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vrakking, Marc J. J., and Franck Lepine, eds. Attosecond Molecular Dynamics. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marciak-Kozłowska, Janina. Attosecond matter tomography. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fundamentals of attosecond optics. Boca Raton: Taylor & Francis, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schultz, Thomas, and Marc Vrakking, eds. Attosecond and XUV Physics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schötz, Johannes. Attosecond Experiments on Plasmonic Nanostructures. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13713-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yamanouchi, Kaoru, and Midorikawa Katsumi, eds. Multiphoton Processes and Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28948-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katsumi, Midorikawa, and SpringerLink (Online service), eds. Multiphoton Processes and Attosecond Physics: Proceedings of the 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matulewski, Jacek. Jonizacja i rekombinacja w silnym polu lasera attosekundowego = Atom ionization and laser assisted recombination in a super-strong field of an attosecond laser pulse. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Attosecond"

1

Weik, Martin H. "attosecond." In Computer Science and Communications Dictionary, 76. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kling, Matthias F., Brady C. Steffl, and Peter Hommelhoff. "Introduction." In Attosecond Nanophysics, 1–10. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chew, Soo Hoon, Kellie Pearce, Christian Späth, Alexander Guggenmos, Jürgen Schmidt, Frederik Süßmann, Matthias F. Kling, et al. "Imaging Localized Surface Plasmons by Femtosecond to Attosecond Time-Resolved Photoelectron Emission Microscopy - “ATTO-PEEM”." In Attosecond Nanophysics, 325–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pfullmann, Nils, Monika Noack, Carsten Reinhardt, Milutin Kovacev, and Uwe Morgner. "Nano-Antennae Assisted Emission of Extreme Ultraviolet Radiation." In Attosecond Nanophysics, 11–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dombi, Péter, and Abdulhakem Y. Elezzabi. "Ultrafast, Strong-Field Plasmonic Phenomena." In Attosecond Nanophysics, 39–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saalmann, Ulf, and Jan-Michael Rost. "Ultrafast Dynamics in Extended Systems." In Attosecond Nanophysics, 87–118. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Varin, Charles, Christian Peltz, Thomas Brabec, and Thomas Fennel. "Light Wave Driven Electron Dynamics in Clusters." In Attosecond Nanophysics, 119–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Süßmann, Frederik, Matthias F. Kling, and Peter Hommelhoff. "From Attosecond Control of Electrons at Nano-Objects to Laser-Driven Electron Accelerators." In Attosecond Nanophysics, 155–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Apalkov, Vadym, and Mark I. Stockman. "Theory of Solids in Strong Ultrashort Laser Fields." In Attosecond Nanophysics, 197–234. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schiffrin, Agustin, Tim Paasch-Colberg, and Martin Schultze. "Controlling and Tracking Electric Currents with Light." In Attosecond Nanophysics, 235–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Attosecond"

1

Bandrauk, Andre D. "Circularly polarized attosecond pulses for attosecond magnetics." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kienberger, Reinhard, and Ferenc Krausz. "Attosecond physics." In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walmsley, I. A. "Attosecond metrology." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Corkum, Paul. "Attosecond Metrology." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krausz, Ferenc. "Attosecond Physics." In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vincenti, Henri, Jonathan Wheeler, Sylvain Monchocé, Antonin Borot, Arnaud Malvache, Rodrigo Lopez-Martens, and Fabien Quéré. "Attosecond Lighthouses." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qtu3h.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kartner, Franz X. "Attosecond photonics." In 2012 IEEE Photonics Conference (IPC). IEEE, 2012. http://dx.doi.org/10.1109/ipcon.2012.6358774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Corkum, Paul B. "Attosecond science." In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXI, edited by Peter R. Herman, Michel Meunier, and Roberto Osellame. SPIE, 2021. http://dx.doi.org/10.1117/12.2587086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

L'Huillier, Anne. "An Introduction to Attosecond Pulses and Attosecond Physics." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smirnova, Olga, Michel Spanner, S. Patchkovskii, and Misha Ivanov. "Direct Imaging of Attosecond Electron Recollision: An Attosecond Microscope." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jwa3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Attosecond"

1

Ian A. Walmsley and Robert W. Boyd. Generation and Characterization of Attosecond Pulses. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/881556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaertner, Franz X. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada565327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zholents, Alexander A., and William M. Fawley. Intense attosecond radiation from an X-ray FEL - extended version. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/842897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Emma, P. ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stupakov, Gennady. Ponderomotive Laser Acceleration and Focusing in Vacuum: Application for Attosecond Electron Bunches. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/765009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, Alexander Roy, and Karl Krushelnick. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1322280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zholents, Alexander. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/842992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kulander, K. C. A source for quantum control: generation and measurement of attosecond ultraviolet light pulses. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/8201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ben-Itzhak, Itzik. Attosecond Physics 2009 (July 28 to August 1, 2009, at Kansas State U/Manhattan). Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1031469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DiMauro, Louis F. Final Report: Student Support for the "Frontiers in Attosecond & Ultrafast X-ray Science" School. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography