Academic literature on the topic 'Atomic pair'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic pair.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atomic pair"
YONEDA, Yasuhiro. "Atomic Pair Distribution Function (PDF) Analysis of Ferroelectric Materials." Nihon Kessho Gakkaishi 54, no. 3 (2012): 155–58. http://dx.doi.org/10.5940/jcrsj.54.155.
Full textVolz, Jürgen, Xinxin Hu, Gabriele Maron, Luke Masters, Lucas Pache, and Arno Rauschenbeutel. "Single atom photon pair source." EPJ Web of Conferences 266 (2022): 08016. http://dx.doi.org/10.1051/epjconf/202226608016.
Full textFULDE, P. "COOPER PAIR BREAKING." Modern Physics Letters B 24, no. 26 (October 20, 2010): 2601–24. http://dx.doi.org/10.1142/s021798491002519x.
Full textShamoto, S., K. Kodama, S. Iikubo, and T. Taguchi. "Atomic pair distribution function analysis on nanomaterials." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (August 23, 2008): C73—C74. http://dx.doi.org/10.1107/s0108767308097651.
Full textRosenberg, Leonard. "Virtual-pair effects in atomic structure theory." Physical Review A 39, no. 9 (May 1, 1989): 4377–86. http://dx.doi.org/10.1103/physreva.39.4377.
Full textDzero, M., E. A. Yuzbashyan, and B. L. Altshuler. "Cooper pair turbulence in atomic Fermi gases." EPL (Europhysics Letters) 85, no. 2 (January 2009): 20004. http://dx.doi.org/10.1209/0295-5075/85/20004.
Full textBelkacem, Ali, and Allan H. Sørensen. "The pair-production channel in atomic processes." Radiation Physics and Chemistry 75, no. 6 (June 2006): 656–95. http://dx.doi.org/10.1016/j.radphyschem.2005.03.003.
Full textPetkov, V. "Atomic-scale structure of nanocrystals by the atomic pair distribution function technique." Molecular Simulation 31, no. 2-3 (February 15, 2005): 101–5. http://dx.doi.org/10.1080/08927020412331308485.
Full textVitek, V. "Pair Potentials in Atomistic Computer Simulations." MRS Bulletin 21, no. 2 (February 1996): 20–23. http://dx.doi.org/10.1557/s088376940004625x.
Full textHoubiers, M., and H. T. C. Stoof. "Cooper-pair formation in trapped atomic Fermi gases." Physical Review A 59, no. 2 (February 1, 1999): 1556–61. http://dx.doi.org/10.1103/physreva.59.1556.
Full textDissertations / Theses on the topic "Atomic pair"
Jakubassa-Amundsen, Doris. "Spectral Theory of the Atomic Dirac Operator in the No-Pair Formalism." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-23824.
Full textMasadeh, Ahmad Salah. "Quantitative structure determination of nanostructured materials using the atomic pair distribution function analysis." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textKerr, Elinor A. "Kinetic and spectroscopic studies of ion-pair states of iodine monochloride." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/12354.
Full textCohen, Offir. "Generation of uncorrelated photon-pairs in optical fibres." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:b818b08a-27b5-4296-9f89-befec30b71fc.
Full textWang, Ruizhe. "Magnetic fluctuations and clusters in the itinerant ferromagnet Ni-V close to a disordered quantum critical point." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1555936445433091.
Full textLignier, Hans. "Etude de la localisation dynamique avec des atomes refroidis par laser." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2005. http://tel.archives-ouvertes.fr/tel-00011644.
Full textAprès avoir retrouvé expérimentalement le phénomène quantique de localisation dynamique, lié au caractère périodique de la séquence de pulses, la destruction de ce phénomène (délocalisation dynamique) par l'utilisation de séquences superposant deux séries de pulses de période (séquence bicolore) est étudiée puis expliquée par un modèle théorique. Cette analyse suggère que la délocalisation est, dans ce contexte, réversible. Il est ainsi montré expérimentalement qu'une séquence bicolore inversée conduit une délocalisation suivie d'une relocalisation.
Lahaye, Thierry. "Refroidissement par évaporation d'un jet atomique guidé magnétiquement." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011260.
Full textNussenzveig, Paulo. "Mesures de champs au niveau du photon par interférométrie atomique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1994. http://tel.archives-ouvertes.fr/tel-00011897.
Full textLopes, Raphael. "An atomic Hong-Ou-Mandel experiment." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0001/document.
Full textIn this thesis, we report the first realisation of the Hong–Ou–Mandel experiment with massive particles in momentum space. This milestone experiment was originally performed in quantum optics: two photons arriving simultaneously at the input ports of a 50:50 beam-splitter always emerge together in one of the output ports. The effect leads to a reduction of coincidence counts which translates into a dip when particles are indistinguishable. We performed the experiment with metastable helium atoms where the specificities of the Micro-Channel-Plate detector allows one to recover the momentum vector of each individual atom.After listing the necessary tools to perform this experiment with atoms, the experimental sequence is discussed and the results are presented. In particular we measured a coincidence count reduction that cannot be explained through any simple classical model. This corresponds to the signature of a two-particle interference, and confirms that our atomic pair source produces beams which have highly correlated populations and are well mode matched. This opens the prospect of testing Bell’s inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics. It also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing
Celino, Massimo. "Atomic scale modelling of disordered systems : the Si and SiSe2 case." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13192.
Full textAt room temperature, materials can exists not only in the liquid or in the crystalline phase but also in the amorphous phase. The amorphous materials are characterized by physical and chemical properties that are of great interest from both fundamental and industrial point of view. In this framework several theoretical approaches have been developed but none of them is able to link the intrinsic disordered atomic structure with the macroscopic properties. Among the others the Molecular Dynamics approach is able to tackle this problem. In this thesis the Molecular Dynamics approach has been used to study the structural properties of two amorphous materials: silicon and silicon diselenide (SiSe2). Amorphous silicon has been studied from room temperature till the melting and above. We have developed an approach that combines the Reverse MonteCarlo method and the Molecular Dynamics technique based on the Tight-Binding theory. In the second part of the thesis we have studied the liquid and the amorphous SiSe2. SiSe2 is representative of a class of amorphous binary, semiconducting chalcogenides of technological interest. It belongs to a class of binary systems AX2 (A=Si, Ge, X=Se, O, S) whose structure is characterized by an intermediate range order. This feature is characterized by the presence of a first sharp diffraction peak (FSDP) in the total neutron structure factor. The atomic structure is characterized by the presence of tetrahedral structures centred on silicon atoms. However it is not possible to exclude the presence of a percentage of defects. Classical Molecular Dynamics is not enough accurate to describe the detailed balance between ionic and covalent bonding. For this reason we have resorted to first-principle calculation for the study of the structural features that at the atomistic level determine the presence of intermediate range order
Books on the topic "Atomic pair"
Banerjee, Soham. Improved modeling of nanocrystals from atomic pair distribution function data. [New York, N.Y.?]: [publisher not identified], 2020.
Find full textShi, Chenyang. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textErnst, Peierls Rudolf. Atomic histories. Woodbury, N.Y: AIP Press, 1997.
Find full textDonnerberg, Hansjörg. Atomic simulation of electrooptic and magnetooptic oxide materials. Berlin: Springer, 1999.
Find full textAbraham, Tamir, ed. Mixing and excess thermodynamic properties: A literature source book : supplement 2. Amsterdam: Elsevier, 1986.
Find full textAn introduction to inertial confinement fusion. Boca Raton: Taylor & Francis, 2006.
Find full textGlenn, Healey, Shafer Steven A, and Wolff Lawrence, eds. Color. Boston: Jones and Bartlett, 1992.
Find full textHines, James R. Recovery in Europe, Pair Skating, and Ice Dancing. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252039065.003.0010.
Full textPacheco, Leonardo Lessa, and Ivoni Freitas-Reis. Gilbert Lewis e a delicada tessitura da teoria do par compartilhado. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-092-2.
Full textScerri, Eric. A Tale of Seven Elements. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780195391312.001.0001.
Full textBook chapters on the topic "Atomic pair"
Rau, A. R. P. "States of an Atomic Electron Pair." In Atoms in Unusual Situations, 383–95. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-9337-6_17.
Full textLindgren, Ingvar, and John Morrison. "The Pair-Correlation Problem and the Coupled-Cluster Approach." In Atomic Many-Body Theory, 381–423. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61640-2_15.
Full textGrosser, J., O. Hoffmann, and F. Rebentrost. "Direct Observation of Collisions by Laser Excitation of the Collision Pair." In Atomic and Molecular Beams, 485–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56800-8_32.
Full textOhashi, Tetsuya. "Generation of Atomic Vacancies by Dislocation Pair Annihilation." In Synthesis Lectures on Mechanical Engineering, 57–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37893-5_5.
Full textBerakdar, J. "Electron-Pair Emission from Solids and Clean Surfaces Upon Electron and Photon Impact." In New Directions in Atomic Physics, 309–13. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4721-1_34.
Full textLaing, Michael. "Effective Atomic Number and Valence-Shell Electron-Pair Repulsion." In ACS Symposium Series, 193–98. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0565.ch015.
Full textMomberger, K., N. Grün, and W. Scheid. "Coupled channel analysis of electron-positron pair production in relativistic heavy ion collisions." In Atomic Physics of Highly Charged Ions, 183–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76658-9_43.
Full textVoitkiv, A. B., and B. Najjari. "Electron Loss, Excitation, and Pair Production in Relativistic Collisions of Heavy Atomic Particles." In Atomic Processes in Basic and Applied Physics, 153–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25569-4_7.
Full textThiel, Joachim, Johannes Hoffstadt, Norbert Grün, and Werner Scheid. "Electron-Positron Pair Creation in Relativistic Atomic Heavy Ion Collisions." In NATO ASI Series, 453–64. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2568-4_61.
Full textEdkins, Stephen. "Atomic-Scale Electronic Structure of the Cuprate d-Symmetry Form Factor Charge Density Wave." In Visualising the Charge and Cooper-Pair Density Waves in Cuprates, 59–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65975-6_4.
Full textConference papers on the topic "Atomic pair"
Güçlü, M. C. "Atomic Collisions and free Lepton Pair Production." In LOW ENERGY ANTIPROTON PHYSICS: Eighth International Conference on Low Energy Antiproton Physics (LEAP '05). AIP, 2005. http://dx.doi.org/10.1063/1.2130191.
Full textStrayer, M. R. "Thirteen years of pair production." In Atomic collisions: A symposium in honor of Christopher Bottcher (1945−1993). AIP, 1995. http://dx.doi.org/10.1063/1.49189.
Full textVestergaard, B., and K. Molmer. "Atomic Pair Correlations and Propagation of Incoherent Light." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561614.
Full textGould, Harvey, A. Belkacem, B. Feinberg, R. Bossingham, and W. E. Meyerhof. "Electron capture from electron-positron pair production." In Atomic collisions: A symposium in honor of Christopher Bottcher (1945−1993). AIP, 1995. http://dx.doi.org/10.1063/1.49186.
Full textBulanin, M. O. "Collision-induced absorption intensity redistribution and the atomic pair polarizabilities." In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51802.
Full textHua, Xiao, Sandy Sanchez, and Ullrich Steiner. "Phase Evolution During Perovskite Formation – An Insight from Pair Distribution Function." In Online Conference on Atomic-level Characterisation of Hybrid Perovskites. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.hpatom.2022.008.
Full textPan, Li, Don R. Metzger, and Marek Niewczas. "The Meshless Dynamic Relaxation Techniques for Simulating Atomic Structures of Materials." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1284.
Full textVane, C. R., S. Datz, P. F. Dittner, H. F. Krause, C. Bottcher, M. Strayer, R. Schuch, H. Gao, and R. Hutton. "Electron-positron pair production in Coulomb collisions at ultrarelativistic energies." In The eighteenth international conference on the physics of electronic and atomic collisions. AIP, 1993. http://dx.doi.org/10.1063/1.45265.
Full textKoch, Karl, Stephen H. Chakmakjian, C. R. Stroud, and Lloyd W. Hillman. "Broadband atomic response to incommensurate modulation frequencies." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wf6.
Full textDeb, Bimalendu. "Pair-correlation in Bose-Einstein Condensate and Fermi Superfluid of Atomic Gases." In Invited Lectures of TC-2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772510_0005.
Full textReports on the topic "Atomic pair"
Billinge, S. J. L., and M. F. Thorpe. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/795601.
Full textTurner Streets, Kathleen Ruth. The Atomic Weight Dependence and Mass Cross-Sections of Massive Hadron Pair Production in Proton - Nucleus Collisions at 800-GeV/c. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/1427792.
Full textHeinola, K. Summary Report of the Second Research Coordination Meeting on Atomic Data for Vapour Shielding in Fusion Devices. IAEA Nuclear Data Section, February 2021. http://dx.doi.org/10.61092/iaea.gd9j-0nr6.
Full textMunger, Charles T. Proposal for the Detection of Relativistic Anti-Hydrogen Atoms Produced by Pair Production with Positron Capture. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/813309.
Full textYourshaw, Ivan. Study of Pair and many-body interactions in rare-gas halide atom clusters using negative ion zero electron kinetic energy (ZEKE) and threshold photodetachment spectroscopy. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/760297.
Full text