Journal articles on the topic 'Atom chips'

To see the other types of publications on this topic, follow the link: Atom chips.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Atom chips.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vale, C. J., B. V. Hall, D. C. Lau, M. E. A. Jones, J. A. Retter, and E. A. Hinds. "Atom Chips." Europhysics News 33, no. 6 (November 2002): 198–99. http://dx.doi.org/10.1051/epn:2002603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reichel, Jakob. "Atom Chips." Scientific American 292, no. 2 (February 2005): 46–53. http://dx.doi.org/10.1038/scientificamerican0205-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartenstein, M., D. Cassettari, T. Calarco, A. Chenet, R. Folman, K. Brugger, A. Haase, et al. "Atoms and wires: toward atom chips." IEEE Journal of Quantum Electronics 36, no. 12 (December 2000): 1364–77. http://dx.doi.org/10.1109/3.892555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brugger, Karolina, Tommaso Calarco, Donatella Cassettari, Ron Folman, Albrecht Haase, Björn Hessmo, Peter Krüger, Thomas Maier, and Jorg Schmiedmayer. "Nanofabricated atom optics: Atom chips." Journal of Modern Optics 47, no. 14-15 (November 2000): 2789–809. http://dx.doi.org/10.1080/09500340008232197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hohenester, U., J. Grond, and J. Schmiedmayer. "Optimizing atom interferometry on atom chips." Fortschritte der Physik 57, no. 11-12 (October 13, 2009): 1121–32. http://dx.doi.org/10.1002/prop.200900094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fort gh, J. z. "PHYSICS: Toward Atom Chips." Science 307, no. 5711 (February 11, 2005): 860–61. http://dx.doi.org/10.1126/science.1107348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trinker, M., S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer. "Multilayer atom chips for versatile atom micromanipulation." Applied Physics Letters 92, no. 25 (June 23, 2008): 254102. http://dx.doi.org/10.1063/1.2945893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, David A., Simon Aigner, Sebastian Hofferberth, Michael Gring, Mauritz Andersson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten Schumm, and Jörg Schmiedmayer. "Absorption imaging of ultracold atoms on atom chips." Optics Express 19, no. 9 (April 18, 2011): 8471. http://dx.doi.org/10.1364/oe.19.008471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Folman, Ron, Peter Krüger, Donatella Cassettari, Björn Hessmo, Thomas Maier, and Jörg Schmiedmayer. "Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips." Physical Review Letters 84, no. 20 (May 15, 2000): 4749–52. http://dx.doi.org/10.1103/physrevlett.84.4749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schmiedmayer, Jörg, and Ron Folman. "Miniaturizing atom optics: from wires to atom chips." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 4 (June 2001): 551–63. http://dx.doi.org/10.1016/s1296-2147(01)01200-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

CIRONE, M. A., A. NEGRETTI, A. RECATI, and T. CALARCO. "COMPLEXITY, NOISE AND QUANTUM INFORMATION ON ATOM CHIPS." International Journal of Quantum Information 06, supp01 (July 2008): 633–38. http://dx.doi.org/10.1142/s0219749908003888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Feenstra, L., L. M. Andersson, and J. Schmiedmayer. "Microtraps and Atom Chips: Toolboxes for Cold Atom Physics." General Relativity and Gravitation 36, no. 10 (October 2004): 2317–29. http://dx.doi.org/10.1023/b:gerg.0000046185.40077.c9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tscherneck, M., M. E. Holmes, P. A. Quinto-Su, C. Haimberger, J. Kleinert, and N. P. Bigelow. "Optics and molecules on atom chips." Journal of Physics: Conference Series 19 (January 1, 2005): 66–69. http://dx.doi.org/10.1088/1742-6596/19/1/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Volk, M., S. Whitlock, C. H. Wolff, B. V. Hall, and A. I. Sidorov. "Scanning magnetoresistance microscopy of atom chips." Review of Scientific Instruments 79, no. 2 (2008): 023702. http://dx.doi.org/10.1063/1.2839015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lovecchio, C., S. Cherukattil, B. Cilenti, I. Herrera, F. S. Cataliotti, S. Montangero, T. Calarco, and F. Caruso. "Quantum state reconstruction on atom-chips." New Journal of Physics 17, no. 9 (September 16, 2015): 093024. http://dx.doi.org/10.1088/1367-2630/17/9/093024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Eriksson, S., M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, et al. "Integrated optical components on atom chips." European Physical Journal D 35, no. 1 (June 14, 2005): 135–39. http://dx.doi.org/10.1140/epjd/e2005-00092-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kraft, S., A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortágh. "Atom-optical elements on micro chips." European Physical Journal D 35, no. 1 (July 19, 2005): 119–23. http://dx.doi.org/10.1140/epjd/e2005-00185-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Groth, S., P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph. "Atom chips: Fabrication and thermal properties." Applied Physics Letters 85, no. 14 (October 4, 2004): 2980–82. http://dx.doi.org/10.1063/1.1804601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dikovsky, V., V. Sokolovsky, B. Zhang, C. Henkel, and R. Folman. "Superconducting atom chips: advantages and challenges." European Physical Journal D 51, no. 2 (December 18, 2008): 247–59. http://dx.doi.org/10.1140/epjd/e2008-00261-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hinds, E. A., and I. G. Hughes. "Magnetic atom optics: mirrors, guides, traps, and chips for atoms." Journal of Physics D: Applied Physics 32, no. 18 (September 1, 1999): R119—R146. http://dx.doi.org/10.1088/0022-3727/32/18/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Squires, Matthew B., James A. Stickney, Evan J. Carlson, Paul M. Baker, Walter R. Buchwald, Sandra Wentzell, and Steven M. Miller. "Atom chips on direct bonded copper substrates." Review of Scientific Instruments 82, no. 2 (February 2011): 023101. http://dx.doi.org/10.1063/1.3529434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Trupke, M., F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, et al. "Pyramidal micromirrors for microsystems and atom chips." Applied Physics Letters 88, no. 7 (February 13, 2006): 071116. http://dx.doi.org/10.1063/1.2172412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wolff, C. H., S. Whitlock, R. M. Lowe, A. I. Sidorov, and B. V. Hall. "Fabricating atom chips with femtosecond laser ablation." Journal of Physics B: Atomic, Molecular and Optical Physics 42, no. 8 (April 9, 2009): 085301. http://dx.doi.org/10.1088/0953-4075/42/8/085301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xing, Y. T., A. Eljaouhari, I. Barb, R. Gerritsma, R. J. C. Spreeuw, and J. B. Goedkoop. "Hard magnetic FePt films for atom chips." physica status solidi (c) 1, no. 12 (December 2004): 3702–5. http://dx.doi.org/10.1002/pssc.200405538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cirone, M. A., A. Negretti, T. Calarco, P. Krüger, and J. Schmiedmayer. "A simple quantum gate with atom chips." European Physical Journal D 35, no. 1 (June 28, 2005): 165–71. http://dx.doi.org/10.1140/epjd/e2005-00175-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Armijo, J., C. L. Garrido Alzar, and I. Bouchoule. "Thermal properties of AlN-based atom chips." European Physical Journal D 56, no. 1 (November 6, 2009): 33–39. http://dx.doi.org/10.1140/epjd/e2009-00275-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chuang, Ho-Chiao, Evan A. Salim, Vladan Vuletic, Dana Z. Anderson, and Victor M. Bright. "Multi-layer atom chips for atom tunneling experiments near the chip surface." Sensors and Actuators A: Physical 165, no. 1 (January 2011): 101–6. http://dx.doi.org/10.1016/j.sna.2010.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Llorente-Garcia, I., C. D. J. Sinclair, E. A. Curtis, S. Eriksson, B. E. Sauer, and E. A. Hinds. "Permanent-magnet atom chips for the study of long, thin atom clouds." Journal of Physics: Conference Series 19 (January 1, 2005): 70–73. http://dx.doi.org/10.1088/1742-6596/19/1/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Trupke, M., J. Metz, A. Beige, and E. A. Hinds. "Towards quantum computing with single atoms and optical cavities on atom chips." Journal of Modern Optics 54, no. 11 (July 20, 2007): 1639–55. http://dx.doi.org/10.1080/09500340600934240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Miyahira, William, Andrew P. Rotunno, ShuangLi Du, and Seth Aubin. "Microwave Atom Chip Design." Atoms 9, no. 3 (August 5, 2021): 54. http://dx.doi.org/10.3390/atoms9030054.

Full text
Abstract:
We present a toolbox of microstrip building blocks for microwave atom chips geared towards trapped atom interferometry. Transverse trapping potentials based on the AC Zeeman (ACZ) effect can be formed from the combined microwave magnetic near fields of a pair or a triplet of parallel microstrip transmission lines. Axial confinement can be provided by a microwave lattice (standing wave) along the microstrip traces. Microwave fields provide additional parameters for dynamically adjusting ACZ potentials: detuning of the applied frequency to select atomic transitions and local polarization controlled by the relative phase in multiple microwave currents. Multiple ACZ traps and potentials, operating at different frequencies, can be targeted to different spin states simultaneously, thus enabling spin-specific manipulation of atoms and spin-dependent trapped atom interferometry.
APA, Harvard, Vancouver, ISO, and other styles
31

Henkel, C., P. Kr�ger, R. Folman, and J. Schmiedmayer. "Fundamental limits for coherent manipulation on atom chips." Applied Physics B: Lasers and Optics 76, no. 2 (February 1, 2003): 173–82. http://dx.doi.org/10.1007/s00340-003-1112-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rushton, Jo, Ritayan Roy, James Bateman, and Matt Himsworth. "A dynamic magneto-optical trap for atom chips." New Journal of Physics 18, no. 11 (November 9, 2016): 113020. http://dx.doi.org/10.1088/1367-2630/18/11/113020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xing, Y. T., I. Barb, R. Gerritsma, R. J. C. Spreeuw, H. Luigjes, Q. F. Xiao, C. Rétif, and J. B. Goedkoop. "Fabrication of magnetic atom chips based on FePt." Journal of Magnetism and Magnetic Materials 313, no. 1 (June 2007): 192–97. http://dx.doi.org/10.1016/j.jmmm.2006.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Folman, Ron. "Material science for quantum computing with atom chips." Quantum Information Processing 10, no. 6 (October 1, 2011): 995–1036. http://dx.doi.org/10.1007/s11128-011-0311-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

CALARCO, T., M. A. CIRONE, M. COZZINI, A. NEGRETTI, A. RECATI, and E. CHARRON. "QUANTUM CONTROL THEORY FOR DECOHERENCE SUPPRESSION IN QUANTUM GATES." International Journal of Quantum Information 05, no. 01n02 (February 2007): 207–13. http://dx.doi.org/10.1142/s0219749907002645.

Full text
Abstract:
We show how quantum optimal control theory can help achieve high-fidelity quantum gates in real experimental settings. We discuss several optimization methods (from iterative algorithms to optimization by interference and to impulsive control) and different physical scenarios (from optical lattices to atom chips and to Rydberg atoms).
APA, Harvard, Vancouver, ISO, and other styles
36

Pachos, Jiannis K. "Quantum phases of electric dipole ensembles in atom chips." Physics Letters A 344, no. 6 (September 2005): 441–46. http://dx.doi.org/10.1016/j.physleta.2005.06.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huet, Landry, Mahdi Ammar, Erwan Morvan, Nicolas Sarazin, Jean-Paul Pocholle, Jakob Reichel, Christine Guerlin, and Sylvain Schwartz. "Experimental investigation of transparent silicon carbide for atom chips." Applied Physics Letters 100, no. 12 (March 19, 2012): 121114. http://dx.doi.org/10.1063/1.3689777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pollock, S., J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds. "Characteristics of integrated magneto-optical traps for atom chips." New Journal of Physics 13, no. 4 (April 19, 2011): 043029. http://dx.doi.org/10.1088/1367-2630/13/4/043029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ovchinnikov, Yuri B., and Folly Eli Ayi-Yovo. "Towards all-optical atom chips based on optical waveguides." New Journal of Physics 22, no. 5 (May 6, 2020): 053003. http://dx.doi.org/10.1088/1367-2630/ab81ba.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nogues, G., C. Roux, T. Nirrengarten, A. Lupaşcu, A. Emmert, M. Brune, J. M. Raimond, S. Haroche, B. Plaçais, and J. J. Greffet. "Effect of vortices on the spin-flip lifetime of atoms in superconducting atom-chips." EPL (Europhysics Letters) 87, no. 1 (July 1, 2009): 13002. http://dx.doi.org/10.1209/0295-5075/87/13002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dikovsky, V., Y. Japha, C. Henkel, and R. Folman. "Reduction of magnetic noise in atom chips by material optimization." European Physical Journal D 35, no. 1 (July 26, 2005): 87–95. http://dx.doi.org/10.1140/epjd/e2005-00203-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Barclay, Paul E., Kartik Srinivasan, Oskar Painter, Benjamin Lev, and Hideo Mabuchi. "Integration of fiber-coupled high-Q SiNx microdisks with atom chips." Applied Physics Letters 89, no. 13 (September 25, 2006): 131108. http://dx.doi.org/10.1063/1.2356892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schumm, T., J. Est�ve, C. Figl, J. B. Trebbia, C. Aussibal, H. Nguyen, D. Mailly, I. Bouchoule, C. I. Westbrook, and A. Aspect. "Atom chips in the real world: the effects of wire corrugation." European Physical Journal D 32, no. 2 (February 2005): 171–80. http://dx.doi.org/10.1140/epjd/e2005-00016-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kohno, Akiomi, Yasuhiko Sasaki, Ryujirou Udo, Takeshi Harada, and Mitsuo Usami. "Bonding of IC bare chips for microsystems using Ar atom bombardment." Journal of Micromechanics and Microengineering 11, no. 5 (July 24, 2001): 481–86. http://dx.doi.org/10.1088/0960-1317/11/5/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sokolovsky, Vladimir, Leonid Prigozhin, and John W. Barrett. "3D modeling of magnetic atom traps on type-II superconductor chips." Superconductor Science and Technology 27, no. 12 (November 12, 2014): 124004. http://dx.doi.org/10.1088/0953-2048/27/12/124004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Leung, V. Y. F., A. Tauschinsky, N. J. van Druten, and R. J. C. Spreeuw. "Microtrap arrays on magnetic film atom chips for quantum information science." Quantum Information Processing 10, no. 6 (September 18, 2011): 955–74. http://dx.doi.org/10.1007/s11128-011-0295-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhu, Zhi Wei, Mei Chen Liu, and Xiao Qin Zhou. "A Study on Nanocutting of Monocrystalline Silicon by Molecular Dynamics Simulation." Applied Mechanics and Materials 110-116 (October 2011): 5405–12. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5405.

Full text
Abstract:
Three dimensional molecular dynamics simulation on the nanocutting of monocrystalline silicon is carried out to investigate the material deformation behaviors and atomic motion characteristics of the machined workpiece. A deformation criterion is developed to determine the material deformation and phase transformation behavior in the subsurface layer based on the single-atom potential energy variations. The results show that the machined chips suffer a complex phase transformation and eventually present an amorphous structure caused by the plastic deformation behavior. A polycrystalline structure is obtained on the machined surface. Both plastic and elastic deformation simultaneously takes place on the machined surface, and elastic deformation takes place under the machined surface. In order to further unveil the mechanism of nanocutting process, the displacements of all atoms are also simulated. The simulation results shows that different atomic motions occur in different regions in the workpiece, and the chips formations occur via extrusion.
APA, Harvard, Vancouver, ISO, and other styles
48

Simura, Rayko, and Hisanori Yamane. "α-SrZn5-Type solid solution, BaZn2.6Cu2.4." Acta Crystallographica Section E Crystallographic Communications 75, no. 10 (September 20, 2019): 1490–93. http://dx.doi.org/10.1107/s2056989019012532.

Full text
Abstract:
Single crystals of the title compound barium zinc copper, BaCu2.6Zn2.4, were obtained from a sample prepared by heating metal chips of Ba, Cu, and Zn in an Ar atmosphere up to 973 K, followed by slow cooling. Single-crystal X-ray structure analysis revealed that BaCu2.6Zn2.4 crystallizes in an orthorhombic cell [a = 12.9858 (3), b = 5.2162 (1), and c = 6.6804 (2) Å] with an α-SrZn5-type structure (space group Pnma). The three-dimensional framework consists of Cu and Zn atoms, with Ba atoms in the tunnels extending in the b-axis direction. Although the Ba atom is larger than the Sr atom, the cell volume of BaCu2.6Zn2.4 [452.507 (19) Å3] is smaller than that of α-SrZn5 [466.08 Å3]. This decrease in volume can be attributed to the partial substitution of Cu atoms by Zn atoms in the framework because the Cu—Zn and Cu—Cu bonds are shorter than the Zn—Zn bond. The increase in Ba—Zn interatomic distances from the Sr—Zn distances is cancelled out by the partial replacement of Zn with Cu atoms, which leads to shorter average Ba—Zn/Cu distances.
APA, Harvard, Vancouver, ISO, and other styles
49

Tachikawa, Hiroto, Tetsuji Iyama, and Kazuhisa Azumi. "Density Functional Theory Study of Boron- and Nitrogen-Atom-Doped Graphene Chips." Japanese Journal of Applied Physics 50, no. 1S2 (January 1, 2011): 01BJ03. http://dx.doi.org/10.7567/jjap.50.01bj03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Moktadir, Z., B. Darquié, M. Kraft, and E. A. Hinds. "The effect of self-affine fractal roughness of wires on atom chips." Journal of Modern Optics 54, no. 13-15 (September 10, 2007): 2149–60. http://dx.doi.org/10.1080/09500340701427151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography