Academic literature on the topic 'Atomic, molecular and optical physics not elsewhere classified'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic, molecular and optical physics not elsewhere classified.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atomic, molecular and optical physics not elsewhere classified"

1

Kelly, Matthew, and Yuriy Kuleshov. "Flood Hazard Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment." Sensors 22, no. 16 (August 19, 2022): 6251. http://dx.doi.org/10.3390/s22166251.

Full text
Abstract:
Floods are among the costliest natural hazards, in Australia and globally. In this study, we used an indicator-based method to assess flood hazard risk in Australia’s Hawkesbury-Nepean catchment (HNC). Australian flood risk assessments are typically spatially constrained through the common use of resource-intensive flood modelling. The large spatial scale of this study area is the primary element of novelty in this research. The indicators of maximum 3-day precipitation (M3DP), distance to river—elevation weighted (DREW), and soil moisture (SM) were used to create the final Flood Hazard Index (FHI). The 17–26 March 2021 flood event in the HNC was used as a case study. It was found that almost 85% of the HNC was classified by the FHI at ‘severe’ or ‘extreme’ level, illustrating the extremity of the studied event. The urbanised floodplain area in the central-east of the HNC had the highest FHI values. Conversely, regions along the western border of the catchment had the lowest flood hazard risk. The DREW indicator strongly correlated with the FHI. The M3DP indicator displayed strong trends of extreme rainfall totals increasing towards the eastern catchment border. The SM indicator was highly variable, but featured extreme values in conservation areas of the HNC. This study introduces a method of large-scale proxy flood hazard assessment that is novel in an Australian context. A proof-of-concept methodology of flood hazard assessment developed for the HNC is replicable and could be applied to other flood-prone areas elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Hongxin. "Classified one‐step modified signed‐digit arithmetic and its optical implementation." Optical Engineering 35, no. 4 (April 1, 1996): 1134. http://dx.doi.org/10.1117/1.600602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Pallavi, Devendra Kr Tripathi, Shikha Jaiswal, and H. K. Dixit. "All-Optical Logic Gates: Designs, Classification, and Comparison." Advances in Optical Technologies 2014 (March 19, 2014): 1–13. http://dx.doi.org/10.1155/2014/275083.

Full text
Abstract:
The paper reviews the current status and designs of all-optical gates. Various schemes with and without semiconductor optical amplifiers are discussed and compared. The optical gates are classified according to their design structures. It is divided into two major divisions that is, nonsemiconductor optical amplifier based gates and semiconductor optical amplifier based gates. In nonsemiconductor optical amplifier based gates, different schemes have been proposed to create non-linearity which is discussed. The semiconductor optical amplifier based gates of different design structures are discussed to show the probe pulse that is modulated in different ways to obtain results.
APA, Harvard, Vancouver, ISO, and other styles
4

Romanov, S. G. "3-Dimensional Photonic Crystals at Optical Wavelengths." Journal of Nonlinear Optical Physics & Materials 07, no. 02 (June 1998): 181–200. http://dx.doi.org/10.1142/s0218863598000168.

Full text
Abstract:
Different experimental strategies towards the 3-dimensional photonic crystals operating at optical wavelength are classified. The detailed discussion is devoted to the recent progress in photonic crystals fabricated by template method — the photonic band gap materials on the base of opal. The control of photonic properties of opal-based gratings is achieved through impregnating the opal with high refractive index semiconductors and dielectrics. Experimental study demonstrated the dependence of the stop band behaviour upon the type of impregnation (complete or partial) and showed a way for approaching complete photonic band gap. The photoluminescence from opal- semiconductor gratings revealed suppression of spontaneous emission in the gap region with following enhancement of the emission efficiency at the low-energy edge of the gap.
APA, Harvard, Vancouver, ISO, and other styles
5

RAMELAN, A. H., I. YAHYA, PRASODJO, and E. M. GOLDYS. "GaSb/AlGaSb COMPOUND SEMICONDUCTORS GROWN BY MOCVD FOR OPTOELECTRONIC APPLICATIONS." Journal of Nonlinear Optical Physics & Materials 15, no. 03 (September 2006): 323–29. http://dx.doi.org/10.1142/s0218863506003335.

Full text
Abstract:
Al x Ga 1-x Sb films in the regime 0 ≤ x ≤ 0.30 have been grown by metalorganic chemical vapor deposition on GaAs and GaSb substrates using TMAl , TMGa and TMSb precursors. We report the effects of growth conditions on the optical properties. Samples grown at temperatures of 540°C, 580°C and 600°C and a V/III ratio of 1 have been investigated. The Al x Ga 1-x Sb layers grown at 580°C and 600°C with a V/III ratio of 1 and Al content in the range of 0.5% to 25% were found to exhibit excellent optical quality with a very high optical transmission at energies below the bandgap. The principle photoluminescence features observed are attributed to bound exciton and donor-acceptor transitions with FWHM comparable to the best values reported elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
6

Amarie, Dragos, Nazanin Mosavian, Elijah L. Waters, and Dwayne G. Stupack. "Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors." Sensors 20, no. 17 (August 30, 2020): 4906. http://dx.doi.org/10.3390/s20174906.

Full text
Abstract:
Microcavity surface plasmon resonance sensors (MSPRSs) develop out of the classic surface plasmon resonance technologies and aim at producing novel lab-on-a-chip devices. MSPRSs generate a series of spectral resonances sensitive to minute changes in the refractive index. Related sensitivity studies and biosensing applications are published elsewhere. The goal of this work is to test the hypothesis that MSPRS resonances are standing surface plasmon waves excited at the surface of the sensor that decay back into propagating photons. Their optical properties (mean wavelength, peak width, and peak intensity) appear highly dependent on the internal morphology of the sensor and the underlying subwavelength aperture architecture in particular. Numerous optical experiments were designed to investigate trends that confirm this hypothesis. An extensive study of prior works was supportive of our findings and interpretations. A complete understanding of those mechanisms and parameters driving the formations of the MSPRS resonances would allow further improvement in sensor sensitivity, reliability, and manufacturability.
APA, Harvard, Vancouver, ISO, and other styles
7

Wei, Shan, Yajun Pang, Zhenxu Bai, Yulei Wang, and Zhiwei Lu. "Research Progress of Stress Measurement Technologies for Optical Elements." International Journal of Optics 2021 (April 20, 2021): 1–11. http://dx.doi.org/10.1155/2021/5541358.

Full text
Abstract:
It is of great significance to measure the residual stress distribution accurately for optical elements and evaluate its influence on the performance of optical instruments in optical imaging, aviation remote sensing, semiconductor manufacturing, and other fields. The stress of optical elements can be closely related to birefringence based on photoelasticity. Thus, the method of quantifying birefringence to obtain the stress becomes the main method of stress measurement technologies for optical elements. This paper first introduces the basic principle of stress measurement based on photoelasticity. Then, the research progress of stress measurement technologies based on this principle is reviewed, which can be classified into two methods: polarization method and interference method. Meanwhile, the advantages and disadvantages of various stress measurement technologies are analyzed and compared. Finally, the developing trend of stress measurement technologies for optical elements is summarized and prospected.
APA, Harvard, Vancouver, ISO, and other styles
8

Lyu, Shuhan, Zheyu Wu, Xinghua Shi, and Qian Wu. "Optical Fiber Biosensors for Protein Detection: A Review." Photonics 9, no. 12 (December 15, 2022): 987. http://dx.doi.org/10.3390/photonics9120987.

Full text
Abstract:
Proteins play an important role in organisms. The fast and high-accuracy detection of proteins is demanded in various fields, such as healthcare, food safty, and biosecurity, especially in the background of the globally raging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Optical fiber sensors have great potential for protein detection due to the excellent characteristics of high sensitivity, miniaturization, and capability for remote monitoring. Over the past decades, a large number of structures have been investigated and proposed. This paper begins with an overview of different fiber sensing structures for protein detection according to the fundamental sensing mechanisms. The overview is classified into four sections, including intensity-modulation, phase-modulation, scattering, and fluorescence. In each section, we reviewed the recent advances of fiber protein sensors and compared their performance, such as sensitivity and limit of detection. And then we analyzed the advantages and disadvantages of the four kinds of biosensors. Finally, the paper concludes with the challenges faced and possible future development of optical fiber protein biosensors for further study.
APA, Harvard, Vancouver, ISO, and other styles
9

Moretta, Rosalba, Luca De Stefano, Monica Terracciano, and Ilaria Rea. "Porous Silicon Optical Devices: Recent Advances in Biosensing Applications." Sensors 21, no. 4 (February 13, 2021): 1336. http://dx.doi.org/10.3390/s21041336.

Full text
Abstract:
This review summarizes the leading advancements in porous silicon (PSi) optical-biosensors, achieved over the past five years. The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate for biosensing purposes, with applications in different research fields. Different optical PSi biosensors are reviewed and classified into four classes, based on the different biorecognition elements immobilized on the surface of the transducing material. The PL signal modulation and the effective refractive index changes of the porous matrix are the main optical transduction mechanisms discussed herein. The approaches that are commonly employed to chemically stabilize and functionalize the PSi surface are described.
APA, Harvard, Vancouver, ISO, and other styles
10

Hecht, Jeff. "The First Time the Laser Was Classified." Optics and Photonics News 33, no. 1 (January 1, 2022): 40. http://dx.doi.org/10.1364/opn.33.1.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Atomic, molecular and optical physics not elsewhere classified"

1

(9643427), Troy A. Seberson. "Heating and Cooling Mechanisms for the Thermal Motion of an Optically Levitated Nanoparticle." Thesis, 2020.

Find full text
Abstract:
Bridging the gap between the classical and quantum regimes has consequences not only for fundamental tests of quantum theory, but for the relation between quantum mechanics and gravity. The field of levito-dynamics provides a promising platform for testing the hypotheses of the works investigating these ideas. By manipulating a macroscopic particle's motion to the scale of its ground state wavefunction, levito-dynamics offers insight into the macroscopic-quantum regime.

Ardent and promising research has brought the field of levito-dynamics to a state in which these tests are available. Recent work has brought a mesoscopic particle's motion to near the ground state. Several factors of decoherence are limiting efficient testing of these fundamental theories which implies the need for alternative strategies for achieving the same goal. This thesis is concerned with investigating alternative methods that may enable a mesoscopic particle to reach the quantum regime. 

In this thesis, three theoretical proposals are studied as a means for a mesoscopic particle to reach the quantum regime as well as a detailed study into one of the most important factors of heating and decoherence for optical trapping. The first study of cooling a particle's motion highlights that the rotational degrees of freedom of a levitated symmetric-top particle leads to large harmonic frequencies compared to the translational motion, offering a more accessible ground state temperature after feedback cooling is applied. An analysis of a recent experiment under similar conditions is compared with the theoretical findings and found to be consistent. 
The second method of cooling takes advantage of the decades long knowledge of atom trapping and cooling. By coupling a spin-polarized, continuously Doppler cooled atomic gas to a magnetic nanoparticle through the dipole-dipole interaction, motional energy is able to be removed from the nanoparticle. Through this method, the particle is able to reach near its quantum ground state provided the atoms are at a temperature below the nanoparticle ground state temperature and the atom number is sufficiently large.
The final investigation presents the dynamics of an optically levitated dielectric disk in a Gaussian standing wave. Though few studies have been performed on disks both theoretically and experimentally, our findings show that the stable couplings between the translational and rotational degrees of freedom offer a possibility for cooling several degrees of freedom simultaneously by actively cooling a single degree freedom.
APA, Harvard, Vancouver, ISO, and other styles
2

(6858197), Yao De George Toh. "Progress towards a new parity non-conservation measurement in cesium-133." Thesis, 2019.

Find full text
Abstract:
Atomic parity violation measurements provide a way to probe physics beyond the Standard Model. They can provide constraints on conjectures of a massive Z′ bosonor a light boson, or searches of dark energy. Using the two-pathway coherent control technique, our group plans to make a new measurement of the weak interaction induced parity non-conservation (PNC) transition moment (EPNC) on the cesium 6S→7S transition. We will coherently interfere a 2-photon transition with the Stark and PNC transitions to amplify and extract the PNC amplitude. Previously, our lab has measured the magnetic dipole transition moment on the same 6S→7S transition to about 0.4% uncertainty using this technique. In this dissertation, I discuss improvements made to the system, and review what future upgrades are needed for a new EPNC measurement. Key systematics are also described. For an accurate determination of EPNC, properties of cesium such as the scalar (α) and vector (β) transition polarizabilities are needed. I present improved determinations of keyelectric dipole matrix elements, and calculate new high precision determinations of α and β. Finally, using β and the previously measured value of EPNC, I calculate new values for the weak charge of the cesium nucleus Qw.
APA, Harvard, Vancouver, ISO, and other styles
3

(5930102), John P. Oliver. "Colliding Laser Produced Plasma Physics and Applications in Inertial Fusion and Nanolithography." Thesis, 2019.

Find full text
Abstract:
Laser-produced plasmas (LPP) have been used in a wide range of applications such as in pulsed laser deposition (PLD), extreme ultraviolet lithography (EUVL), laser-induced breakdown spectroscopy (LIBS), and many more. In the collision of two laser-produced plasmas, the two counter-streaming plasmas may face a degree of stagnation which influences the subsequent development of the compound plasma plume. The plume development of the stagnation layer can deviate quite noticeably from typical laser-plasma behavior. For instance, an enhanced degree of collisionality is expected, especially when the plasma collision transpires in a low pressure ambient. Colliding plasma can be intentionally implemented or conversely may occur naturally. In EUV lithography colliding plasma could service as an efficient EUV source with inherent debris mitigation. Conversely, colliding plasma could manifest in an inertial fusion energy (IFE) chamber leading to contamination, disrupting successful device operation.

Various techniques such as optical emission spectroscopy (OES), CCD plume imaging, laser-induced fluorescence (LIF), laser-induced incandescence (LII), and scanning electron microscopy (SEM) may be used to study laser-produced plasmas and their associated byproducts. These techniques will be used extensively throughout this work to aid in developing an understanding of the various physical and chemical phenomena occurring in these plasmas.

Chapter 1 provides introductory knowledge regarding LPPs with a specific exploration into colliding plasma and its relevance to a broad body of scientific knowledge. Additionally, the principles behind the various experimental techniques are capitulated.

Chapter 2 presents the laboratory facilities available at our Center for Materials Under eXtreme Environment (CMUXE) which can be used to study LPP. The various equipment (chambers, lasers, spectrograph, etc.) are discussed in detail.

Chapter 3 begins the series of substantive chapters which comprise the original research of this thesis. Here, the early formation (< 1 μs) of colliding carbon plasmas produced from the ablation of graphite is explored. The influence of plume hydrodynamics on the temporary lateral confinement of the stagnation layer is discussed with attention to the three different laser intensities studied. Additionally, species in the plasma were identified using OES and monochromatic plume imaging. A large increase in Swan emission from C2 dimers is observed in the stagnation layer, suggesting formation of C2 and/or re-excitation of C2 produced ab initio during laser ablation. Results were compared with HEIGHTS computational modeling to verify observations and to validate the code package for a new plasma regime.

Chapter 4 functions as a continuation from Chapter 3, looking into the intermediate time (1-10 μs) dynamics of colliding carbon plasma. To observe transient molecular species of carbon, C2 and C3, LIF was employed. By acquiring plume images through LIF, the various mechanisms by which C2 and C3 appear at different times in the plasma lifetime may be discerned. Using optical time-of-flight (OTOF), more information of carbon species populations may be determined to construct space-time contours which offer corroborative information regarding the spatiotemporal development of the stagnation layer.

Chapter 5 presents work on colliding Sn plasma for application as a EUV light source. The accumulation of material along the stagnation layer makes colliding plasmas a suitable preplasma in a dual pulse laser scheme. Dual-pulse EUV concepts call for the formation of a preplasma from the stagnation of two Sn plasmas. This preformed plasma is then subject to a second, pumping laser purposed to optimize the conversion efficiency (CE) of laser energy into EUV output. Characterization of the stagnation layer was obtained through optical emission spectroscopy while CE data is obtained using an absolutely calibrated EUV photodiode. HEIGHTS computational modeling then provides prediction of EUV emission upon using a CO2 laser for preplasma reheat.

Chapter 6 explores the collision between two dissimilar plasmas. Laser-produced plasma of Si and C are created in a manner which enables the two plasmas to collide. The ensuing development of the colliding plasma regime is then discussed in terms of relevant plume hydrodynamics. Analysis of the colliding regime is accomplished using fast-gated plume imaging and optical time-of-flight.

The final chapter, Chapter 7, provides a concise summary of the results presented in the preceding chapters. Additionally, recommended research directives are presented which are designed with consideration for the current facilities and capabilities at CMUXE.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography