Academic literature on the topic 'Atomic Hardy space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atomic Hardy space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atomic Hardy space"
Folch-Gabayet, Magali, Martha Guzmán-Partida, and Salvador Pérez-Esteva. "Lipschitz measures and vector-valued Hardy spaces." International Journal of Mathematics and Mathematical Sciences 25, no. 5 (2001): 345–56. http://dx.doi.org/10.1155/s0161171201004549.
Full textChai, Yan, Yaoyao Han, and Kai Zhao. "Herz-Type Hardy Spaces Associated with Operators." Journal of Function Spaces 2018 (July 17, 2018): 1–10. http://dx.doi.org/10.1155/2018/1296837.
Full textWANG, HUA. "BOUNDEDNESS OF SEVERAL INTEGRAL OPERATORS WITH BOUNDED VARIABLE KERNELS ON HARDY AND WEAK HARDY SPACES." International Journal of Mathematics 24, no. 12 (November 2013): 1350095. http://dx.doi.org/10.1142/s0129167x1350095x.
Full textHYTÖNEN, TUOMAS, DACHUN YANG, and DONGYONG YANG. "The Hardy space H1 on non-homogeneous metric spaces." Mathematical Proceedings of the Cambridge Philosophical Society 153, no. 1 (December 8, 2011): 9–31. http://dx.doi.org/10.1017/s0305004111000776.
Full textLong, Long, Niyonkuru Silas, and Guangheng Xie. "Weak martingale Hardy-type spaces associated with quasi-Banach function lattice." Forum Mathematicum 34, no. 2 (January 23, 2022): 407–23. http://dx.doi.org/10.1515/forum-2021-0270.
Full textBerndt, Ryan. "Atomic Hardy space theory for unbounded singular integrals." Indiana University Mathematics Journal 55, no. 4 (2006): 1461–82. http://dx.doi.org/10.1512/iumj.2006.55.2649.
Full textLou, Zengjian, and Shouzhi Yang. "AN ATOMIC DECOMPOSITION FOR THE HARDY-SOBOLEV SPACE." Taiwanese Journal of Mathematics 11, no. 4 (September 2007): 1167–76. http://dx.doi.org/10.11650/twjm/1500404810.
Full textKEMPPAINEN, MIKKO. "ON VECTOR-VALUED TENT SPACES AND HARDY SPACES ASSOCIATED WITH NON-NEGATIVE SELF-ADJOINT OPERATORS." Glasgow Mathematical Journal 58, no. 3 (July 21, 2015): 689–716. http://dx.doi.org/10.1017/s0017089515000415.
Full textZhang, Yangyang, Dachun Yang, Wen Yuan, and Songbai Wang. "Real-variable characterizations of Orlicz-slice Hardy spaces." Analysis and Applications 17, no. 04 (June 10, 2019): 597–664. http://dx.doi.org/10.1142/s0219530518500318.
Full textXia, Runlian, and Xiao Xiong. "Operator-valued local Hardy spaces." Journal of Operator Theory 82, no. 2 (September 15, 2019): 383–443. http://dx.doi.org/10.7900/jot.2018jun02.2191.
Full textDissertations / Theses on the topic "Atomic Hardy space"
SALOGNI, FRANCESCA. "Harmonic Bergman spaces, Hardy-type spaces and harmonic analysis of a symmetric diffusion semigroup on R^n." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41814.
Full textSouza, Osmar do Nascimento. "Espaços de Hardy e compacidade compensada." Universidade Federal de São Carlos, 2014. https://repositorio.ufscar.br/handle/ufscar/5906.
Full textFinanciadora de Estudos e Projetos
This work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms.
Esse trabalho está dividido em duas partes.Na primeira, nosso objetivo e apresentar os espaços de Hardy Hp(Rn), o qual coincide com os espaços Lp(Rn), quando p > 1, esta estritamente contido em Lp(Rn) se p = 1, e e um espaço de distribuições quando 0 < p < 1. Quando 0 < p < 1, os espaços de Hardy oferecem um melhor tratamento envolvendo analise harmônica do que os espaços Lp(Rn). Entre outros resultados, provamos o teorema da caracterização maximal de Hp, o qual fornece varias, porem equivalentes, formas de caracterizar Hp, com base em diferentes funcões maximais. Demonstramos o teorema da decomposição atômica para Hp, 0 < p < 1, que permite decompor qualquer distribuição em Hp como soma de Hp-atomos (funções mensuráveis que satisfazem certas propriedades). Nessa etapa, usamos fortemente a de- composição de Whitney e a decomposto de Calderon-Zygmund generalizada. Na segunda parte, como uma aplicação, provamos que quantidades não-lineares (como o jacobiano, divergente e o rotacional definidos em Rn), identificadas pela teoria compacidade compensada pertencem, em condições naturais, aos espaços de Hardy. Para tanto, além dos resultados visto na primeira parte, usamos outros como os Teoremas de Imersões de Sobolev, a desigualdade de Sobolev-Poincaré. Usamos ainda, definições e resultados referentes ao contexto de formas diferenciais.
Yin, Zhi. "Espaces de Hardy en probabilités et analyse harmonique quantiques." Phd thesis, Université de Franche-Comté, 2012. http://tel.archives-ouvertes.fr/tel-00838496.
Full textXia, Runlian. "Les espaces de Hardy locaux à valeurs opératorielle et les applications sur les opérateurs pseudo-différentiels." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD084/document.
Full textThis thesis is devoted to the study of the analysis on the spaces hpc(Rd,M), the local version of operator-valued Hardy spaces studied by Tao Mei. The operator-valued local Hardy spaces are defined by the truncated Littlewood-Paley g-functions and the truncated Lusin square functions associated to the Poisson kernel. We develop the Calderón-Zygmund theory on hpc(Rd,M), and study the hpc-bmocq duality and the interpolation. Based on these results, we obtain general characterization of hpc(Rd,M) which states that the Poisson kernel can be replaced by any reasonable test function. This characterization plays an important role in the smooth atomic decomposition of h1c(Rd,M). We also investigate the operator-valued inhomogeneous Triebel-Lizorkin spaces Fpα,c(Rd,M). Like in the classical case, these spaces are connected with the operator-valued local Hardy spaces via Bessel potentials. Then by the aid of the Calderón-Zygmund theory, we obtain the Littlewood-Paley type and the Lusin type characterizations of Fpα,c(Rd,M) by more general kernels. These characterizations allow us to study various properties of Fpα,c(Rd,M), in particular, the smooth atomic decomposition. This is an extension and an improvement of the previous atomic decomposition of h1c(Rd,M). As an important application of this smooth atomic decomposition, we show the boundedness of pseudo-differential operators with regular operator-valued symbols on Triebel-Lizorkin spaces Fpα,c(Rd,M), for α ∈ R and 1 ≤ p ≤ ∞. Finally, by virtue of transference, we obtain the Fpα,c-boundedness of pseudo-differential operators on quantum tori
Hong, Guixiang. "Quelques problèmes en analyse harmonique non commutative." Phd thesis, Université de Franche-Comté, 2012. http://tel.archives-ouvertes.fr/tel-00979472.
Full textYang, Tsiung-Huang, and 楊相宏. "The atomic decomposition of Hardy space associated with different homogeneities." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/33937891080099087307.
Full text國立中央大學
數學研究所
100
This is Professor Han Yongsheng, defined in the paper [HLLRS with anisotropic Hardy spaces in this article, we will use the discrete expressions to get a new Hardy spaces atomic decomposition.
Books on the topic "Atomic Hardy space"
Sandler, Corey. Official Sega Genesis and Game Gear strategies, 3RD Edition. New York: Bantam Books, 1992.
Find full textTom, Badgett, ed. Official Sega Genesis and Game Gear strategies, 2ND Edition. Toronto: Bantam Books, 1991.
Find full textSega Genesis Secrets, Volume 4. Rocklin, CA: Prima Publishing, 1993.
Find full textEddy, Andrew, and Donn Nauert. Sega Genesis Secrets, Volume 4 (Prima's Secrets of the Games). Prima Games, 1993.
Find full textOfficial Sega Genesis and Game Gear Strategies, '94 Edition. New York, NY: Random House, Electronic Publishing, 1993.
Find full textBook chapters on the topic "Atomic Hardy space"
Yang, Dachun, Dongyong Yang, and Guoen Hu. "The Local Atomic Hardy Space h 1(μ)." In The Hardy Space H1 with Non-doubling Measures and Their Applications, 137–214. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00825-7_4.
Full textAlvarado, Ryan, and Marius Mitrea. "Atomic Theory of Hardy Spaces." In Hardy Spaces on Ahlfors-Regular Quasi Metric Spaces, 161–264. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18132-5_5.
Full textKawazoe, Takeshi. "Atomic Hardy spaces on semisimple Lie groups." In Non-Commutative Harmonic Analysis and Lie Groups, 189–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0073023.
Full textForsman, Klas. "Atomic decompositions in Hardy spaces on bounded lipschitz domains." In Function Spaces and Applications, 206–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078876.
Full textBansah, Justice Sam, and Benoît F. Sehba. "Martingale Hardy-Amalgam Spaces: Atomic Decompositions and Duality." In Operator Theory and Harmonic Analysis, 73–100. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77493-6_5.
Full textVallarino, Maria. "Atomic and Maximal Hardy Spaces on a Lie Group of Exponential Growth." In Trends in Harmonic Analysis, 409–24. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2853-1_16.
Full textLOU, ZENGJIAN. "AN ATOMIC DECOMPOSITION FOR THE HARDY SPACE WITH CURL-FREE." In Wavelet Analysis and Active Media Technology, 959–63. World Scientific Publishing Company, 2005. http://dx.doi.org/10.1142/9789812701695_0149.
Full text"Maximal Functions and Atoms." In Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28, 62–79. Princeton University Press, 2020. http://dx.doi.org/10.2307/j.ctv17db3q0.6.
Full textScerri, Eric. "Element 43—Technetium." In A Tale of Seven Elements. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780195391312.003.0011.
Full textFox, Michael H. "Nuclear Waste." In Why We Need Nuclear Power. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199344574.003.0016.
Full textConference papers on the topic "Atomic Hardy space"
Ito, Kenchi, Masahiko Hada, and Kazumi Kawamoto. "Refractive-index change of LiNbO3 by H+–Li+ exchange." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fjj6.
Full textTing, Seng Nguon, Hsien-Ching Lo, Donald Nedeau, Aaron Sinnott, and Felix Beaudoin. "Sub-20nm Device Voltage-Sensitive SRAM Characterization and Failure Analysis." In ISTFA 2018. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.istfa2018p0300.
Full textBienvenu, Meghyn, Quentin Manière, and Michaël Thomazo. "Cardinality Queries over DL-Lite Ontologies." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/248.
Full textSreedurga, Gogulapati, Mayank Ratan Bhardwaj, and Yadati Narahari. "Maxmin Participatory Budgeting." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/70.
Full text