Journal articles on the topic 'Atomic Frequency Comb'

To see the other types of publications on this topic, follow the link: Atomic Frequency Comb.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Atomic Frequency Comb.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Horiuchi, Noriaki. "Atomic frequency comb." Nature Photonics 7, no. 2 (January 31, 2013): 85. http://dx.doi.org/10.1038/nphoton.2013.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Savchenkov, A. A., A. B. Matsko, and L. Maleki. "On Frequency Combs in Monolithic Resonators." Nanophotonics 5, no. 2 (June 1, 2016): 363–91. http://dx.doi.org/10.1515/nanoph-2016-0031.

Full text
Abstract:
AbstractOptical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.
APA, Harvard, Vancouver, ISO, and other styles
3

Stern, Liron, Jordan R. Stone, Songbai Kang, Daniel C. Cole, Myoung-Gyun Suh, Connor Fredrick, Zachary Newman, et al. "Direct Kerr frequency comb atomic spectroscopy and stabilization." Science Advances 6, no. 9 (February 2020): eaax6230. http://dx.doi.org/10.1126/sciadv.aax6230.

Full text
Abstract:
Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.
APA, Harvard, Vancouver, ISO, and other styles
4

Steven, T. Cundiff, and Bachana Lomsadze. "Frequency comb-based multidimensional coherent spectroscopy." EPJ Web of Conferences 205 (2019): 03017. http://dx.doi.org/10.1051/epjconf/201920503017.

Full text
Abstract:
We present multidimensional coherent spectroscopy that utilizes frequency combs and multi-heterodyne detection. We demonstrate its capability to measure collective hyperfine resonances in atomic vapor induced by long-range dipole-dipole interactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Won-Kyu, Eok-Bong Kim, Dae-Su Yee, Ho-Suhng Suh, Chang-Yong Park, Dai-Hyuk Yu, and Sang-Eon Park. "Comparison of Fiber-Based Frequency Comb and Ti:Sapphire-Based Frequency Comb." Journal of the Optical Society of Korea 11, no. 3 (September 25, 2007): 124–29. http://dx.doi.org/10.3807/josk.2007.11.3.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Picqué, Nathalie, and Theodor W. Hänsch. "Frequency comb spectroscopy." Nature Photonics 13, no. 3 (February 21, 2019): 146–57. http://dx.doi.org/10.1038/s41566-018-0347-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Horiuchi, Noriaki. "Frequency comb cascade." Nature Photonics 8, no. 11 (October 31, 2014): 819–20. http://dx.doi.org/10.1038/nphoton.2014.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Won, Rachel. "Frequency comb power." Nature Photonics 8, no. 3 (February 28, 2014): 168. http://dx.doi.org/10.1038/nphoton.2014.32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Udem, Thomas. "Frequency comb benefits." Nature Photonics 3, no. 2 (February 2009): 82–84. http://dx.doi.org/10.1038/nphoton.2008.284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Main, D., T. M. Hird, S. Gao, I. A. Walmsley, and P. M. Ledingham. "Room temperature atomic frequency comb storage for light." Optics Letters 46, no. 12 (June 15, 2021): 2960. http://dx.doi.org/10.1364/ol.426753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Grinin, Alexey, Arthur Matveev, Dylan C. Yost, Lothar Maisenbacher, Vitaly Wirthl, Randolf Pohl, Theodor W. Hänsch, and Thomas Udem. "Two-photon frequency comb spectroscopy of atomic hydrogen." Science 370, no. 6520 (November 26, 2020): 1061–66. http://dx.doi.org/10.1126/science.abc7776.

Full text
Abstract:
We have performed two-photon ultraviolet direct frequency comb spectroscopy on the 1S-3S transition in atomic hydrogen to illuminate the so-called proton radius puzzle and to demonstrate the potential of this method. The proton radius puzzle is a significant discrepancy between data obtained with muonic hydrogen and regular atomic hydrogen that could not be explained within the framework of quantum electrodynamics. By combining our result [f1S-3S = 2,922,743,278,665.79(72) kilohertz] with a previous measurement of the 1S-2S transition frequency, we obtained new values for the Rydberg constant [R∞ = 10,973,731.568226(38) per meter] and the proton charge radius [rp = 0.8482(38) femtometers]. This result favors the muonic value over the world-average data as presented by the most recent published CODATA 2014 adjustment.
APA, Harvard, Vancouver, ISO, and other styles
12

Amari, A., A. Walther, M. Sabooni, M. Huang, S. Kröll, M. Afzelius, I. Usmani, et al. "Towards an efficient atomic frequency comb quantum memory." Journal of Luminescence 130, no. 9 (September 2010): 1579–85. http://dx.doi.org/10.1016/j.jlumin.2010.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tsai, Tsung-Han, Chao Zhou, Desmond C. Adler, and James G. Fujimoto. "Frequency comb swept lasers." Optics Express 17, no. 23 (November 6, 2009): 21257. http://dx.doi.org/10.1364/oe.17.021257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chang, Yawei, Tongxiao Jiang, Zhigang Zhang, and Aimin Wang. "All-fiber Yb:fiber frequency comb." Chinese Optics Letters 17, no. 5 (2019): 053201. http://dx.doi.org/10.3788/col201917.053201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bonarota, M., J.-L. Le Gouët, S. A. Moiseev, and T. Chanelière. "Atomic frequency comb storage as a slow-light effect." Journal of Physics B: Atomic, Molecular and Optical Physics 45, no. 12 (June 8, 2012): 124002. http://dx.doi.org/10.1088/0953-4075/45/12/124002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Akhmedzhanov, R. A., L. A. Gushchin, A. A. Kalachev, S. L. Korableva, D. A. Sobgayda, and I. V. Zelensky. "Atomic frequency comb memory in an isotopically pure143Nd3+:Y7LiF4crystal." Laser Physics Letters 13, no. 1 (November 24, 2015): 015202. http://dx.doi.org/10.1088/1612-2011/13/1/015202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bell, A. S., G. M. Mcfarlane, E. Riis, and A. I. Ferguson. "Efficient optical frequency-comb generator." Optics Letters 20, no. 12 (June 15, 1995): 1435. http://dx.doi.org/10.1364/ol.20.001435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Aleman, Ademir, Shreyas Muralidhar, Ahmad A. Awad, Johan Åkerman, and Dag Hanstorp. "Frequency comb enhanced Brillouin microscopy." Optics Express 28, no. 20 (September 21, 2020): 29540. http://dx.doi.org/10.1364/oe.398619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kuse, Naoya, Gabriele Navickaite, Michael Geiselmann, Takeshi Yasui, and Kaoru Minoshima. "Frequency-scanned microresonator soliton comb with tracking of the frequency of all comb modes." Optics Letters 46, no. 14 (July 12, 2021): 3400. http://dx.doi.org/10.1364/ol.426841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zheng, Bofang, Qijie Xie, and Chester Shu. "Comb Spacing Multiplication Enabled Widely Spaced Flexible Frequency Comb Generation." Journal of Lightwave Technology 36, no. 13 (July 1, 2018): 2651–59. http://dx.doi.org/10.1109/jlt.2018.2820223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Benkler, Erik, Felix Rohde, and Harald R. Telle. "Endless frequency shifting of optical frequency comb lines." Optics Express 21, no. 5 (March 1, 2013): 5793. http://dx.doi.org/10.1364/oe.21.005793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yasui, Takeshi, Shuko Yokoyama, Hajime Inaba, Kaoru Minoshima, Tadao Nagatsuma, and Tsutomu Araki. "Terahertz Frequency Metrology Based on Frequency Comb." IEEE Journal of Selected Topics in Quantum Electronics 17, no. 1 (January 2011): 191–201. http://dx.doi.org/10.1109/jstqe.2010.2047099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hendrie, James, Ning Hsu, and Jean-Claude Diels. "Control of Frequency Combs with Passive Resonators." Sensors 23, no. 3 (January 17, 2023): 1066. http://dx.doi.org/10.3390/s23031066.

Full text
Abstract:
Tailored optical frequency combs are generated by nesting passive etalons within mode-locked oscillators. In this work, the oscillator generates a comb of 6.8 GHz with 106 MHz side-bands. This tailored comb results from the self-synchronized locking of two cavities with precision optical frequency tuning. In this manuscript, it is demonstrated that these combs can be precisely predicted utilizing a temporal ABCD matrix method and precise comb frequency tuning by scanning over the D1 transition line of 87Rb and observing the fluorescence.
APA, Harvard, Vancouver, ISO, and other styles
24

Blumröder, Ulrike, Ronald Füßl, Thomas Fröhlich, Eberhard Manske, and Rostyslav Mastylo. "FREQUENCY COMB-COUPLED METROLOGY LASERS FOR NANOPOSITIONING AND NANO MEASURING MACHINES." Measuring Equipment and Metrology 82, no. 4 (2021): 36–42. http://dx.doi.org/10.23939/istcmtm2021.04.036.

Full text
Abstract:
This article shows how a direct readout of the interferometric length measurement in nanopositioning machines can be transferred by connecting the metrology laser to a frequency comb line. The approach is based on a GPS-referenced frequency comb with which the stability of the timer (atomic clock via GPS) is transferred to the metrology laser of the nanopositioning and nano measuring machine NPMM-200. The necessary prerequisites for ensuring traceability are discussed. It is demonstrated that with this approach an improvement in the long-term stability of the metrology laser by three orders of magnitude can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
25

Timoney, N., B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin. "Atomic frequency comb memory with spin-wave storage in153Eu3 +:Y2SiO5." Journal of Physics B: Atomic, Molecular and Optical Physics 45, no. 12 (June 8, 2012): 124001. http://dx.doi.org/10.1088/0953-4075/45/12/124001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Molteni, Lisa M., Francesco Canella, Federico Pirzio, Markus Betz, Edoardo Vicentini, Nicola Coluccelli, Giuliano Piccinno, Antoniangelo Agnesi, Paolo Laporta, and Gianluca Galzerano. "Low-noise Yb:CALGO optical frequency comb." Optics Express 29, no. 13 (June 8, 2021): 19495. http://dx.doi.org/10.1364/oe.428603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Twayana, Krishna, Zhichao Ye, Óskar B. Helgason, Kovendhan Vijayan, Magnus Karlsson, and Victor Torres-Company. "Frequency-comb-calibrated swept-wavelength interferometry." Optics Express 29, no. 15 (July 16, 2021): 24363. http://dx.doi.org/10.1364/oe.430818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wu, Hanzhong, Jun Ke, Pan-Pan Wang, Yu-Jie Tan, Jie Luo, and Cheng-Gang Shao. "Arm locking using laser frequency comb." Optics Express 30, no. 5 (February 23, 2022): 8027. http://dx.doi.org/10.1364/oe.452837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alexander, Justin K., Ludovic Caro, Mohamad Dernaika, Shane P. Duggan, Hua Yang, Satheesh Chandran, Eamonn P. Martin, Albert A. Ruth, Prince M. Anandarajah, and Frank H. Peters. "Integrated dual optical frequency comb source." Optics Express 28, no. 11 (May 21, 2020): 16900. http://dx.doi.org/10.1364/oe.384706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chang, Lin, Songtao Liu, and John E. Bowers. "Integrated optical frequency comb technologies." Nature Photonics 16, no. 2 (February 2022): 95–108. http://dx.doi.org/10.1038/s41566-021-00945-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Papp, Scott B., Katja Beha, Pascal Del’Haye, Franklyn Quinlan, Hansuek Lee, Kerry J. Vahala, and Scott A. Diddams. "Microresonator frequency comb optical clock." Optica 1, no. 1 (July 22, 2014): 10. http://dx.doi.org/10.1364/optica.1.000010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hu, Hao, and Leif K. Oxenløwe. "Chip-based optical frequency combs for high-capacity optical communications." Nanophotonics 10, no. 5 (February 3, 2021): 1367–85. http://dx.doi.org/10.1515/nanoph-2020-0561.

Full text
Abstract:
AbstractCurrent fibre optic communication systems owe their high-capacity abilities to the wavelength-division multiplexing (WDM) technique, which combines data channels running on different wavelengths, and most often requires many individual lasers. Optical frequency combs, with equally spaced coherent comb lines derived from a single source, have recently emerged as a potential substitute for parallel lasers in WDM systems. Benefits include the stable spacing and broadband phase coherence of the comb lines, enabling improved spectral efficiency of transmission systems, as well as potential energy savings in the WDM transmitters. In this paper, we discuss the requirements to a frequency comb for use in a high-capacity optical communication system in terms of optical linewidth, per comb line power and optical carrier-to-noise ratio, and look at the scaling of a comb source for ultra-high capacity systems. Then, we review the latest advances of various chip-based optical frequency comb generation schemes and their applications in optical communications, including mode-locked laser combs, spectral broadening of frequency combs, microresonator-based Kerr frequency combs and electro-optic frequency combs.
APA, Harvard, Vancouver, ISO, and other styles
33

Lu, Chuang, Jerome Morville, Lucile Rutkowski, Francisco Senna Vieira, and Aleksandra Foltynowicz. "Cavity-Enhanced Frequency Comb Vernier Spectroscopy." Photonics 9, no. 4 (March 28, 2022): 222. http://dx.doi.org/10.3390/photonics9040222.

Full text
Abstract:
Vernier spectroscopy is a frequency comb-based technique employing optical cavities for filtering of the comb and for enhancement of the interaction length with the sample. Depending on the ratio of the cavity free spectral range and the comb repetition rate, the cavity transmits either widely spaced individual comb lines (comb-resolved Vernier spectroscopy) or groups of comb lines, called Vernier orders (continuous-filtering Vernier spectroscopy, CF-VS). The cavity filtering enables the use of low-resolution spectrometers to resolve the individual comb lines or Vernier orders. Vernier spectroscopy has been implemented using various near- and mid-infrared comb sources for applications ranging from trace gas detection to precision spectroscopy. Here, we present the principles of the technique and provide a review of previous demonstrations of comb-resolved and continuous-filtering Vernier spectroscopy. We also demonstrate two new implementations of CF-VS: one in the mid-infrared, based on a difference frequency generation comb source, with a new and more robust detection system design, and the other in the near-infrared, based on a Ti:sapphire laser, reaching high sensitivity and the fundamental resolution limit of the technique.
APA, Harvard, Vancouver, ISO, and other styles
34

Alatawi, Ayshah, Ravi P. Gollapalli, and Lingze Duan. "Radio-frequency clock delivery via free-space frequency comb transmission." Optics Letters 34, no. 21 (October 27, 2009): 3346. http://dx.doi.org/10.1364/ol.34.003346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kim, E. B., W. K. Lee, C. Y. Park, D. H. Yu, S. K. Lee, and S. E. Park. "Direct comparison of optical frequency combs using a comb-injection-lock technique." Optics Express 16, no. 14 (July 2, 2008): 10721. http://dx.doi.org/10.1364/oe.16.010721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xing, Sida, Daniel M. B. Lesko, Takeshi Umeki, Alexander J. Lind, Nazanin Hoghooghi, Tsung-Han Wu, and Scott A. Diddams. "Single-cycle all-fiber frequency comb." APL Photonics 6, no. 8 (August 1, 2021): 086110. http://dx.doi.org/10.1063/5.0055534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Liang, Wei, Anatoliy A. Savchenkov, Vladimir S. Ilchenko, Danny Eliyahu, Andrey B. Matsko, and Lute Maleki. "Stabilized C-Band Kerr Frequency Comb." IEEE Photonics Journal 9, no. 3 (June 2017): 1–11. http://dx.doi.org/10.1109/jphot.2017.2708696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Akhmedzhanov, R. A., L. A. Gushchin, A. A. Kalachev, N. A. Nizov, V. A. Nizov, D. A. Sobgayda, and I. V. Zelensky. "Cavity-assisted atomic frequency comb memory in an isotopically pure143Nd3+ :YLiF4crystal." Laser Physics Letters 13, no. 11 (October 13, 2016): 115203. http://dx.doi.org/10.1088/1612-2011/13/11/115203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Arslanov, N. M., and S. A. Moiseev. "Maps of Broadband Quantum Memory Based on an Atomic Frequency Comb." Optics and Spectroscopy 126, no. 1 (January 2019): 29–33. http://dx.doi.org/10.1134/s0030400x19010028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chanelière, T., J. Ruggiero, M. Bonarota, M. Afzelius, and J.-L. Le Gouët. "Efficient light storage in a crystal using an atomic frequency comb." New Journal of Physics 12, no. 2 (February 18, 2010): 023025. http://dx.doi.org/10.1088/1367-2630/12/2/023025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lorences-Riesgo, Abel, Tobias A. Eriksson, Attila Fulop, Peter A. Andrekson, and Magnus Karlsson. "Frequency-Comb Regeneration for Self-Homodyne Superchannels." Journal of Lightwave Technology 34, no. 8 (April 15, 2016): 1800–1806. http://dx.doi.org/10.1109/jlt.2016.2521483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Savchenkov, A. A., D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, and L. Maleki. "Stabilization of a Kerr frequency comb oscillator." Optics Letters 38, no. 15 (July 18, 2013): 2636. http://dx.doi.org/10.1364/ol.38.002636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Foster, Mark A., Jacob S. Levy, Onur Kuzucu, Kasturi Saha, Michal Lipson, and Alexander L. Gaeta. "Silicon-based monolithic optical frequency comb source." Optics Express 19, no. 15 (July 11, 2011): 14233. http://dx.doi.org/10.1364/oe.19.014233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pinkert, T. J., D. Z. Kandula, C. Gohle, I. Barmes, J. Morgenweg, and K. S. E. Eikema. "Widely tunable extreme UV frequency comb generation." Optics Letters 36, no. 11 (May 26, 2011): 2026. http://dx.doi.org/10.1364/ol.36.002026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Suchkov, Sergey V., Mikhail Sumetsky, and Andrey A. Sukhorukov. "Frequency comb generation in SNAP bottle resonators." Optics Letters 42, no. 11 (May 30, 2017): 2149. http://dx.doi.org/10.1364/ol.42.002149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ye, Jun, Long-Sheng Ma, Timothy Daly, and John L. Hall. "Highly selective terahertz optical frequency comb generator." Optics Letters 22, no. 5 (March 1, 1997): 301. http://dx.doi.org/10.1364/ol.22.000301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhai, Xiaoyu, Zhaopeng Meng, Haoyun Zhang, Xinyang Xu, Zhiwen Qian, Bin Xue, and Hanzhong Wu. "Underwater distance measurement using frequency comb laser." Optics Express 27, no. 5 (February 22, 2019): 6757. http://dx.doi.org/10.1364/oe.27.006757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bao, Changjing, Peicheng Liao, Arne Kordts, Lin Zhang, Andrey Matsko, Maxim Karpov, Martin H. P. Pfeiffer, et al. "Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation." Optics Letters 44, no. 6 (March 14, 2019): 1472. http://dx.doi.org/10.1364/ol.44.001472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lepley, J. J., and A. S. Siddiqui. "Primary referenced DWDM frequency comb generator." IEE Proceedings - Optoelectronics 146, no. 3 (June 1, 1999): 121–24. http://dx.doi.org/10.1049/ip-opt:19990184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Serrano, Angel Ruben Criado, Cristina de Dios Fernandez, Estefania Prior Cano, Markus Ortsiefer, Peter Meissner, and Pablo Acedo. "VCSEL-Based Optical Frequency Combs: Toward Efficient Single-Device Comb Generation." IEEE Photonics Technology Letters 25, no. 20 (October 2013): 1981–84. http://dx.doi.org/10.1109/lpt.2013.2280700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography