Journal articles on the topic 'Atomically thin'

To see the other types of publications on this topic, follow the link: Atomically thin.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Atomically thin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Horiuchi, Noriaki. "Atomically thin materials." Nature Photonics 12, no. 11 (October 26, 2018): 641. http://dx.doi.org/10.1038/s41566-018-0294-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Cheol-Joo, A. Sánchez-Castillo, Zack Ziegler, Yui Ogawa, Cecilia Noguez, and Jiwoong Park. "Chiral atomically thin films." Nature Nanotechnology 11, no. 6 (February 22, 2016): 520–24. http://dx.doi.org/10.1038/nnano.2016.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubie, Lenore, Marissa S. Martinez, Elisa M. Miller, Lance M. Wheeler, and Matthew C. Beard. "Atomically Thin Metal Sulfides." Journal of the American Chemical Society 141, no. 30 (July 5, 2019): 12121–27. http://dx.doi.org/10.1021/jacs.9b05807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Dong, and Hao Chen. "Atomically thin planar metasurfaces." Journal of Photonics for Energy 9, no. 03 (April 8, 2019): 1. http://dx.doi.org/10.1117/1.jpe.9.032716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Seong Keun. "Atomically thin indium oxide transistors." Nature Electronics 5, no. 3 (March 2022): 129–30. http://dx.doi.org/10.1038/s41928-022-00734-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Su-Fei, and Feng Wang. "Atomically thin p–n junctions." Nature Nanotechnology 9, no. 9 (September 2014): 664–65. http://dx.doi.org/10.1038/nnano.2014.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

García de Abajo, F. Javier, and Alejandro Manjavacas. "Plasmonics in atomically thin materials." Faraday Discussions 178 (2015): 87–107. http://dx.doi.org/10.1039/c4fd00216d.

Full text
Abstract:
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response of such kinds of structures, which we exploit to investigate their application to light modulation and quantum optics. Specifically, we show that plasmons in one-atom-thick noble-metal layers can be used both to produce complete tunable optical absorption and to reach the strong-coupling regime in the interaction with neighboring quantum emitters. Our methods are applicable to any plasmon-supporting thin materials, and in particular, we provide parameters that allow us to readily calculate the response of silver, gold, and graphene islands. Besides their interest for nanoscale electro-optics, the present study emphasizes the great potential of these structures for the design of quantum nanophotonics devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Lu Hua, Ling Li, Xiujuan J. Dai, and Ying Chen. "Atomically thin boron nitride nanodisks." Materials Letters 106 (September 2013): 409–12. http://dx.doi.org/10.1016/j.matlet.2013.05.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Huan, Zhipeng Dong, He Tian, Don DiMarzi, Myung-Geun Han, Lihua Zhang, Xiaodong Yan, et al. "Atomically Thin Femtojoule Memristive Device." Advanced Materials 29, no. 47 (October 25, 2017): 1703232. http://dx.doi.org/10.1002/adma.201703232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lynch, Jason, Ludovica Guarneri, Deep Jariwala, and Jorik van de Groep. "Exciton resonances for atomically-thin optics." Journal of Applied Physics 132, no. 9 (September 7, 2022): 091102. http://dx.doi.org/10.1063/5.0101317.

Full text
Abstract:
Metasurfaces enable flat optical elements by leveraging optical resonances in metallic or dielectric nanoparticles to obtain accurate control over the amplitude and phase of the scattered light. While highly efficient, these resonances are static and difficult to tune actively. Exciton resonances in atomically thin 2D semiconductors provide a novel and uniquely strong resonant light–matter interaction, which presents a new opportunity for optical metasurfaces. Their resonant properties are intrinsic to the band structure of the material, do not rely on nanoscale patterns, and are highly tunable using external stimuli. In this tutorial, we present the role that exciton resonances can play for atomically thin optics. We describe the essentials of metasurface physics and provide background on exciton physics and a comprehensive overview of excitonic materials. Excitons demonstrate to provide new degrees of freedom and enhanced light–matter interactions in hybrid metasurfaces through coupling with metallic and dielectric metasurfaces. Using the high sensitivity of excitons to the medium's electron density, the first demonstrations of electrically tunable nanophotonic devices and atomically thin optical elements are also discussed. The future of excitons in metasurfaces looks promising, while the main challenge lies in large-area growth and precise integration of high-quality materials.
APA, Harvard, Vancouver, ISO, and other styles
11

KIM, Su Jae, Miyeon CHEON, and Se-Young JEONG. "Making Metallic Thin Films Atomically Flat." Physics and High Technology 29, no. 7/8 (August 31, 2020): 3–12. http://dx.doi.org/10.3938/phit.29.024.

Full text
Abstract:
Can we control the flatness of the surface of a thin film down to the level of individual atoms? Can we further make such an ultraflat surface on a wafer scale? For such purposes, the current deposition methods, including molecular beam epitaxy (MBE), atomic layer deposition (ALD) and conventional sputtering methods, are still not adequate. In this article, we introduce a novel thin film deposition technique developed by modifying a simple sputtering method to make atomically flat metallic surfaces and a new way to investigate the structural details of thin films grown at the atomic level. For thin film, heteroepitaxial growth of a crystalline film on a different crystalline substrate is usual, and the lattice mismatch between the crystalline film and the substrate occurring in heteroepitaxy produces many misfits at the interface, which create various defects, including dislocations and grain boundaries that eventually lead to a rough surface and the deterioration of the overall quality of the crystal. The metamorphic growth method utilizing the extended atomic distance mismatch (EADM) helps to achieve successful growth of thin films in spite of a large lattice mismatch by calculating the match for a relatively long period in advance. Having an ultraflat surface for thin films made of metals such as copper has many advantages. Several advantages and possible applications of metal thin films with ultraflat surfaces are introduced.
APA, Harvard, Vancouver, ISO, and other styles
12

Lodge, Michael S., Shengyuan A. Yang, Shantanu Mukherjee, and Bent Weber. "Atomically Thin Quantum Spin Hall Insulators." Advanced Materials 33, no. 22 (April 23, 2021): 2008029. http://dx.doi.org/10.1002/adma.202008029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ling, Haonan, and Artur R. Davoyan. "Light control with atomically thin magnets." Nature Photonics 16, no. 4 (March 24, 2022): 259–60. http://dx.doi.org/10.1038/s41566-022-00981-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brand, Christian, Michele Sclafani, Christian Knobloch, Yigal Lilach, Thomas Juffmann, Jani Kotakoski, Clemens Mangler, et al. "An atomically thin matter-wave beamsplitter." Nature Nanotechnology 10, no. 10 (August 24, 2015): 845–48. http://dx.doi.org/10.1038/nnano.2015.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yamamoto, Mahito, Theodore L. Einstein, Michael S. Fuhrer, and William G. Cullen. "Anisotropic Etching of Atomically Thin MoS2." Journal of Physical Chemistry C 117, no. 48 (November 20, 2013): 25643–49. http://dx.doi.org/10.1021/jp410893e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lee, C., Q. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick, and J. Hone. "Frictional Characteristics of Atomically Thin Sheets." Science 328, no. 5974 (April 1, 2010): 76–80. http://dx.doi.org/10.1126/science.1184167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Xiaoting, Le Huang, Xiang-Wei Jiang, Yan Li, Zhongming Wei, and Jingbo Li. "Large scale ZrS2 atomically thin layers." Journal of Materials Chemistry C 4, no. 15 (2016): 3143–48. http://dx.doi.org/10.1039/c6tc00254d.

Full text
Abstract:
Large scale (up to 30 μm in lateral size) atomically thin hexagonal ZrS2 nanoflakes were prepared on traditional substrates (silica, sapphire) through a temperature dependent growth process.
APA, Harvard, Vancouver, ISO, and other styles
18

Blauth, Mäx, Gwenaëlle Vest, Shobin Loukkose Rosemary, Maximilian Prechtl, Oliver Hartwig, Marius Jürgensen, Michael Kaniber, Andreas V. Stier, and Jonathan J. Finley. "Ultracompact Photodetection in Atomically Thin MoSe2." ACS Photonics 6, no. 8 (July 30, 2019): 1902–9. http://dx.doi.org/10.1021/acsphotonics.9b00785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Huang, Fumin. "Optical Contrast of Atomically Thin Films." Journal of Physical Chemistry C 123, no. 12 (March 7, 2019): 7440–46. http://dx.doi.org/10.1021/acs.jpcc.8b12333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Reynolds, Michael F., Kathryn L. McGill, Maritha A. Wang, Hui Gao, Fauzia Mujid, Kibum Kang, Jiwoong Park, Marc Z. Miskin, Itai Cohen, and Paul L. McEuen. "Capillary Origami with Atomically Thin Membranes." Nano Letters 19, no. 9 (August 20, 2019): 6221–26. http://dx.doi.org/10.1021/acs.nanolett.9b02281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Jiong, Zhu Wang, Fan Wang, Renjing Xu, Jin Tao, Shuang Zhang, Qinghua Qin, et al. "Atomically thin optical lenses and gratings." Light: Science & Applications 5, no. 3 (March 2016): e16046-e16046. http://dx.doi.org/10.1038/lsa.2016.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, Shih-Hsien, and Yen-Fu Lin. "Atomically thin ICs under the spotlight." Nature Electronics 1, no. 9 (September 2018): 498–99. http://dx.doi.org/10.1038/s41928-018-0136-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Han, Wei, Chen Li, Sanjun Yang, Peng Luo, Fakun Wang, Xin Feng, Kailang Liu, et al. "Atomically Thin Oxyhalide Solar‐Blind Photodetectors." Small 16, no. 23 (April 29, 2020): 2000228. http://dx.doi.org/10.1002/smll.202000228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sahu, Subin, and Michael P. Zwolak. "Access Resistance in Atomically Thin Nanopores." Biophysical Journal 114, no. 3 (February 2018): 493a. http://dx.doi.org/10.1016/j.bpj.2017.11.2702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Cheng, Le Wang, Yue Gu, Xi Zhang, Xiuquan Xia, Shaolong Jiang, Liang-Long Huang, et al. "Hard ferromagnetic behavior in atomically thin CrSiTe3 flakes." Nanoscale 14, no. 15 (2022): 5851–58. http://dx.doi.org/10.1039/d2nr00331g.

Full text
Abstract:
We reported a layer-controlled transition from the soft to hard ferromagnetic state in atomically thin CrSiTe3 flakes. Our study paves the way towards exploring and learning much more atomically thin and layered intrinsic ferromagnets.
APA, Harvard, Vancouver, ISO, and other styles
26

Huran, Ahmad W., Hai-Chen Wang, Alfonso San-Miguel, and Miguel A. L. Marques. "Atomically Thin Pythagorean Tilings in Two Dimensions." Journal of Physical Chemistry Letters 12, no. 20 (May 20, 2021): 4972–79. http://dx.doi.org/10.1021/acs.jpclett.1c00903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fu, Qiang, Zhenliang Hu, Mengfan Zhou, Junpeng Lu, and Zhenhua Ni. "Excitonic Emission in Atomically Thin Electroluminescent Devices." Laser & Photonics Reviews 15, no. 6 (April 19, 2021): 2000587. http://dx.doi.org/10.1002/lpor.202000587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Najafi, Farzin, Guorui Wang, Teng Cui, Abu Anand, Sankha Mukherjee, Tobin Filleter, Mohini Sain, and Chandra Veer Singh. "Fatigue resistance of atomically thin graphene oxide." Carbon 183 (October 2021): 780–88. http://dx.doi.org/10.1016/j.carbon.2021.07.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Thompson, Joshua J. P., Samuel Brem, Marne Verjans, Robert Schmidt, Steffen Michaelis de Vasconcellos, Rudolf Bratschitsch, and Ermin Malic. "Anisotropic exciton diffusion in atomically-thin semiconductors." 2D Materials 9, no. 2 (February 3, 2022): 025008. http://dx.doi.org/10.1088/2053-1583/ac4d13.

Full text
Abstract:
Abstract Energy transport processes are critical for the efficiency of many optoelectronic applications. The energy transport in technologically promising transition metal dichalcogenides is determined by exciton diffusion, which strongly depends on the underlying excitonic and phononic dispersion. Based on a fully microscopic theory we demonstrate that the valley-exchange interaction leads to an enhanced exciton diffusion due to the emergence of a linear excitonic dispersion and the resulting decreased exciton-phonon scattering. Interestingly, we find that the application of a uniaxial strain can drastically boost the diffusion speed and even give rise to a pronounced anisotropic diffusion, which persists up to room temperature. We reveal that this behaviour originates from the highly anisotropic exciton dispersion in the presence of strain, displaying parabolic and linear behaviour perpendicular and parallel to the strain direction, respectively. Our work demonstrates the possibility to control the speed and direction of exciton diffusion via strain and dielectric engineering. This opens avenues for more efficient and exotic optoelectronic applications of atomically thin materials.
APA, Harvard, Vancouver, ISO, and other styles
30

Sarafraz, Ali, Hadi Arjmandi-Tash, Laura Dijkink, Banafsheh Sajadi, Mohsen Moeini, Peter G. Steeneken, and Farbod Alijani. "Nonlinear elasticity of wrinkled atomically thin membranes." Journal of Applied Physics 130, no. 18 (November 14, 2021): 184302. http://dx.doi.org/10.1063/5.0061822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Castellanos-Gomez, A., N. Agraït, and G. Rubio-Bollinger. "Optical identification of atomically thin dichalcogenide crystals." Applied Physics Letters 96, no. 21 (May 24, 2010): 213116. http://dx.doi.org/10.1063/1.3442495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Toth, Milos, and Igor Aharonovich. "Single Photon Sources in Atomically Thin Materials." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 123–42. http://dx.doi.org/10.1146/annurev-physchem-042018-052628.

Full text
Abstract:
Layered materials are very attractive for studies of light–matter interactions at the nanoscale. In particular, isolated quantum systems such as color centers and quantum dots embedded in these materials are gaining interest due to their potential use in a variety of quantum technologies and nanophotonics. Here, we review the field of nonclassical light emission from van der Waals crystals and atomically thin two-dimensional materials. We focus on transition metal dichalcogenides and hexagonal boron nitride and discuss the fabrication and properties of quantum emitters in these systems and proof-of-concept experiments that provide a foundation for their integration in on-chip nanophotonic circuits. These experiments include tuning of the emission wavelength, electrical excitation, and coupling of the emitters to waveguides, dielectric cavities, and plasmonic resonators. Finally, we discuss current challenges in the field and provide an outlook to further stimulate scientific discussion.
APA, Harvard, Vancouver, ISO, and other styles
33

Neumann, Andre, Jessica Lindlau, Léo Colombier, Manuel Nutz, Sina Najmaei, Jun Lou, Aditya D. Mohite, Hisato Yamaguchi, and Alexander Högele. "Opto-valleytronic imaging of atomically thin semiconductors." Nature Nanotechnology 12, no. 4 (January 16, 2017): 329–34. http://dx.doi.org/10.1038/nnano.2016.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Merano, Michele. "Wave impedance of an atomically thin crystal." Optics Express 23, no. 24 (November 25, 2015): 31602. http://dx.doi.org/10.1364/oe.23.031602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Celebi, K., J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J. I. Kye, C. Lee, and H. G. Park. "Ultimate Permeation Across Atomically Thin Porous Graphene." Science 344, no. 6181 (April 17, 2014): 289–92. http://dx.doi.org/10.1126/science.1249097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Osborne, Ian S. "Getting a sense of atomically thin materials." Science 355, no. 6324 (February 2, 2017): 490.9–491. http://dx.doi.org/10.1126/science.355.6324.490-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Brongersma, Mark L. "The road to atomically thin metasurface optics." Nanophotonics 10, no. 1 (November 25, 2020): 643–54. http://dx.doi.org/10.1515/nanoph-2020-0444.

Full text
Abstract:
AbstractThe development of flat optics has taken the world by storm. The initial mission was to try and replace conventional optical elements by thinner, lightweight equivalents. However, while developing this technology and learning about its strengths and limitations, researchers have identified a myriad of exciting new opportunities. It is therefore a great moment to explore where flat optics can really make a difference and what materials and building blocks are needed to make further progress. Building on its strengths, flat optics is bound to impact computational imaging, active wavefront manipulation, ultrafast spatiotemporal control of light, quantum communications, thermal emission management, novel display technologies, and sensing. In parallel with the development of flat optics, we have witnessed an incredible progress in the large-area synthesis and physical understanding of atomically thin, two-dimensional (2D) quantum materials. Given that these materials bring a wealth of unique physical properties and feature the same dimensionality as planar optical elements, they appear to have exactly what it takes to develop the next generation of high-performance flat optics.
APA, Harvard, Vancouver, ISO, and other styles
38

Ghasemian, Mohammad B., Torben Daeneke, Zahra Shahrbabaki, Jiong Yang, and Kourosh Kalantar-Zadeh. "Peculiar piezoelectricity of atomically thin planar structures." Nanoscale 12, no. 5 (2020): 2875–901. http://dx.doi.org/10.1039/c9nr08063e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mogg, L., G. P. Hao, S. Zhang, C. Bacaksiz, Y. C. Zou, S. J. Haigh, F. M. Peeters, A. K. Geim, and M. Lozada-Hidalgo. "Atomically thin micas as proton-conducting membranes." Nature Nanotechnology 14, no. 10 (September 2, 2019): 962–66. http://dx.doi.org/10.1038/s41565-019-0536-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hu, J., X. Liu, C. L. Yue, J. Y. Liu, H. W. Zhu, J. B. He, J. Wei, et al. "Enhanced electron coherence in atomically thin Nb3SiTe6." Nature Physics 11, no. 6 (May 4, 2015): 471–76. http://dx.doi.org/10.1038/nphys3321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou, Jiadong, Junhao Lin, Xiangwei Huang, Yao Zhou, Yu Chen, Juan Xia, Hong Wang, et al. "A library of atomically thin metal chalcogenides." Nature 556, no. 7701 (April 2018): 355–59. http://dx.doi.org/10.1038/s41586-018-0008-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dufferwiel, S., T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, et al. "Valley-addressable polaritons in atomically thin semiconductors." Nature Photonics 11, no. 8 (July 24, 2017): 497–501. http://dx.doi.org/10.1038/nphoton.2017.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Castellanos-Gomez, Andres, Rafael Roldán, Emmanuele Cappelluti, Michele Buscema, Francisco Guinea, Herre S. J. van der Zant, and Gary A. Steele. "Local Strain Engineering in Atomically Thin MoS2." Nano Letters 13, no. 11 (October 3, 2013): 5361–66. http://dx.doi.org/10.1021/nl402875m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Furchi, Marco M., Dmitry K. Polyushkin, Andreas Pospischil, and Thomas Mueller. "Mechanisms of Photoconductivity in Atomically Thin MoS2." Nano Letters 14, no. 11 (October 13, 2014): 6165–70. http://dx.doi.org/10.1021/nl502339q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Pai-Yen, and Andrea Alù. "Atomically Thin Surface Cloak Using Graphene Monolayers." ACS Nano 5, no. 7 (June 20, 2011): 5855–63. http://dx.doi.org/10.1021/nn201622e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kahn, Ethan, Mingzu Liu, Tianyi Zhang, He Liu, Kazunori Fujisawa, George Bepete, Pulickel M. Ajayan, and Mauricio Terrones. "Functional hetero-interfaces in atomically thin materials." Materials Today 37 (July 2020): 74–92. http://dx.doi.org/10.1016/j.mattod.2020.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Arnold, Andrew J., Tan Shi, Igor Jovanovic, and Saptarshi Das. "Extraordinary Radiation Hardness of Atomically Thin MoS2." ACS Applied Materials & Interfaces 11, no. 8 (February 4, 2019): 8391–99. http://dx.doi.org/10.1021/acsami.8b18659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Late, DattatrayJ, RajeshV Kanawade, Padmanathan Karthick Kannan, and Chandra Sekhar Rout. "Atomically Thin WS2 Nanosheets Based Gas Sensor." Sensor Letters 14, no. 12 (December 1, 2016): 1249–54. http://dx.doi.org/10.1166/sl.2016.3764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cao, C. R., K. Q. Huang, N. J. Zhao, Y. T. Sun, H. Y. Bai, L. Gu, D. N. Zheng, and W. H. Wang. "Ultrahigh stability of atomically thin metallic glasses." Applied Physics Letters 105, no. 1 (July 7, 2014): 011909. http://dx.doi.org/10.1063/1.4890113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wen, Wen, Lishu Wu, and Ting Yu. "Excitonic Lasers in Atomically Thin 2D Semiconductors." ACS Materials Letters 2, no. 10 (September 2, 2020): 1328–42. http://dx.doi.org/10.1021/acsmaterialslett.0c00277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography