Academic literature on the topic 'Attosecond'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Attosecond.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Attosecond"
Jordan, Inga, Martin Huppert, Dominik Rattenbacher, Michael Peper, Denis Jelovina, Conaill Perry, Aaron von Conta, Axel Schild, and Hans Jakob Wörner. "Attosecond spectroscopy of liquid water." Science 369, no. 6506 (August 20, 2020): 974–79. http://dx.doi.org/10.1126/science.abb0979.
Full textWikmark, Hampus, Chen Guo, Jan Vogelsang, Peter W. Smorenburg, Hélène Coudert-Alteirac, Jan Lahl, Jasper Peschel, et al. "Spatiotemporal coupling of attosecond pulses." Proceedings of the National Academy of Sciences 116, no. 11 (March 1, 2019): 4779–87. http://dx.doi.org/10.1073/pnas.1817626116.
Full textTao, Zhensheng, Cong Chen, Tibor Szilvási, Mark Keller, Manos Mavrikakis, Henry Kapteyn, and Margaret Murnane. "Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids." Science 353, no. 6294 (June 2, 2016): 62–67. http://dx.doi.org/10.1126/science.aaf6793.
Full textHuang, Yindong, Jing Zhao, Zheng Shu, Yalei Zhu, Jinlei Liu, Wenpu Dong, Xiaowei Wang, et al. "Ultrafast Hole Deformation Revealed by Molecular Attosecond Interferometry." Ultrafast Science 2021 (July 7, 2021): 1–12. http://dx.doi.org/10.34133/2021/9837107.
Full textLeone, Stephen R., and Daniel M. Neumark. "Attosecond science in atomic, molecular, and condensed matter physics." Faraday Discussions 194 (2016): 15–39. http://dx.doi.org/10.1039/c6fd00174b.
Full textHammond, T. J., Graham G. Brown, Kyung Taec Kim, D. M. Villeneuve, and P. B. Corkum. "Attosecond pulses measured from the attosecond lighthouse." Nature Photonics 10, no. 3 (January 18, 2016): 171–75. http://dx.doi.org/10.1038/nphoton.2015.271.
Full textLara-Astiaso, Manuel, David Ayuso, Ivano Tavernelli, Piero Decleva, Alicia Palacios, and Fernando Martín. "Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook." Faraday Discussions 194 (2016): 41–59. http://dx.doi.org/10.1039/c6fd00074f.
Full textMorimoto, Yuya, and Peter Baum. "Microscopy and diffraction with attosecond electron pulse trains." EPJ Web of Conferences 205 (2019): 08008. http://dx.doi.org/10.1051/epjconf/201920508008.
Full textGeorgescu, Iulia. "Attosecond beacons." Nature Physics 9, no. 1 (December 21, 2012): 9. http://dx.doi.org/10.1038/nphys2522.
Full textVrakking, Marc J. J. "Attosecond imaging." Physical Chemistry Chemical Physics 16, no. 7 (2014): 2775. http://dx.doi.org/10.1039/c3cp53659a.
Full textDissertations / Theses on the topic "Attosecond"
Fieß, Markus. "Advancing attosecond metrology." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-119134.
Full textGagnon, Justin. "Attosecond Electron Spectroscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-125375.
Full textEckle, Petrissa Roberta. "Attosecond angular streaking /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18118.
Full textLupetti, Mattia. "Plasmonic generation of attosecond pulses and attosecond imaging of surface plasmons." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-183678.
Full textAttosekundenpulse sind ultrakurze extrem-ultraviolette (XUV) Pulse, die durch einen nicht-linearen, von einer nah-infraroten (NIR) Laserquelle stimulierten Anregungsprozess erzeugt werden. Attosekundenpulse können verwendet werden, um die Elektronendynamik eines ultraschnellen Prozesses durch die ``Attosecond Streaking'' Technik zu messen, mit einer Auflösung auf der Attosekundenskala. In dieser Dissertation wird gezeigt, dass sowohl die Erzeugung von Attosekundenpulsen als auch die Messung ultraschneller Prozesse mittels Attosekundenpulse auf Fälle erweitert werden können, bei denen die Anregungs- und Streakingsfelder von Oberflächenplasmonen generiert werden, welche bei nahinfraroten Wellenlängen auf Nanostrukturen angeregt werden. Oberflächenplasmonen sind optische Moden, die aus einer kollektiven Schwingung der Elektronen an der Oberfläche in Resonanz mit einer externen Quelle entstehen. Im ersten Abschnitt dieser Dissertation wird das Konzept der High Harmonic Generation (HHG) in plasmonisch erhöhten Feldern durch numerische Simulationen analysiert. Ein NIR Puls wird mit einem Oberflächenplasmon, das sich in einem konischen, mit Edelgas gefüllten, Hohlleiter ausbreitet, gekoppelt. Die Intensität des plasmonischen Feldes steigt mit der Verringerung des Durchmessers des Hohlleiters, sodass die Felderhöhung an seiner Spitze groß genug wird, um hohe harmonische Strahlung zu generieren. Es wird nachgewiesen, dass die Herstellung von isolierten Attosekundenpulsen mit außergewöhnlichen Zeit- und Raumstrukturen möglich ist. Trotzdem ist deren Intensität um mehrere Größenordnungen niedriger als die, die in Experimenten mit fokussierten Laserpulsen erreicht werden kann. Im zweiten Abschnitt wird eine experimentelle Technik für die Abbildung plasmonischer Oberflächenanregungen vorgeschlagen, wobei Attosekundenpulse verwendet werden, um das Feld an der Oberfläche mittels ``Momentum Streaking'' der photoionisierten Elektronen zu messen. Dieses Konzept ist eine Erweiterung der ``Attosecond Streak Camera'', welches ich ``Attosecond Photoscopy'' nenne. Es ermöglicht die Abbildung eines Plasmons in Zeit und Raum während des Anregungsprozesses. Anhand von numerischen Simulationen wird es gezeigt, dass die wesentlichen Parameter des plasmonischen Resonanzaufbaus mit subfemtosekunden-Präzision bestimmt werden können. Zuletzt wird die Methode für die numerische Lösung der Maxwell-Gleichungen diskutiert, mit Fokus auf das Problem der absorbierenden Randbedingungen. Neue Einsichten in die mathematische Formulierung der Randbedingungen der Maxwell-Gleichungen werden vorgestellt.
Flögel, Martin [Verfasser]. "Raising the XUV Intensity towards Attosecond-Attosecond Pump-Probe Experiments / Martin Flögel." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1133492347/34.
Full textWirth, Adrian. "Attosecond transient absorption spectroscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-140120.
Full textChirla, Razvan Cristian. "Attosecond Pulse Generation and Characterization." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313429461.
Full textHageman, Stephen James. "Complex Attosecond Transient-absorption Spectroscopy." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1608050018545904.
Full textSchapper, Florian. "Attosecond structure of high-order harmonics." Konstanz Hartung-Gorre, 2010. http://d-nb.info/1000540448/04.
Full textWu, Yi. "High flux isolated attosecond pulse generation." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6038.
Full textPh.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
Books on the topic "Attosecond"
Hommelhoff, Peter, and Matthias F. Kling, eds. Attosecond Nanophysics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527665624.
Full textPlaja, Luis, Ricardo Torres, and Amelle Zaïr, eds. Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37623-8.
Full textVrakking, Marc J. J., and Franck Lepine, eds. Attosecond Molecular Dynamics. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012669.
Full textMarciak-Kozłowska, Janina. Attosecond matter tomography. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textSchultz, Thomas, and Marc Vrakking, eds. Attosecond and XUV Physics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677689.
Full textSchötz, Johannes. Attosecond Experiments on Plasmonic Nanostructures. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13713-7.
Full textYamanouchi, Kaoru, and Midorikawa Katsumi, eds. Multiphoton Processes and Attosecond Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28948-4.
Full textKatsumi, Midorikawa, and SpringerLink (Online service), eds. Multiphoton Processes and Attosecond Physics: Proceedings of the 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textMatulewski, Jacek. Jonizacja i rekombinacja w silnym polu lasera attosekundowego = Atom ionization and laser assisted recombination in a super-strong field of an attosecond laser pulse. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2012.
Find full textBook chapters on the topic "Attosecond"
Weik, Martin H. "attosecond." In Computer Science and Communications Dictionary, 76. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1002.
Full textKling, Matthias F., Brady C. Steffl, and Peter Hommelhoff. "Introduction." In Attosecond Nanophysics, 1–10. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch1.
Full textChew, Soo Hoon, Kellie Pearce, Christian Späth, Alexander Guggenmos, Jürgen Schmidt, Frederik Süßmann, Matthias F. Kling, et al. "Imaging Localized Surface Plasmons by Femtosecond to Attosecond Time-Resolved Photoelectron Emission Microscopy - “ATTO-PEEM”." In Attosecond Nanophysics, 325–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch10.
Full textPfullmann, Nils, Monika Noack, Carsten Reinhardt, Milutin Kovacev, and Uwe Morgner. "Nano-Antennae Assisted Emission of Extreme Ultraviolet Radiation." In Attosecond Nanophysics, 11–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch2.
Full textDombi, Péter, and Abdulhakem Y. Elezzabi. "Ultrafast, Strong-Field Plasmonic Phenomena." In Attosecond Nanophysics, 39–86. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch3.
Full textSaalmann, Ulf, and Jan-Michael Rost. "Ultrafast Dynamics in Extended Systems." In Attosecond Nanophysics, 87–118. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch4.
Full textVarin, Charles, Christian Peltz, Thomas Brabec, and Thomas Fennel. "Light Wave Driven Electron Dynamics in Clusters." In Attosecond Nanophysics, 119–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch5.
Full textSüßmann, Frederik, Matthias F. Kling, and Peter Hommelhoff. "From Attosecond Control of Electrons at Nano-Objects to Laser-Driven Electron Accelerators." In Attosecond Nanophysics, 155–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch6.
Full textApalkov, Vadym, and Mark I. Stockman. "Theory of Solids in Strong Ultrashort Laser Fields." In Attosecond Nanophysics, 197–234. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch7.
Full textSchiffrin, Agustin, Tim Paasch-Colberg, and Martin Schultze. "Controlling and Tracking Electric Currents with Light." In Attosecond Nanophysics, 235–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527665624.ch8.
Full textConference papers on the topic "Attosecond"
Bandrauk, Andre D. "Circularly polarized attosecond pulses for attosecond magnetics." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801151.
Full textKienberger, Reinhard, and Ferenc Krausz. "Attosecond physics." In ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061046.
Full textWalmsley, I. A. "Attosecond metrology." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238325.
Full textCorkum, Paul. "Attosecond Metrology." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452660.
Full textKrausz, Ferenc. "Attosecond Physics." In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391210.
Full textVincenti, Henri, Jonathan Wheeler, Sylvain Monchocé, Antonin Borot, Arnaud Malvache, Rodrigo Lopez-Martens, and Fabien Quéré. "Attosecond Lighthouses." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qtu3h.2.
Full textKartner, Franz X. "Attosecond photonics." In 2012 IEEE Photonics Conference (IPC). IEEE, 2012. http://dx.doi.org/10.1109/ipcon.2012.6358774.
Full textCorkum, Paul B. "Attosecond science." In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXI, edited by Peter R. Herman, Michel Meunier, and Roberto Osellame. SPIE, 2021. http://dx.doi.org/10.1117/12.2587086.
Full textL'Huillier, Anne. "An Introduction to Attosecond Pulses and Attosecond Physics." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873302.
Full textSmirnova, Olga, Michel Spanner, S. Patchkovskii, and Misha Ivanov. "Direct Imaging of Attosecond Electron Recollision: An Attosecond Microscope." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jwa3.
Full textReports on the topic "Attosecond"
Ian A. Walmsley and Robert W. Boyd. Generation and Characterization of Attosecond Pulses. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/881556.
Full textKaertner, Franz X. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada565327.
Full textZholents, Alexander A., and William M. Fawley. Intense attosecond radiation from an X-ray FEL - extended version. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/842897.
Full textEmma, P. ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833050.
Full textStupakov, Gennady. Ponderomotive Laser Acceleration and Focusing in Vacuum: Application for Attosecond Electron Bunches. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/765009.
Full textThomas, Alexander Roy, and Karl Krushelnick. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1322280.
Full textZholents, Alexander. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/842992.
Full textKulander, K. C. A source for quantum control: generation and measurement of attosecond ultraviolet light pulses. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/8201.
Full textBen-Itzhak, Itzik. Attosecond Physics 2009 (July 28 to August 1, 2009, at Kansas State U/Manhattan). Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1031469.
Full textDiMauro, Louis F. Final Report: Student Support for the "Frontiers in Attosecond & Ultrafast X-ray Science" School. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1485051.
Full text