Academic literature on the topic 'Atom chips'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atom chips.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atom chips"

1

Vale, C. J., B. V. Hall, D. C. Lau, M. E. A. Jones, J. A. Retter, and E. A. Hinds. "Atom Chips." Europhysics News 33, no. 6 (November 2002): 198–99. http://dx.doi.org/10.1051/epn:2002603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reichel, Jakob. "Atom Chips." Scientific American 292, no. 2 (February 2005): 46–53. http://dx.doi.org/10.1038/scientificamerican0205-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartenstein, M., D. Cassettari, T. Calarco, A. Chenet, R. Folman, K. Brugger, A. Haase, et al. "Atoms and wires: toward atom chips." IEEE Journal of Quantum Electronics 36, no. 12 (December 2000): 1364–77. http://dx.doi.org/10.1109/3.892555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brugger, Karolina, Tommaso Calarco, Donatella Cassettari, Ron Folman, Albrecht Haase, Björn Hessmo, Peter Krüger, Thomas Maier, and Jorg Schmiedmayer. "Nanofabricated atom optics: Atom chips." Journal of Modern Optics 47, no. 14-15 (November 2000): 2789–809. http://dx.doi.org/10.1080/09500340008232197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hohenester, U., J. Grond, and J. Schmiedmayer. "Optimizing atom interferometry on atom chips." Fortschritte der Physik 57, no. 11-12 (October 13, 2009): 1121–32. http://dx.doi.org/10.1002/prop.200900094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fort gh, J. z. "PHYSICS: Toward Atom Chips." Science 307, no. 5711 (February 11, 2005): 860–61. http://dx.doi.org/10.1126/science.1107348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trinker, M., S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-Joseph, T. Schumm, and J. Schmiedmayer. "Multilayer atom chips for versatile atom micromanipulation." Applied Physics Letters 92, no. 25 (June 23, 2008): 254102. http://dx.doi.org/10.1063/1.2945893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, David A., Simon Aigner, Sebastian Hofferberth, Michael Gring, Mauritz Andersson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten Schumm, and Jörg Schmiedmayer. "Absorption imaging of ultracold atoms on atom chips." Optics Express 19, no. 9 (April 18, 2011): 8471. http://dx.doi.org/10.1364/oe.19.008471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Folman, Ron, Peter Krüger, Donatella Cassettari, Björn Hessmo, Thomas Maier, and Jörg Schmiedmayer. "Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips." Physical Review Letters 84, no. 20 (May 15, 2000): 4749–52. http://dx.doi.org/10.1103/physrevlett.84.4749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schmiedmayer, Jörg, and Ron Folman. "Miniaturizing atom optics: from wires to atom chips." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 4 (June 2001): 551–63. http://dx.doi.org/10.1016/s1296-2147(01)01200-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Atom chips"

1

Treutlein, Philipp. "Coherent manipulation of ultracold atoms on atom chips." Diss., kostenfrei, 2008. http://edoc.ub.uni-muenchen.de/9153/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szmuk, Ramon. "Atom chips for metrology." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066089/document.

Full text
Abstract:
Cette thèse porte sur deux sujets principaux: l'évaluation de la stabilité d'une horloge sur microcircuit utilisant des atomes piégés (Trapped Atom Clock on a Chip - TACC) et l'extension de cette technologie vers la réalisation d'un interféromètre atomique sur la même puce. Cette combinaison constitue la base pour la réalisation de capteurs inertiels intégrés pour la navigation. Des travaux antérieurs ont installé l'horloge et ont découvert, entre autres, des temps de cohérence très longs, qui permettent une interrogation Ramsey jusqu'à 5 s, une condition préalable pour le fonctionnement à grande stabilité. Je présente ici la première évaluation approfondie de la stabilité de l'horloge. Avec mon prédécesseur, nous avons démontré les fluctuations de fréquences relatives de 5.8 10-13 à 1 s intégrant jusqu'à 6 10-15 à 30000 s.La deuxième partie de cette thèse vise à étendre la polyvalence de notre puce atomique pour créer un interféromètre. J'ai étudié divers régimes d'interféromètres en utilisant des potentiels habillés par microondes. Le premier régime consiste à déplacer l'un des états d'horloge verticalement pendant une séquence d'horloge Ramsey. Ceci permet la mesure de gradients de potentiel en exploitant la différence de fréquences entre les deux états. Le second régime utilise des champs microondes pour générer un potentiel de double puits dans l'un des états d'horloge et un seul puits dans l'autre.À partir du seul puits, un pulse-π sur la transition d'horloge constitue la séparatrice de l'interféromètre et conduit une séparation spatiale tout en préservant le même état interne pour les deux bras de l'interféromètre
This thesis covers two main subjects: the evaluation of the stability of a Trapped Atom Clock on a Chip (TACC) and the expansion of this technology towards creating an atom interferometer on the same chip. The combination of a clock and an interferometer on the same chip constitutes the basis for the realization of atom-based integrated inertial navigation units. Previous work installed the clock operation and discovered, among others, very long coherence times, which allow Ramsey interrogations of up to 5 s, a prerequisite for high stability operation. I present the first thorough evaluation of the clock stability. Together with my predecessor we have demonstrated relative frequency fluctuations of 5.8 10-13 at 1 s integrating down to 6 10-15 at 30,000 s. The second part of this thesis aims to expand the versatility of our atom chip to create an atom interferometer. I have studied various interferometer schemes using microwave dressed potentials and implemented these to the set-up. The first scheme, following work by P. Treutlein et al., involves displacing one of the clock states vertically during a Ramsey clock sequence thereby allowing the measurement of potential gradients by exploiting the differential frequency shift accumulated between the two states. Ramsey fringes where recorded for different durations of the splitting, resulting in a clear signal of the wavepacket separation. The second scheme uses microwave dressing to generate a double well potential in one of the clock states and a single well in the other. Starting in the single well, a π-pulse on the clock transition constitutes the beam splitter and leads to a spatial separation for the same internal state
APA, Harvard, Vancouver, ISO, and other styles
3

Trupke, Michael. "Microcavities for atom chips." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491114.

Full text
Abstract:
This thesis describes the development and implementation of fibre-coupled, micron-scale optical resonators for the detection and manipulation of neutral atoms. The resonators are intended for integration with atom chips. The latter are microfabricated devices which enable the cooling, trapping, gUiding and manipulation of atoms by means of optical, magnetic and electric fields. The fields are generated in part using micro-fabricated features on the surface of the chips. Optical cavities are among the most important tools in the study of the interactions between light and matter. They allow the observation of fundamental processes in quantum optics, based on the enhanced coupling of atomic transitions to light fields. Our resonators have mode volumes which are two orders of magnitude smaller than those used in typical cavity quantum electrodynamics experiments. Together with their high quality factors, this leads to large enhancement factors, rendering them ideal for the detection and manipulation of atoms on chips. They are scalable and directly fibre-coupled, both of which are qualities of interest for their implementation in quantum information-processing applications. In the thesis, the optical characteristics of the resonators are explained, as well as the basic principles of the interaction of atoms with their light field. The setup used for the test implementation of the devices is presented, together with early experimental results. These include the detection of atoms via their effect on the cavity reflection spectrum, and the detection of enhanced atomic fluorescence into the cavity mode. The thesis concludes with an outlook on further experimentation, possible improvements of the devices themselves, and a view on their integration with existing atom chip technology.
APA, Harvard, Vancouver, ISO, and other styles
4

Aldous, Matthew Ralph Edward. "Enabling technologies for integrated atom chips." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/418002/.

Full text
Abstract:
The confinement and control of atomic clouds, at temperatures measured in nanokelvin, has become a valuable tool for physicists. As a source of new physics, development ofcooling techniques has led to innovative new ways to probe the nature of reality. Of particular note are experiments carried out on new and exotic states of matter such as the Bose-Einstein condensate, unseen before the advent of these techniques. Likewise,the potential for applications outside of the lab is extensive and encompasses navigation,timekeeping, quantum communication and quantum computing. Manipulating cold atoms in the presence of a so-called ‘atom chip’ (a millimetre-scale electronic device) is currently considered the future of miniaturising these experiments and measurements,but since they still require precisely locked and stabilised lasers and predominantly must take place in the ultra-high vacuum regime, quantum control relies on an extensive and well-established infrastructure of optics, electronics, vacuum chambers and pumps. This encumbrance has slowed down the transition from chip-in-a-lab experiments to lab-on-a-chip technologies. This thesis is an account of work carried out in the development of enabling technologies which will accelerate this transition, including details of prototype devices made using established semiconductor and MEMS planar fabrication techniques. The construction and testing of an apparatus for anodically and eutectically bonding die-scale samples in ultra-high vacuum is described, along with an analysis and characterisation of some of its products.
APA, Harvard, Vancouver, ISO, and other styles
5

Pollock, Samuel. "Integrated magneto-optical traps for atom chips." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/11271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Retter, Jocelyn Anna. "Cold atom microtraps above a videotape surface." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Helsby, Stephen John. "The integration of fibre optics for atom chips." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/63326/.

Full text
Abstract:
This thesis reports on the progress made towards the integration of fibre optics components for the atom chip, a device developed to manipulate matter on the atomic scale for the purpose of quantum information processing, novel applications, and fundamental research. Following in the direction of the electronics industry, miniaturisation has resulted in exquisite control of cold atoms above surfaces, allowing the vision of a matter wave toolbox to come closer to fruition. However, although the size of the components necessary for guiding atoms via magnetic or electrostatic fields has been greatly reduced, there is still a need to scale down the optical components. The development of these cavities is detailed in this thesis, from early use of evaporated gold coated mirrors to the fully integral solution of photorefractive Bragg gratings. In addition to a thorough analysis of the optical properties of these fibre gap cavities, experimental results indicate that these gap cavity devices can be constructed with the sensitivity necessary for single atom detection.
APA, Harvard, Vancouver, ISO, and other styles
8

Whitlock, Shannon, and n/a. "Bose-Einstein condensates on a magnetic film atom chip." Swinburne University of Technology, 2007. http://adt.lib.swin.edu.au./public/adt-VSWT20070613.172308.

Full text
Abstract:
Atom chips are devices used to magnetically trap and manipulate ultracold atoms and Bose-Einstein condensates near a surface. In particular, permanent magnetic film atom chips can allow very tight confinement and intricate magnetic field designs while circumventing technical current noise. Research described in this thesis is focused on the development of a magnetic film atom chip, the production of Bose-Einstein condensates near the film surface, the characterisation of the associated magnetic potentials using rf spectroscopy of ultracold atoms and the realisation of a precision sensor based on splitting Bose-Einstein condensates in a double-well potential. The atom chip itself combines the edge of a perpendicularly magnetised GdTbFeCo film with a machined silver wire structure. A mirror magneto-optical trap collects up to 5 x 108 87Rb atoms beneath the chip surface. The current-carrying wires are then used to transfer the cloud of atoms to the magnetic film microtrap and radio frequency evaporative cooling is applied to produce Bose-Einstein condensates consisting of 1 x 105 atoms. We have identified small spatial magnetic field variations near the film surface that fragment the ultracold atom cloud. These variations originate from inhomogeneity in the film magnetisation and are characterised using a novel technique based on spatially resolved radio frequency spectroscopy of the atoms to map the magnetic field landscape over a large area. The observations agree with an analytic model for the spatial decay of random magnetic fields from the film surface. Bose-Einstein condensates in our unique potential landscape have been used as a precision sensor for potential gradients. We transfer the atoms to the central region of the chip which produces a double-well potential. A single BEC is formed far from the surface and is then dynamically split in two by moving the trap closer to the surface. After splitting, the population of atoms in each well is extremely sensitive to the asymmetry of the potential and can be used to sense tiny magnetic field gradients or changes in gravity on a small spatial scale.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Bo. "Magnetic fields near microstructured surfaces : application to atom chips." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2009/2898/.

Full text
Abstract:
Microfabricated solid-state surfaces, also called atom chip', have become a well-established technique to trap and manipulate atoms. This has simplified applications in atom interferometry, quantum information processing, and studies of many-body systems. Magnetic trapping potentials with arbitrary geommetries are generated with atom chip by miniaturized current-carrying conductors integrated on a solid substrate. Atoms can be trapped and cooled to microKelvin and even nanoKelvin temperatures in such microchip trap. However, cold atoms can be significantly perturbed by the chip surface, typically held at room temperature. The magnetic field fluctuations generated by thermal currents in the chip elements may induce spin flips of atoms and result in loss, heating and decoherence. In this thesis, we extend previous work on spin flip rates induced by magnetic noise and consider the more complex geometries that are typically encountered in atom chips: layered structures and metallic wires of finite cross-section. We also discuss a few aspects of atom chips traps built with superconducting structures that have been suggested as a means to suppress magnetic field fluctuations. The thesis describes calculations of spin flip rates based on magnetic Green functions that are computed analytically and numerically. For a chip with a top metallic layer, the magnetic noise depends essentially on the thickness of that layer, as long as the layers below have a much smaller conductivity. Based on this result, scaling laws for loss rates above a thin metallic layer are derived. A good agreement with experiments is obtained in the regime where the atom-surface distance is comparable to the skin depth of metal. Since in the experiments, metallic layers are always etched to separate wires carrying different currents, the impact of the finite lateral wire size on the magnetic noise has been taken into account. The local spectrum of the magnetic field near a metallic microstructure has been investigated numerically with the help of boundary integral equations. The magnetic noise significantly depends on polarizations above flat wires with finite lateral width, in stark contrast to an infinitely wide wire. Correlations between multiple wires are also taken into account. In the last part, superconducting atom chips are considered. Magnetic traps generated by superconducting wires in the Meissner state and the mixed state are studied analytically by a conformal mapping method and also numerically. The properties of the traps created by superconducting wires are investigated and compared to normal conducting wires: they behave qualitatively quite similar and open a route to further trap miniaturization, due to the advantage of low magnetic noise. We discuss critical currents and fields for several geometries.
Mikrotechnologische Oberflächen, sogenannte Atomchips, sind eine etablierte Methode zum Speichern und Manipulieren von Atomen geworden. Das hat Anwendungen in der Atom-Interferometrie, Quanteninformationsverarbeitung und Vielteilchensystemen vereinfacht. Magnetische Fallenpotentiale mit beliebigen Geometrien werden durch Atomchips mit miniaturisierten stromführenden Leiterbahnen auf einer Festkörperunterlage realisiert. Atome können bei Temperaturen im $mu$ K oder sogar nK-Bereich in einer solchen Falle gespeichert und gekühlt werden. Allerdings können kalte Atome signifikant durch die Chip-Oberfläche gestört werden, die sich typischerweise auf Raumtemperatur befindet. Die durch thermische Ströme im Chip erzeugten magnetischen Feldfluktuationen können Spin-Flips der Atome induzieren und Verlust, Erwärmung und Dekohärenz zur Folge haben. In dieser Dissertation erweitern wir frühere Arbeiten über durch magnetisches Rauschen induzierte Spin-Flip-Ratenund betrachten kompliziertere Geometrien, wie sie typischerweise auf einem Atom-Chip anzutreffen sind: Geschichtete Strukturen und metallische Leitungen mit endlichem Querschnitt. Wir diskutieren auch einige Aspekte von Aomchips aus Supraleitenden Strukturen die als Mittel zur Unterdrückung magnetischer Feldfluktuationen vorgeschlagen wurden. Die Arbeit beschreibt analytische und numerische Rechnungen von Spin-Flip Raten auf Grundlage magnetischer Greensfunktionen. Für einen Chip mit einem metallischen Top-Layer hängt das magnetische Rauschen hauptsächlich von der Dicke des Layers ab, solange die unteren Layer eine deutlich kleinere Leitfähigkeit haben. Auf Grundlage dieses Ergebnisses werden Skalengesetze für Verlustraten über einem dünnen metallischen Leiter hergeleitet. Eine gute Übereinstimmung mit Experimenten wird in dem Bereich erreicht, wo der Abstand zwischen Atom und Oberfläche in der Größenordnung der Eindringtiefe des Metalls ist. Da in Experimenten metallische Layer immer geätzt werden, um verschiedene stromleitende Bahnen vonenander zu trennen, wurde der Einfluß eines endlichen Querschnittsauf das magnetische Rauschen berücksichtigt. Das lokale Spektrum des magnetischen Feldes in der Nähe einer metallischen Mikrostruktur wurde mit Hilfe von Randintegralen numerisch untersucht. Das magnetische Rauschen hängt signifikant von der Polarisierung über flachen Leiterbahnen mit endlichem Querschnitt ab, im Unterschied zu einem unendlich breiten Leiter. Es wurden auch Korrelationen zwischen mehreren Leitern berücksichtigt. Im letzten Teil werden supraleitende Atomchips betrachtet. Magnetische Fallen, die von supraleitenden Bahnen im Meissner Zustand und im gemischten Zustand sind werden analytisch durch die Methode der konformen Abbildung und numerisch untersucht. Die Eigenschaften der durch supraleitende Bahnen erzeugten Fallen werden erforscht und mit normal leitenden verglichen: Sie verhalten sich qualitativ sehr ähnlich und öffnen einen Weg zur weiteren Miniaturisierung von Fallen, wegen dem Vorteil von geringem magnetischem Rauschen. Wir diskutieren kritische Ströme und Felder für einige Geometrien.
APA, Harvard, Vancouver, ISO, and other styles
10

Rushton, Joseph. "A novel magneto-optical trap for integrated atom chips." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/382951/.

Full text
Abstract:
This thesis describes the design and construction of a new magneto optical trap that is suitable for use in integrated atom chips and other vacuum systems in which optical access is limited to a single window. The trap design relies on the switching of optical and magnetic fields and can operate at frequencies at least within the region of 1 kHz to 60 kHz. The design does not need patterned surfaces in order to generate the necessary beam geometry, requiring only the use of a single, standard mirror. Early temperature measurements have indicated that the trap may be capable of sub-Doppler cooling, and that it is able to capture on the order of 1:7 � 106 atoms in a capture volume of 0:18 cm3.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Atom chips"

1

Reichel, Jakob, and Vladan Vuletić, eds. Atom Chips. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reichel, Jakob, and Vladan Vuletić. Atom chips. Weinheim, Germany: Wiley-VCH, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reichel, Jakob, and Vladan Vuletic. Atom Chips. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reichel, Jakob, and Vladan Vuletic. Atom Chips. Wiley & Sons, Incorporated, John, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reichel, Jakob, and Vladan Vuletic. Atom Chips. Wiley & Sons, Limited, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reichel, Jakob, and Vladan Vuletic. Atom Chips. Wiley & Sons, Incorporated, John, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Atom chips . Germany : Wiley-VCH, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simon, Winchester. Pacific: Silicon chips and surfboards, coral reefs and atom bombs, brutal dictators, fading empires, and the coming collision of the world's superpowers. 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pacific: Silicon Chips and Surfboards, Coral Reefs and Atom Bombs, Brutal Dictators, Fading Empires, and the Coming Collision of the World's Superpowers. Harper, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simon, Winchester. Pacific CD: Silicon Chips and Surfboards, Coral Reefs and Atom Bombs, Brutal Dictators, Fading Empires, and the Coming Collision of the World's Superpowers. HarperAudio, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Atom chips"

1

Nogues, Gilles, Adrian Lupaşcu, Andreas Emmert, Michel Brune, Jean-Michel Raimond, and Serge Haroche. "Cryogenic Atom Chips." In Atom Chips, 309–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Folman, Ron, Philipp Treutlein, and Jörg Schmiedmayer. "Atom Chip Fabrication." In Atom Chips, 61–117. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sidorov, Andrei, and Peter Hannaford. "From Magnetic Mirrors to Atom Chips." In Atom Chips, 1–31. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bouchoule, I., N. J. van Druten, and C. I. Westbrook. "Atom Chips and One-Dimensional Bose Gases." In Atom Chips, 331–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Extavour, Marcius H. T., Lindsay J. LeBlanc, Jason McKeever, Alma B. Bardon, Seth Aubin, Stefan Myrskog, Thorsten Schumm, and Joseph H. Thywissen. "Fermions on Atom Chips." In Atom Chips, 365–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amini, J. M., J. Britton, D. Leibfried, and D. J. Wineland. "Micro-Fabricated Chip Traps for Ions." In Atom Chips, 395–420. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reichel, Jakob. "Trapping and Manipulating Atoms on Chips." In Atom Chips, 33–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scheel, Stefan, and E. A. Hinds. "Atoms at Micrometer Distances from a Macroscopic Body." In Atom Chips, 119–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henkel, Carsten. "Interaction of Atoms, Ions, and Molecules with Surfaces." In Atom Chips, 147–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Günther, A., T. E. Judd, J. Fortágh, and C. Zimmermann. "Diffraction and Interference of a Bose-Einstein Condensate Scattered from an Atom Chip-Based Magnetic Lattice." In Atom Chips, 171–209. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633357.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atom chips"

1

Hinds, E. A. "Cold Atoms on Atom Chips." In Laser Science. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/ls.2008.ltug2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hinds, E. A. "Cold atoms on atom chips." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1561104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fortágh, József. "Atom Chips." In LATIN-AMERICAN SCHOOL OF PHYSICS XXXVIII ELAF: Quantum Information and Quantum Cold Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2907756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Siercke, M., K. S. Chan, B. Zhang, M. J. Lim, and R. Dumke. "Superconducting Atom Chips." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kraft, Michael. "Engineering atom chips." In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siercke, M., K. S. Chan, B. Zhang, M. J. Lim, and R. Dumke. "Superconducting atom chips." In 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim. IEEE, 2011. http://dx.doi.org/10.1109/iqec-cleo.2011.6193801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wolff, H., S. Whitlock, M. Lowe, J. Wang, B. V. Hall, A. Sidorov, and P. Hannaford. "Fabrication of Atom Chips with Femtosecond Laser Ablation." In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qwe4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klappauf, B. G., P. Horak, and P. Kazansky. "Fiber cavities for atom chips." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schwartz, S., M. Ammar, M. Dupont-Nivet, L. Huet, J. P. Pocholle, C. Guerlin, J. Reichel, P. Rosenbusch, I. Bouchoule, and C. Westbrook. "Atom chips for quantum sensing with cold thermal atoms." In SPIE OPTO, edited by Manijeh Razeghi, Eric Tournié, and Gail J. Brown. SPIE, 2013. http://dx.doi.org/10.1117/12.2047431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, J., and W. T. Hill, III. "Arbitrary Dipole Potentials for Ultracold Atoms: Free-Space Atom Chips." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i1149.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Atom chips"

1

Golding, William M. Atomic Waveguides for Atom Chips. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada508584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stevens, James E., Matthew Glenn Blain, Francisco M. Benito, and Grant Biedermann. Advanced atom chips with two metal layers. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1005059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ketterle, Wolfgang, Vladan Vuletic, and Mara Prentiss. Atom Interferometry on Atom Chips-A Novel Approach Towards Precision Inertial Navigation Systems (PINS). Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada499671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lev, Benjamin L. Atom chip microscopy: A novel probe for strongly correlated materials. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1028620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stamper-Kurn, Dan M. High Bandwidth Atomic Detection at the Single-Atom Level and Cavity Quantum Electrodynamics on an Atom Chip. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada462890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lev, Benjamin. Scanning quantum gas atom chip microscopy of strongly correlated and topologically nontrivial materials. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1437180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stamper-Kurn, Dan M. Operation and On-Chip Integration of Cavity-QED-Based Detectors for Single Atoms and Molecules. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada523323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography