Academic literature on the topic 'Atomic physics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atomic physics"

1

Datz, Sheldon, G. W. F. Drake, T. F. Gallagher, H. Kleinpoppen, and G. zu Putlitz. "Atomic physics." Reviews of Modern Physics 71, no. 2 (March 1, 1999): S223—S241. http://dx.doi.org/10.1103/revmodphys.71.s223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pease, Roland. "Atomic physics." Nature 329, no. 6134 (September 1987): 16. http://dx.doi.org/10.1038/329016b0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slevin, J. A. "Atomic Physics: Atomic hydrogen source." Physics Bulletin 36, no. 11 (November 1985): 454. http://dx.doi.org/10.1088/0031-9112/36/11/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walters, H. R. J. "Antimatter Atomic Physics." Science 330, no. 6005 (November 4, 2010): 762–63. http://dx.doi.org/10.1126/science.1197822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McDowell, M. R. C. "Atomic Physics 9." Physics Bulletin 37, no. 2 (February 1986): 79. http://dx.doi.org/10.1088/0031-9112/37/2/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weinberger, Sharon. "Physics: Atomic secrets." Nature 480, no. 7375 (November 30, 2011): 35–36. http://dx.doi.org/10.1038/480035a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Friedrich, Harald, and David A. Harmin. "Theoretical Atomic Physics." American Journal of Physics 61, no. 1 (January 1993): 91–92. http://dx.doi.org/10.1119/1.17393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wiese, Alan Hibbert, Walter Johnson and Wo. "High precision atomic physics." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 7 (March 19, 2010): 070201. http://dx.doi.org/10.1088/0953-4075/43/7/070201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cho, A. "ATOMIC PHYSICS: The Contenders." Science 301, no. 5634 (August 8, 2003): 750b—750. http://dx.doi.org/10.1126/science.301.5634.750b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Allen, L. "Atomic Physics of Lasers." Optica Acta: International Journal of Optics 33, no. 8 (August 1986): 950. http://dx.doi.org/10.1080/713822047.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Atomic physics"

1

Del, Punta Jessica A. "Mathematical methods in atomic physics." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0035/document.

Full text
Abstract:
Les problèmes de diffusion de particules, à deux et à trois corps, ont une importance cruciale en physique atomique, car ils servent à décrire différents processus de collisions. Actuellement, le cas de deux corps peut être résolu avec une précision numérique désirée. Les problèmes de diffusion à trois particules chargées sont connus pour être bien plus difficiles mais une déclaration similaire peut être affirmée. L’objectif de ce travail est de contribuer, d’un point de vue analytique, à la compréhension des processus de diffusion Coulombiens à trois corps. Ceci a non seulement un intérêt fondamental, mais est également utile pour mieux maîtriser les approches numériques en cours d’élaboration au sein de la communauté de collisions atomiques. Pour atteindre cet objectif, nous proposons d’approcher la solution du problème avec des développements en séries sur des ensembles de fonctions appropriées et possédant une expression analytique. Nous avons ainsi développé un nombre d’outils mathématiques faisant intervenir des fonctions Coulombiennes, des équations différentielles de second ordre homogènes et non-homogènes, et des fonctions hypergéométriques à une et à deux variables
Two and three-body scattering problems are of crucial relevance in atomic physics as they allow to describe different atomic collision processes. Nowadays, the two-body cases can be solved with any degree of numerical accuracy. Scattering problem involving three charged particles are notoriously difficult but something similar -- though to a lesser extent -- can be stated. The aim of this work is to contribute to the understanding of three-body Coulomb scattering problems from an analytical point of view. This is not only of fundamental interest, it is also useful to better master numerical approaches that are being developed within the collision community. To achieve this aim we propose to approximate scattering solutions with expansions on sets of appropriate functions having closed form. In so doing, we develop a number of related mathematical tools involving Coulomb functions, homogeneous and non-homogeneous second order differential equations, and hypergeometric functions in one and two variables
APA, Harvard, Vancouver, ISO, and other styles
2

Bailey, Stephen Malcolm William. "Relativistic atomic photoionization." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radev, Rossen. "Monte Carlo Group - Atomic Physics Department." Phd thesis, Monte Carlo Group, Atomic Physics Department, University of Sofia, 1997. http://cluster.phys.uni-sofia.bg:8080/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McAlinden, Mary Trea. "Atomic collisions involving positrons." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

O'Connor, Daryl John. "Atomic collisions with surfaces." Thesis, Canberra, ACT : The Australian National University, 1997. http://hdl.handle.net/1885/144473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hutzler, Nicholas Richard. "A New Limit on the Electron Electric Dipole Moment| Beam Production, Data Interpretation, and Systematics." Thesis, Harvard University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3626724.

Full text
Abstract:

The charge distribution associated with an electron has surprising implications for a number of outstanding mysteries in physics. Why is the universe made out of matter versus anti-matter, instead of both equally? What new particles and interactions lie beyond the current reach of accelerators like the LHC? Models which propose answers to these questions, such as Supersymmetry, tend to predict a small, yet potentially measurable, asymmetric interaction between an electron and an electric field, characterized by an electric dipole moment (EDM). Despite over six decades of experimental searching, no EDM of any fundamental particle has ever been measured; however, these experiments continue to provide some of the most stringent limits on new physics. Here, we present the results of a new search for the electron EDM, de = (-2.1 ± 3.7stat ± 2.5syst) × 10-29 e cm, which represents an order of magnitude improvement in sensitivity from the previous best limit. Since our measurement is consistent with zero, we present the upper limit of |de| < 8.7 × 10-29 e cm with 90 percent confidence.

APA, Harvard, Vancouver, ISO, and other styles
7

Plimmer, Mark David. "Laser spectroscopy of atomic systems." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Malcolm. "Electron scattering by atomic oxygen." Thesis, Queen's University Belfast, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harris, M. "Collisional effects in atomic spectra." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.352727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hromada, Ivan Jr. "Measurements of Atomic Beam Velocities with Phase Choppers and Precision Measurements of Alkali Atomic Polarizabilities." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/318837.

Full text
Abstract:
Atom interferometers, in which de Broglie waves are coherently split and recombined to make interference fringes, now serve as precision measurement tools for several quantities in physics. Examples include measurements of Newton's constant, the fine structure constant, van der Waals potentials, and atomic polarizabilities. To make next-generation measurements of static electric dipole atomic polarizabilities with an atom beam interferometer, I worked on new methods to precisely measure the velocity distribution for atom beams. I will explain how I developed and used phase choppers to measure lithium, sodium, potassium, and cesium atomic beam velocities with 0.07% accuracy. I also present new measurements of polarizability for these atoms. I classify systematic errors into two broad categories: (1) fractional errors that are similar for all different types of atoms in our experiments, and (2), errors that scale with de Broglie wavelength or inverse atomic momentum in our experiments. This distinction is important for estimating the uncertainty in our measurements of ratios of atomic polarizabilities, e.g., αCs / αNₐ = 2.488(12).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Atomic physics"

1

Childs, Rebecca. Atomic physics. Chandni Chowk, Delhi: Global Media, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Born, Max. Atomic physics. New York: Dover Publications, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Friedrich, Harald. Theoretical Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Friedrich, Harald. Theoretical atomic physics. 2nd ed. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rosmej, Frank B., Valery A. Astapenko, and Valery S. Lisitsa. Plasma Atomic Physics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-05968-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Friedrich, Harald. Theoretical Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-00863-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Friedrich, Harald. Theoretical Atomic Physics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47769-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bartschat, Klaus, ed. Computational Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61010-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Friedrich, Harald. Theoretical Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03704-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Friedrich, Harald. Theoretical Atomic Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Atomic physics"

1

Datz, Sheldon, G. W. F. Drake, T. F. Gallagher, H. Kleinpoppen, and G. Zu Putlitz. "Atomic Physics." In More Things in Heaven and Earth, 377–407. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1512-7_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smirnov, Boris M. "Physics of Molecules." In Atomic Particles and Atom Systems, 103–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75405-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smirnov, Boris M. "Elements of General Physics." In Atomic Particles and Atom Systems, 5–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75405-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Paul C. W., and David S. Betts. "Some atomic physics." In Quantum Mechanics, 114–25. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-2999-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Foot, C. J. "Early atomic physics." In Atomic Physics, 1–21. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198506959.003.0001.

Full text
Abstract:
Abstract The origins of atomic physics were entwined with the development of quantum mechanics itself ever since the first model of the hydrogen atom by Bohr. This introductory chapter surveys some of the early ideas, including Einstein’s treatment of the interaction of atoms with radiation, and a classical treatment of the Zeeman effect. These methods, developed before the advent of the Schrodinger equation, remain useful as an intuitive way of thinking about atomic structure and transitions between the energy levels. The ‘proper’ description in terms of atomic wave functions is presented in subsequent chapters.
APA, Harvard, Vancouver, ISO, and other styles
6

Foot, C. J. "Magnetic trapping, evaporative cooling and Bose-Einstein condensation." In Atomic Physics, 218–45. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198506959.003.0010.

Full text
Abstract:
Abstract In their famous experiment, Otto Stern and Walter Gerlach used the force on an atom as it passed through a strong inhomogeneous magnetic field to separate the spin states in a thermal atomic beam. Magnetic trapping uses exactly the same force, but for cold atoms the force produced by a system of magnetic field coils bends the trajectories right around so that low-energy atoms remain within a small region close to the centre of the trap.
APA, Harvard, Vancouver, ISO, and other styles
7

Budker, Dmitry, Derek F. Kimball, and David P. Demille. "Atomic Structure." In Atomic Physics, 1–74. Oxford University PressOxford, 2008. http://dx.doi.org/10.1093/oso/9780199532421.003.0001.

Full text
Abstract:
Abstract One of the most important topics in atomic physics is the description of atomic energy levels. The study of atomic structure continues to be an exciting field, with increasingly precise measurements and improved calculational tools allowing ever more detailed comparisons between experiment and theory. The first few problems in this chapter deal with some of the basic features of atomic energy levels in multi-electron atoms.
APA, Harvard, Vancouver, ISO, and other styles
8

Foot, C. J. "Laser cooling and trapping." In Atomic Physics, 178–217. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198506959.003.0009.

Full text
Abstract:
Abstract In previous chapters we have seen how laser spectroscopy gives Doppler free spectra and also how other older techniques of radio-frequency and microwave spectroscopy can resolve small splittings, e.g. hyperfine structure. These methods just observe the atoms as they go past, but this chapter describes the experimental techniques that use the force exerted by laser light to slow the atomic motion and manipulate atoms. These techniques have become extremely important in atomic physics and have many applications, e.g. they have greatly improved the stability of the caesium atomic clocks that are used as primary standards of time around the world.
APA, Harvard, Vancouver, ISO, and other styles
9

Foot, C. J. "The alkalis." In Atomic Physics, 60–79. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198506959.003.0004.

Full text
Abstract:
Abstract For multi-electron atoms we cannot solve the Hamiltonian analytically, but by making appropriate approximations we can explain their structure in a physically meaningful way. To do this, we start by considering the elementary ideas of atomic structure underlying the periodic table of the elements. In the ground states of atoms the electrons have the configuration that minimises the energy of the whole system. The electrons do not all fall down into the lowest orbital with n = l (the K-shell) because the Pauli exclusion principle restricts the number of electrons in a given (sub-)shell-two electrons cannot have the same set of quantum numbers. This leads to the ‘building-up’ principle: electrons fill up higher and higher shells as the atomic number Z increases across the periodic table.1 Full shells are found at atomic numbers Z = 2, 10, ... corresponding to helium and the other inert gases.
APA, Harvard, Vancouver, ISO, and other styles
10

"Atomic Physics." In High-Intensity X-Rays - Interaction with Matter, 29–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636365.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atomic physics"

1

Ramsey, Norman F. "Renewing Atomic Physics." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

VAN LINDEN VAN DEN HEUVELL, H. B., J. T. M. WALRAVEN, and M. W. REYNOLDS. "ATOMIC PHYSICS 15." In Fifteenth International Conference on Atomic Physics, Zeeman-Effect Centenary. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lepage, G. Peter, D. J. Wineland, C. E. Wieman, and S. J. Smith. "Atomic Physics in QED and QCD." In ATOMIC PHYSICS 14: Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bollinger, J. J., D. J. Heinzen, Wayne M. Itano, S. L. Gilbert, and D. J. Wineland. "Atomic physics tests of nonlinear quantum mechanics." In Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murnick, D. E., and Namic Kwon. "Atomic physics searches for bound state beta decay." In Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Farley, F. J. M. "The muon." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manek, I., U. Moslener, Yu B. Ovchinnikov, P. Rosenbusch, A. I. Sidorov, G. Wasik, M. Zielonkowski, and R. Grimm. "Novel dipole-force atom traps." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heinzen, Daniel J. "Atomic collisions at sub-microkelvin temperatures." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Julienne, Paul S., Eite Tiesinga, Paul Leo, and Carl J. Williams. "Ultracold collisions: Exploring the quantum threshold regime." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Flambaum, V. V. "Nuclear anapole moment and tests of the standard model." In ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59353.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Atomic physics"

1

Livingston, A. E., K. Kukla, and S. Cheng. Atomic physics. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lane, N. F. Theoretical atomic collision physics. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6313184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lane, N. F. Theoretical atomic collision physics. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5296083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chu, Shih-I. Atomic physics in strong fields. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5068947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pindzola, M. S. Theoretical atomic physics for fusion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6560312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clark, R. E. H., J. Jr Abdallah, and S. P. Kramer. Theoretical atomic physics code development III TAPS: A display code for atomic physics data. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/6391009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Richard, P. (Atomic physics with highly charged ions). Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7198439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

P. Richard. Atomic Physics with Highly Charged Ions. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/789356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Richard, P. Atomic physics with highly charged ions. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/6094754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weisheit, J. C. Atomic physics and non-equilibrium plasmas. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5842177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography