Academic literature on the topic 'Atmospheric methane'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atmospheric methane.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atmospheric methane"
Jensen, Sigmund, Anders Priemé, and Lars Bakken. "Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms." Applied and Environmental Microbiology 64, no. 3 (March 1, 1998): 1143–46. http://dx.doi.org/10.1128/aem.64.3.1143-1146.1998.
Full textBenstead, J., G. M. King, and H. G. Williams. "Methanol Promotes Atmospheric Methane Oxidation by Methanotrophic Cultures and Soils." Applied and Environmental Microbiology 64, no. 3 (March 1, 1998): 1091–98. http://dx.doi.org/10.1128/aem.64.3.1091-1098.1998.
Full textStevens, C. M. "Atmospheric methane." Chemical Geology 71, no. 1-3 (December 1988): 11–21. http://dx.doi.org/10.1016/0009-2541(88)90102-7.
Full textZhou, Wencai, Xueying Qiu, Yuheng Jiang, Yingying Fan, Shilei Wei, Dongxue Han, Li Niu, and Zhiyong Tang. "Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis." Journal of Materials Chemistry A 8, no. 26 (2020): 13277–84. http://dx.doi.org/10.1039/d0ta02793f.
Full textArora, Vivek K., Joe R. Melton, and David Plummer. "An assessment of natural methane fluxes simulated by the CLASS-CTEM model." Biogeosciences 15, no. 15 (August 1, 2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.
Full textCatling, D. C., M. W. Claire, and K. J. Zahnle. "Anaerobic methanotrophy and the rise of atmospheric oxygen." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1856 (May 18, 2007): 1867–88. http://dx.doi.org/10.1098/rsta.2007.2047.
Full textYarakhmedov, M. B., A. G. Kiiamov, M. E. Semenov, A. P. Semenov, and A. S. Stoporev. "Peculiarities of Decomposition of Gas Hydrates in the Presence of Methanol at Atmospheric Pressure." Chemistry and Technology of Fuels and Oils 634, no. 6 (2022): 40–43. http://dx.doi.org/10.32935/0023-1169-2022-634-6-40-43.
Full textKeppler, Frank, Mihály Boros, Christian Frankenberg, Jos Lelieveld, Andrew McLeod, Anna Maria Pirttilä, Thomas Röckmann, and Jörg-Peter Schnitzler. "Methane formation in aerobic environments." Environmental Chemistry 6, no. 6 (2009): 459. http://dx.doi.org/10.1071/en09137.
Full textSmith, H. J. "ATMOSPHERIC SCIENCE: Sourcing Methane." Science 316, no. 5826 (May 11, 2007): 799b. http://dx.doi.org/10.1126/science.316.5826.799b.
Full textWilson, Jason. "Natural atmospheric methane contributions." Marine Pollution Bulletin 28, no. 4 (April 1994): 194–95. http://dx.doi.org/10.1016/0025-326x(94)90085-x.
Full textDissertations / Theses on the topic "Atmospheric methane"
Tice, Dane Steven. "Ground-based near-infrared remote sounding of ice giant clouds and methane." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4f09f270-a25c-4d36-96d3-13070a594eaa.
Full textKnappett, Diane Shirley. "Observing the distribution of atmospheric methane from space." Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10928.
Full textWarwick, Nicola Julie. "Global modelling of atmospheric methane and methyl bromide." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619980.
Full textTeama, Doaa Galal. "A 30-Year Record of the Isotopic Composition of Atmospheric Methane." Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557627.
Full textMethane (CH4) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO2(based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH4 (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of CH 4sources. Measuring stable isotopes of atmospheric CH4 can constrain changes of CH4sources. The main goal of this work is to interpret the CH4 trend from 1978-2010 in terms of its sources using measurements of CH4 mixing ratio and its isotopes.
The current work presents the measurements and analysis of CH4 and its isotopes (δ13C and δD) of four air archive sample sets collected by the Oregon Graduate Institute (OGI). CH4 isotope ratios (δ13C and δD) were measured by a continuous flow isotope ratio mass spectrometer technique developed at PSU. The first set is for Cape Meares, Oregon which is the oldest and longest set and spans 1977-1999. The integrity of this sample set was evaluated by comparing between our measured CH4 mixing ratio values with those measured values by OGI and was found to be stable. Resulting CH4 seasonal cycle was evaluated from the Cape Meares data. The CH4 seasonal cycle shows a broad maximum during October-April and a minimum between July and August. The seasonal cycles of δ13C and δD have maximum values in May for δ13C and in July for δD and minimum values between September-October for δ13C and in October for δD. These results indicate a CH4 source that is more enriched January-May (e.g. biomass burning) and a source that is more depleted August-October (e.g. microbial). In addition to Cape Meares, air archive sets were analyzed from: South Pole (SPO), Samoa (SMO), Mauna Loa (MLO) 1992-1996. The presented δD measurements are unique measured values during these time periods at these stations.
To obtain the long-term in isotopic CH4 from 1978-2010, other datasets of Northern Hemisphere mid-latitude sites are included with Cape Meares. These sites are Olympic Peninsula, Washington; Montaña de Oro, California; and Niwot Ridge, Colorado. The seasonal cycles of CH4 and its isotopes from the composite dataset have the same phase and amplitudes as the Cape Meares site. CH4 growth rate shows a decrease over time 1978-2010 with three main spikes in 1992, 1998, and 2003 consistent with the literature from the global trend. CH4 lifetime is estimated to 9.7 yrs. The δ13C trend in the composite data shows a slow increase from 1978-1987, a more rapid rate of change 1987-2005, and a gradual depletion during 2005-2010. The δD trend in the composite data shows a gradual increase during 1978-2001 and decrease from 2001-2005. From these results, the global CH4 emissions are estimated and show a leveling off sources 1982-2010 with two large peak anomalies in 1998 and 2003. The global average δ13C and δD of CH 4 sources are estimated from measured values. The results of these calculations indicate that there is more than one source which controls the decrease in the global CH4 trend. From 1982-2001, δ13C and δD of CH4 sources becomes more depleted due to a decrease in fossil and/or biomass burning sources relative to microbial sources. From 2005-2010, δ 13C of CH4 sources returns to its 1981 value. There are two significant peaks in δ13C and δD of CH 4 sources in 1998 and 2003 due to the wildfire emissions in boreal areas and in Europe.
Butterworth, Anna Lucy. "Determination of the combined isotopic composition of atmospheric methane." Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264463.
Full textButenhoff, Christopher Lee. "Investigation of the sources and sinks of atmospheric methane." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/2813.
Full textWecht, Kevin James. "Quantifying Methane Emissions Using Satellite Observations." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11252.
Full textEarth and Planetary Sciences
Srong, E. Kimberley. "Spectral parameters of methane for remote sounding of the Jovian atmosphere." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:0f870f86-c546-461d-aca7-61f1ccc249df.
Full textSnover, Amy Katherine. "The stable hydrogen isotopic composition of methane emitted from biomass burning and removed by oxic soils : application to the atmospheric methane budget /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11570.
Full textBräunlich, Maya. "Study of atmospheric carbon monoxide and methane Untersuchung von atmosphärischen Kohlenmonoxid und Methan anhand von Isotopenmessungen /." [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8832641.
Full textBooks on the topic "Atmospheric methane"
Khalil, Mohammad Aslam Khan, ed. Atmospheric Methane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1.
Full textKhalil, M. A. K. 1950-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change (1991 : Portland, Or.), eds. Atmospheric methane: Sources, sinks, and role in global change. Berlin: Springer-Verlag, 1993.
Find full textM, Bruhl Christoph, Thompson Anne M, and United States. National Aeronautics and Space Administration., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textH, Bruhl Christoph, Thompson Anne M, and United States. Environmental Protection Agency., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. [Washington, D.C: U.S. Environmental Protection Agency, 1992.
Find full textM, McIntosh Catherine, and Environmental Research Laboratories (U.S.), eds. Atmospheric CH₄ seasonal cycles and latitude gradient from the NOAA CMDL cooperative air sampling network : Forecast Systems Laboratory, Boulder, Colorado, August 1996. Boulder, Colo: United States Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1996.
Find full textKhalil, M. A. K., ed. Atmospheric Methane: Sources, Sinks, and Role in Global Change. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84605-2.
Full textWorkshop, WMO/UNEP Intergovernmental Panel on Climate Change International IPCC. Methane and nitrous oxide: Methods in national emissions inventories and options for control : proceedings, Euroase Hotel, Amersfoort, the Netherlands, 3-5 February 1993. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection, 1993.
Find full textSteele, L. Paul. Atmospheric methane concentrations: The NOAA/CMDL Global Cooperative Flask Sampling Network, 1983-1988. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1991.
Find full textLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Find full textLang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.
Find full textBook chapters on the topic "Atmospheric methane"
Khalil, M. A. K. "Atmospheric Methane: An Introduction." In Atmospheric Methane, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_1.
Full textShearer, M. J., and M. A. K. Khalil. "Rice Agriculture: Emissions." In Atmospheric Methane, 170–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_10.
Full textLevine, Joel S., Wesley R. Cofer, and Joseph P. Pinto. "Biomass Burning." In Atmospheric Methane, 190–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_11.
Full textMatthews, Elaine. "Wetlands." In Atmospheric Methane, 202–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_12.
Full textThorneloe, Susan A., Morton A. Barlaz, Rebecca Peer, L. C. Huff, Lee Davis, and Joe Mangino. "Waste Management." In Atmospheric Methane, 234–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_13.
Full textKirchgessner, David A. "Fossil Fuel Industries." In Atmospheric Methane, 263–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_14.
Full textJudd, A. G. "Geological Sources of Methane." In Atmospheric Methane, 280–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_15.
Full textWuebbles, Donald J., Katharine A. S. Hayhoe, and Rao Kotamarthi. "Methane in the Global Environment." In Atmospheric Methane, 304–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_16.
Full textChappellaz, J., D. Raynaud, T. Blunier, and B. Stauffer. "The Ice Core Record of Atmospheric Methane." In Atmospheric Methane, 9–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_2.
Full textStevens, C. M., and M. Wahlen. "The Isotopic Composition of Atmospheric Methane and Its Sources." In Atmospheric Methane, 25–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_3.
Full textConference papers on the topic "Atmospheric methane"
Tsvetova, Elena A. "Modeling of hydrodynamics of water-methane heterogeneous system." In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205998.
Full textMeng, Lichun, Andreas Fix, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo. "Upconversion Detector for Methane Atmospheric Sensor." In Optics and Photonics for Energy and the Environment. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ee.2017.ew4b.2.
Full textJarem, John M., Joseph H. Pierluissi, and William W. Ng. "A Transmittance Model For Atmospheric Methane." In 28th Annual Technical Symposium, edited by Richard A. Mollicone and Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.945011.
Full textFiedler, Michael, C. Goelz, and Ulrich Platt. "Nonresonant photoacoustic monitoring of atmospheric methane." In Environmental Sensing '92, edited by Harold I. Schiff and Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140227.
Full textTanichev, Aleksandr S. "Method for fast modeling ν2 Raman band of methane." In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603359.
Full textVoitsekhovskaya, Olga, Vitaliy Loskutov, Olga V. Shefer, and Danila Kashirskii. "Transmission of radiant energy by gas-aerosol medium containing methane." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2284933.
Full textAgeev, Boris, and Yury Ponomarev. "Estimate of methane-capacity of aerogel samples of different compositions." In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2503956.
Full textGong, Weihua, Qinduan Zhang, Tingting Zhang, TONGYU LIU, ZHAOWEI WANG, and YUBIN WEI. "Study on laser methane remote sensor based on TDLAS." In Atmospheric and Environmental Optics, edited by Liang Xu, Jianguo Liu, and Jian Gao. SPIE, 2023. http://dx.doi.org/10.1117/12.2651953.
Full textPestunov, Dmitriy A., Valentina M. Domysheva, Maria V. Sakirko, Artem M. Shamrin, and Mikhail V. Panchenko. "Methane in the atmosphere and surface water of Lake Baikal." In 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603722.
Full textPetrov, Dmitry V., Ivan I. Matrosov, Danila O. Sedinkin, and Alexey R. Zaripov. "Raman spectra of n-pentane and isopentane in a methane environment." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2286321.
Full textReports on the topic "Atmospheric methane"
Strand, Stuart, Neil Bruce, Liz Rylott, and Long Zhang. Phytoremediation of Atmospheric Methane. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada579442.
Full textButenhoff, Christopher. Investigation of the sources and sinks of atmospheric methane. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2807.
Full textSafta, Cosmin, Ray Bambha, and Hope Michelsen. Estimating Regional Methane Emissions Through Atmospheric Measurements and Inverse Modeling. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569345.
Full textTeama, Doaa. A 30-Year Record of the Isotopic Composition of Atmospheric Methane. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.642.
Full textCostigan, Keeley Rochelle, and Manvendra Krishna Dubey. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1193618.
Full textLauvaux, Thomas. TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1417183.
Full textMcFarlane, Karis J. Final Report for Wetlands as a Source of Atmospheric Methane: A Multiscale and Multidisciplinary Approach. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1333394.
Full textJacobson, A. R., J. B. Miller, A. Ballantyne, S. Basu, L. Bruhwiler, A. Chatterjee, S. Denning, and L. Ott. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.
Full textBarns, D., and J. Edmonds. An evaluation of the relationship between the production and use of energy and atmospheric methane emissions. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6970106.
Full textBostrom, Gregory. Development of a Portable Cavity Ring-Down Spectroscopic Technique for Measuring Stable Isotopes in Atmospheric Methane. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.51.
Full text