Academic literature on the topic 'Attophysics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Attophysics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Attophysics"

1

Marino, Antigone. "Column: Attophysics Science." Europhysics News 55, no. 1 (2024): 10–11. http://dx.doi.org/10.1051/epn/2024104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krausz, Ferenc. "From femtochemistry to attophysics." Physics World 14, no. 9 (September 2001): 41–46. http://dx.doi.org/10.1088/2058-7058/14/9/31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agostini, Pierre. "What future for attophysics?" Journal of Physics B: Atomic, Molecular and Optical Physics 57, no. 16 (July 25, 2024): 162501. http://dx.doi.org/10.1088/1361-6455/ad6383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lewenstein, Maciej, and Anna Sanpera. "Experimental attophysics comes of age." Physics World 15, no. 1 (January 2002): 25–26. http://dx.doi.org/10.1088/2058-7058/15/1/33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marciak-Kozłowska, Janina, and Mirosław Kozłowski. "Attophysics and technology with ultra short laser pulses." Lasers in Engineering 12, no. 1 (January 2002): 17–25. http://dx.doi.org/10.1080/08981500290022734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cho, A. "ATTOPHYSICS: X-ray Flashes Provide Peek Into Atom Core." Science 298, no. 5594 (October 25, 2002): 727. http://dx.doi.org/10.1126/science.298.5594.727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saldin, E. L., E. A. Schneidmiller, and M. V. Yurkov. "Scheme for attophysics experiments at a X-ray SASE FEL." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 507, no. 1-2 (July 2003): 439–44. http://dx.doi.org/10.1016/s0168-9002(03)00962-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saldin, E. L., E. A. Schneidmiller, and M. V. Yurkov. "Scheme for attophysics experiments at a X-ray SASE FEL." Optics Communications 212, no. 4-6 (November 2002): 377–90. http://dx.doi.org/10.1016/s0030-4018(02)02008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dombi, Peter, and Martin Schultze. "The Nobel Prize in Physics 2023." Europhysics News 54, no. 5 (2023): 8–9. http://dx.doi.org/10.1051/epn/2023501.

Full text
Abstract:
The Nobel Prize in Physics was awarded to Pierre Agostini of Ohio State University, Ferenc Krausz of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilian University of Munich and Anne L’Huillier of the Lund University for "experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter". The Prize acknowledges the tremendous experimental progress in the past 35 years that eventually enabled the investigation of the fastest electron transition processes in atoms, molecules and solids by using state-of-the-art femtosecond laser technology. As a result, a new field of research emerged and shortly after the establishment of the field of femtochemistry, attophysics came of age.
APA, Harvard, Vancouver, ISO, and other styles
10

Dombi, Péter, and Reinhard Kienberger. "A nobel prize for attosecond physics based on extreme nonlinear optics." Europhysics News 55, no. 1 (2024): 16–21. http://dx.doi.org/10.1051/epn/2024106.

Full text
Abstract:
Nobel Prizes related to lasers are awarded for their application in pioneering research areas, as was the case in 2023. Lasers are closely linked to 13-14 Physics Prizes, involving new discoveries, inventions, or research methods. The list is long, including optical fibers, optical tweezers, frequency combs, femtochemistry research, and research related to trapped particles. Lasers also play a crucial role in detecting gravitational waves and in holography. The 2023 award fits into this powerful series. The Prize and the oeuvre of Pierre Agostini, Ferenc Krausz and Anne L’Huillier shows how state-of-the-art laser technology enabled the emergence of extreme nonlinear optics and attophysics and, in turn, how attosecond science triggered the development of revolutionary light sources that are now used in medical diagnostics research or the semiconductor industry.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Attophysics"

1

Picot, Corentin. "Génération et caractérisation d'impulsions attosecondes isolées à haute cadence." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10161.

Full text
Abstract:
La génération d'harmoniques d'ordres élevés est un phénomène physique non linéaire qui se produit en focalisant une impulsion de durée femtoseconde (1 fs = 10⁻¹⁵ s) dans un gaz rare. Elle permet de produire des spectres dans le domaine UV/XUV, se présentant sous forme d'un peigne de fréquences. L'intérêt croissant pour la génération d'harmoniques d'ordres élevés vient du fait que les spectres XUV générés sont compatibles, dans le domaine temporel, avec la production d'impulsions attosecondes (1 as = 10⁻¹⁸ s). Ces impulsions sont d'un grand intérêt dans l'étude de dynamiques électroniques complexes, de temps de photoémissions dans des atomes ou molécules, ou encore dans des applications industrielles telles que l'étude de la lithographie. Les dynamiques au cœur des atomes se déroulent sur des échelles de l'unité atomique de temps, avec une unité atomique de temps équivalant à 24 as. La production de ces impulsions attosecondes est donc pertinente pour étudier ces phénomènes au cœur même des atomes. Plus particulièrement, nous nous intéressons ici à la génération de trains d'impulsions attosecondes courts et d'impulsions attosecondes isolées. La génération d'harmoniques d'ordres élevés permet d'obtenir des trains d'impulsions attosecondes, et nous cherchons à isoler une impulsion dans le train d'impulsions. Cela se traduit spectralement par la recherche d'un spectre XUV continu. Dans cette thèse, nous nous intéressons à la génération de ces spectres XUV continus, ainsi qu'à la caractérisation temporelle des impulsions femtosecondes et attosecondes. Le point d'action se trouve dans le confinement temporel de l'émission XUV. Dans une première partie, nous montrons une méthode robuste afin de diminuer la durée des impulsions fondamentales jusqu'à une durée de quelques cycles optiques. Cette mise en forme spectrale amène plusieurs applications subsidiaires pour la mise en forme spectrale du spectre harmonique. Dans une seconde partie, nous présentons une deuxième méthode pour confiner l'émission XUV, en modulant temporellement la polarisation de l'impulsion fondamentale, avec la méthode dite de "porte de polarisation". De nouvelles configurations de la porte de polarisation et les effets spectraux associés au confinement temporel y sont décrits. Dans une troisième partie, nous présentons la combinaison des deux méthodes évoquées dans les deux premières parties, afin d'obtenir des spectres XUV continus compatibles avec la génération d'impulsions attosecondes isolées. Ces spectres continus ont été obtenus dans deux laboratoires, avec deux systèmes expérimentaux différents. Dans une dernière partie, nous nous intéressons à la caractérisation des impulsions XUV femtosecondes et attosecondes. En particulier, nous présentons une caractérisation classique basée sur un signal de photoélectrons, permettant de caractériser des impulsions de quelques centaines d'attosecondes, jusqu'à une impulsion attoseconde isolée. Nous proposons également deux nouvelles méthodes, basées sur l'observation du signal de photons XUV et sur la modulation de polarisation de l'impulsion fondamentale. Par ces méthodes, nous cherchons à reconstruire les enveloppes temporelles des harmoniques
High order harmonic generation is a nonlinear physical phenomenon that occurs by focusing a femtosecond-duration pulse (1 fs = 10^-15 s) in a rare gas. It allows the production of spectra in the UV/XUV range, appearing as a frequency comb. The growing interest in high-order harmonic generation stems from the fact that the generated XUV spectra are compatible, in the time domain, with the production of attosecond pulses (1 as = 10^-18 s). These pulses are of great interest in the study of complex electronic dynamics, photoemission times in atoms or molecules, or even in industrial applications such as lithography studies. Dynamics at the core of atoms occur on atomic time unit scales, with one atomic unit of time equivalent to 24 as. The production of these attosecond pulses is thus relevant for studying these phenomena at the very core of atoms. More specifically, we are interested here in the generation of short attosecond pulse trains and isolated attosecond pulses. High-order harmonic generation allows obtaining attosecond pulse trains, and we seek to isolate one pulse within the pulse train. Spectrally, this translates to the search for a continuous XUV spectrum. In this thesis, we focus on generating these continuous XUV spectra, as well as on the temporal characterization of femtosecond and attosecond pulses. The key aspect lies in the temporal confinement of the XUV emission. In the first part, we demonstrate a robust method to reduce the duration of the fundamental pulses to a few optical cycles. This spectral shaping leads to several subsidiary applications for the spectral shaping of the harmonic spectrum. In the second part, we present a second method to confine the XUV emission by modulating the polarization of the fundamental pulse temporally, using the so-called "polarization gating" method. New configurations of the polarization gate and the spectral effects associated with temporal confinement are described. In the third part, we present the combination of the two methods mentioned in the first two parts to obtain continuous XUV spectra compatible with the generation of isolated attosecond pulses. These continuous spectra were obtained in two laboratories with two different experimental systems. In the final part, we focus on the characterization of femtosecond and attosecond XUV pulses. In particular, we present a classical characterization based on photoelectron signal, allowing the characterization of pulses whose durations are few hundred attoseconds, up to an isolated attosecond pulse. We also propose two new methods based on the observation of the XUV photon signal and the modulation of the polarization of the fundamental pulse. Through these methods, we seek to reconstruct the temporal envelopes of the harmonics
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Attophysics"

1

Lewenstein, M., N. Baldelli, U. Bhattacharya, J. Biegert, M. F. Ciappina, T. Grass, P. T. Grochowski, et al. "Attosecond Physics and Quantum Information Science." In Springer Proceedings in Physics, 27–44. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-47938-0_4.

Full text
Abstract:
AbstractIn this article, we will discuss a possibility of a symbiosis for attophysics (AP) and quantum information (QI) and quantum technologies (QT). We will argue that within few years AP will reach Technology Readiness Level (RTL) 4–5 in QT, and will thus become a legitimate platform for QI and QT.
APA, Harvard, Vancouver, ISO, and other styles
2

Saldin, E. L., E. A. Schneidmiller, and M. V. Yurkov. "Scheme for Attophysics experiments at a X-ray SASE FEL." In Free Electron Lasers 2002, 439–44. Elsevier, 2003. http://dx.doi.org/10.1016/b978-0-444-51417-2.50103-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography