Academic literature on the topic 'Atmospheric cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atmospheric cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atmospheric cycle"
Donohoe, Aaron, and David S. Battisti. "The Seasonal Cycle of Atmospheric Heating and Temperature." Journal of Climate 26, no. 14 (July 12, 2013): 4962–80. http://dx.doi.org/10.1175/jcli-d-12-00713.1.
Full textKong, Debing, Guicai Ning, Shigong Wang, Jing Cong, Ming Luo, Xiang Ni, and Mingguo Ma. "Clustering diurnal cycles of day-to-day temperature change to understand their impacts on air quality forecasting in mountain-basin areas." Atmospheric Chemistry and Physics 21, no. 19 (September 30, 2021): 14493–505. http://dx.doi.org/10.5194/acp-21-14493-2021.
Full textWALKER, J. C. G. "Atmospheric Evolution: The Carbon Cycle and Atmospheric CO2." Science 230, no. 4722 (October 11, 1985): 163–64. http://dx.doi.org/10.1126/science.230.4722.163-a.
Full textAlexandrov, G. A. "Explaining the seasonal cycle of the globally averaged CO<sub>2</sub> with a carbon-cycle model." Earth System Dynamics 5, no. 2 (October 21, 2014): 345–54. http://dx.doi.org/10.5194/esd-5-345-2014.
Full textReinhard, Christopher T., Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell. "Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14." Geoscientific Model Development 13, no. 11 (November 20, 2020): 5687–706. http://dx.doi.org/10.5194/gmd-13-5687-2020.
Full textBengtsson, Lennart. "The global atmospheric water cycle." Environmental Research Letters 5, no. 2 (April 9, 2010): 025202. http://dx.doi.org/10.1088/1748-9326/5/2/025202.
Full textPhilip, Sjoukje, and Geert Jan van Oldenborgh. "Significant Atmospheric Nonlinearities in the ENSO Cycle." Journal of Climate 22, no. 14 (July 15, 2009): 4014–28. http://dx.doi.org/10.1175/2009jcli2716.1.
Full textThum, Tea, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, et al. "Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO<sub>2</sub>." Biogeosciences 17, no. 22 (November 23, 2020): 5721–43. http://dx.doi.org/10.5194/bg-17-5721-2020.
Full textBala, G., K. Caldeira, A. Mirin, M. Wickett, and C. Delire. "Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model." Journal of Climate 18, no. 21 (November 1, 2005): 4531–44. http://dx.doi.org/10.1175/jcli3542.1.
Full textEliseev, A. V., M. Zhang, R. D. Gizatullin, A. V. Altukhova, Yu P. Perevedentsev, and A. I. Skorokhod. "Impact of sulphur dioxide on the terrestrial carbon cycle." Известия Российской академии наук. Физика атмосферы и океана 55, no. 1 (April 16, 2019): 41–53. http://dx.doi.org/10.31857/s0002-351555141-53.
Full textDissertations / Theses on the topic "Atmospheric cycle"
Ruane, Alexander C. "Diurnal to annual variations in the atmospheric water cycle." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3263195.
Full textTitle from first page of PDF file (viewed July 10, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 146-154).
Sturm, Kristof. "Regional atmospheric modelling of the stable water istope cycle." Université Joseph Fourier (Grenoble), 2005. https://tel.archives-ouvertes.fr/tel-00010157.
Full textClimate change has recently become a major concerning among scientists and the general public. A better knowledge of past climates helps forecasting the future evolution of climate. Stable water isotopes stand as an outstanding paleo-climate proxy. Physical properties of heavy stable water isotopes (H182 O; HDO) cause fractionation processes related to temperature and degree of distillation. If the isotopic signal is correctly inverted, past climate change can be inferred from isotopic archives. Andean ice-cores offer a unique records of tropical climate and its variability through time. However, the interpretation of the isotopic signal is difficult because of complex atmospheric dynamic over South America. For this purpose, we developed a module handling the stable water isotope fractionation processes within the regional circulation model REMO and applied it to South America. The manuscript outlines the major milestones of the present PhD. We first introduce the research topic in the wider scope of climate change; the description of the stable water isotope enabled regional circulation model REMOiso; an initial validation of REMOiso over Europe; an investigation of the seasonal variations of precipitation, atmospheric circulation and isotopic signal over South America; and at last the recording of the south American monsoon system (SAMS) by stable water isotope diagnostics
Park, Sewon. "Diurnal cycle of deep tropical convection." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/54985.
Full textTitle as it appears in the M.I.T. Graduate List, Feb. 1992: Diurnal cycle of deep cloud cover in tropics.
Includes bibliographical references (leaf 53).
by Sewon Park.
M.S.
Stephens, Britton Bruce. "Field-based atmospheric oxygen measurements and the ocean carbon cycle /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p3035435.
Full textIto, Takamitsu 1976. "Feedback mechanism in the oceanic carbon cycle." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/54435.
Full textIncludes bibliographical references (p. [84]-[87]).
In this thesis, I designed and implemented a simple atmosphere-ocean coupled carbon cycle model which can be used as a tool to uncover the mechanisms of the interaction between the dynamics of the atmosphere-ocean system and the oceanic reservoir of CO 2 on the 101 to 103 years time scale. The atmosphere-ocean coupled model is originally developed by Marotzke (20,21), and the biogeochemical model is developed by Follows(personal communication). The atmosphere-ocean-carbon model makes the atmosphere-ocean dynamics and the carbon cycle fully interactive, and results in two stationary states characterized by two distinct patterns of the thermohaline circulation. The temperature driven, high latitudes sinking mode showed significantly lower atmospheric pCO2 than the salinity-driven, low latitudes sinking mode. The atmosphere-ocean dynamics dominates the system behavior of the model. The carbon cycle weakly feedbacks on the atmosphere-ocean system through the radiation balance. The model reveals two feedback mechanisms, the global warming feedback and the thermohaline pCO 2 feedback. The thermohaline pCO2 feedback has three sub-components, which are the biological pump feedback, the outgassing feedback and the DIC exporting feedback. The numerical experiments estimate the relative importance among them. The system becomes less stable when all the feedback mechanism is introduced. The model could be used to understand some basic mechanism of the situations similar to the anthropogenic global warming. The stability analysis is applied to evaluate the model runs. The current rate of 7 GTC yr - 1 can induce the spontaneous shutdown of thermohaline circulation after 550 years of constant emission. The stability of the thermohaline circulation rapidly decreases even before the system stops the thermohaline circulation. The model parameterized surface alkalinity as a simple function of sea surface salinity or as a constant, rather than solving the alkalinity cycle explicitly. The system is sensitive to the parameterization, in which different assumptions on alkalinity lead to different results both analytically and numerically.
by Takamitsu Ito.
S.M.
Wallace, Craig. "Variability in the annual cycle of temperature and the atmospheric circulation." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399842.
Full textVan, Damme Martin. "Assessment of global atmospheric ammonia using IASI infrared satellite observations." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209085.
Full textThe natural nitrogen cycle has been and is significantly perturbed by anthropogenic emissions of reactive nitrogen (Nr) compounds into the atmosphere, resulting from our production of energy and food. In the last century global ammonia (NH3) emissions have doubled and represent nowadays more than half of total the Nr emissions. NH3 is also the principal atmospheric base in the atmosphere and rapidly forms aerosols by reaction with acids. It is therefore a species of high relevance for the Earth's environment, climate and human health (Chapter 1). As a short-lived species, NH3 is highly variable in time and space, and while ground based measurements are possible, they are sparse and their spatial coverage is largely heterogeneous. Consequently, global spatial and temporal patterns of NH3 emissions are poorly understood and account for the largest uncertainties in the nitrogen cycle. The aim of this work is to assess distributions and saptiotemporal variability of NH3 using satellite measurements to improve our understanding of its contribution to the global nitrogen cycle and its related effects.
Recently, satellite instruments have demonstrated their abilities to measure NH3 and to supplement the sparse surface measuring network by providing global total columns daily. The Infrared Atmospheric Sounding Interferometer (IASI), on board MetOp platforms, is measuring NH3 at a high spatiotemporal resolution. IASI circles the Earth in a polar Sun-synchronous orbit, covering the globe twice a day with a circular pixel size of 12km diameter at nadir and with overpass times at 9:30 and 21:30 (local solar time when crossing the equator). An improved retrieval scheme based on the calculation of Hyperspectral Range Index (HRI) is detailed in Chapter 2 and compared with previous retrieval methods. This approach fully exploits the hyperspectral nature of IASI by using a broader spectral range (800-1200 cm-1) where NH3 is optically active. It allows retrieving total columns from IASI spectra globally and twice a day without large computational resources and with an improved detection limit. More specifically the retrieval procedure involves two steps: the calculation of a dimensionless spectral index (HRI) and the conversion of this index into NH3 total columns using look-up tables (LUTs) built from forward radiative transfer simulations under various atmospheric conditions. The retrieval also includes an error characterization of the retrieved column, which is of utmost importance for further analysis and comparisons. Global distributions using five years of data (1 November 2007 to 31 October 2012) from IASI/MetOp-A are presented and analyzed separately for the morning and evening overpasses. The advantage of the HRI-based retrieval scheme over other methods, in particular to identify smaller emission sources and transport patterns over the oceans is shown. The benefit of the high spatial sampling and resolution of IASI is highlighted with the regional distribution over China and the first four-year time series are briefly discussed.
We evaluate four years (1 January 2008 to 31 December 2011) of IASI-NH3 columns from the morning observations and of LOTOS-EUROS model simulations over Europe and Western Russia. We describe the methodology applied to account for the variable retrieval sensitivity of IASI measurements in Chapter 3. The four year mean distributions highlight three main agricultural hotspots in Europe: The Po Valley, the continental part of Northwestern Europe, and the Ebro Valley. A general good agreement between IASI and LOTOS-EUROS is shown, not only over source regions but also over remote areas and over seas when transport is observed. The yearly analyses reveal that, on average, the measured NH3 columns are higher than the modeled ones. Large discrepancies are observed over industrial areas in Eastern Europe and Russia pointing to underestimated if not missing emissions in the underlying inventories. For the three hotspots areas, we show that the seasonality between IASI and LOTOS-EUROS matches when the sensitivity of the satellite measurements is taken into account. The best agreement is found in the Netherlands, both in magnitude and timing, most likely as the fixed emission timing pattern was determined from experimental data sets from this country. Moreover, comparisons of the daily time series indicate that although the dynamic of the model is in reasonable agreement with the measurements, the model may suffer from a possible misrepresentation of emission timing and magnitude. Overall, the distinct temporal patterns observed for the three sites underline the need for improved timing of emissions. Finally, the study of the Russian fires event of 2010 shows that NH3 modeled plumes are not enough dispersed, which is confirmed with a comparison using in situ measurements.
Chapter 4 describes the comparisons of IASI-NH3 measurements with several independent ground-based and airborne data sets. Even though the in situ data are sparse, we show that the yearly distributions are broadly consistent. For the monthly analyzes we use ground-based measurements in Europe, China and Africa. Overall, IASI-derived concentrations are in fair agreement but are also characterized by less variability. Statistically significant correlations are found for several sites, but low slopes and high intercepts are calculated in all cases. At least three reasons can explain this: (1) the lack of representativity of the point surface measurement for the large IASI pixel, (2) the use of a single profile shape in the retrieval scheme over land, which does therefore not account for a varying boundary layer height, (3) the impact of the averaging procedure applied to satellite measurements to obtain a consistent quantity to compare with the in situ monthly data. The use of hourly surface measurements and of airborne data sets allows assessing IASI individual observations. Much higher correlation coefficients are found in particular when comparing IASI-derived volume mixing ratio with vertically resolved measurements performed from the NOAA WP-3D airplane during CalNex campaign in 2010. The results demonstrate the need, for validation of the satellite columns, of measurements performed at various altitudes and covering a large part of the satellite footprint.
The six-year of IASI observations available at the end of this thesis are used to analyze regional time series for the first time (Chapter 5). More precisely, we use the IASI measurements over that period (1 January 2008 to 31 December 2013) to identify seasonal patterns and inter-annual variability at subcontinental scale. This is achieved by looking at global composite seasonal means and monthly time series over 12 regions around the world (Europe, Eastern Russia and Northern Asia, Australia, Mexico, South America, 2 sub-regions for Northern America and South Asia, 3 sub-regions for Africa), considering separately but simultaneously measurements from IASI morning and evening overpasses. The seasonal cycle is inferred for the majority of these regions. The relations between the NH3 atmospheric abundance and emission processes is emphasized at smaller regional scale by extracting at high spatial resolution the global climatology of the month of maxima columns. In some region, the predominance of a single source appears clearly (e.g. agriculture in Europe and North America, fires in central South Africa and South America), while in others a composite of source processes on small scale is demonstrated (e.g. Northern Central Africa and Southwestern Asia).
Chapter 6 presents the achievements of this thesis, as well as ongoing activities and future perspectives.
FRANCAIS:
Le cycle naturel de l'azote est fortement perturbé suite aux émissions atmosphériques de composés azotés réactifs (Nr) résultant de nos besoins accrus en énergie et en nourriture. Les émissions d'ammoniac (NH3) ont doublé au cours du siècle dernier, représentant aujourd'hui plus de la moitié des émissions totales de Nr. De plus, le NH3 étant le principal composé basique de notre atmosphère, il réagit rapidement avec les composés acides pour former des aérosols. C'est dès lors un constituant prépondérant pour l'environnement, le climat et la santé publique. Les problématiques environnementales y étant liées sont décrites au Chapitre 1. En tant que gaz en trace le NH3 se caractérise par une importante variabilité spatiale et temporelle. Bien que des mesures in situ soient possibles, elles sont souvent rares et couvrent le globe de façon hétérogène. Il en résulte un manque de connaissance sur l'évolution temporelle et la variabilité spatiale des émissions, ainsi que de leurs amplitudes, qui représentent les plus grandes incertitudes pour le cycle de l'azote (également décrites au Chapitre 1).
Récemment, les sondeurs spatiaux opérant dans l'infrarouge ont démontré leurs capacités à mesurer le NH3 et par là à compléter le réseau d'observations de surface. Particulièrement, l'Interféromètre Atmosphérique de Sondage Infrarouge (IASI), à bord de la plateforme MetOp, mesure le NH3 à une relativement haute résolution spatiotemporelle. Il couvre le globe deux fois par jour, grâce à son orbite polaire et son balayage autour du nadir, avec un temps de passage à 9h30 et à 21h30 (temps solaire local quand il croise l'équateur). Une nouvelle méthode de restitution des concentrations basée sur le calcul d'un index hyperspectral sans dimension (HRI) est détaillée et comparée aux méthodes précédentes au Chapitre 2. Cette méthode permet d'exploiter de manière plus approfondie le caractère hyperspectral de IASI en se basant sur une bande spectrale plus étendue (800-1200 cm-1) au sein de laquelle le NH3 est optiquement actif. Nous décrivons comment restituer ces concentrations deux fois par jour sans nécessiter de grandes ressources informatiques et avec un meilleur seuil de détection. Plus spécifiquement, la procédure de restitution des concentrations consiste en deux étapes: le HRI est calculé dans un premier temps pour chaque spectre puis est ensuite converti en une colonne totale de NH3 à l'aide de tables de conversions. Ces tables ont été construites sur base de simulations de transfert radiatif effectuées pour différentes conditions atmosphériques. Le processus de restitution des concentrations comprend également le calcul d'une erreur sur la colonne mesurée. Des distributions globales moyennées sur cinq ans (du 1 novembre 2007 au 31 Octobre 2012) sont présentées et analysées séparément pour le passage diurne et nocturne de IASI. L'avantage de ce nouvel algorithme par rapport aux autres méthodes, permettant l'identification de sources plus faibles de NH3 ainsi que du transport depuis les sources terrestres au-dessus des océans, est démontré. Le bénéfice de la haute couverture spatiale et temporelle de IASI est mis en exergue par une description régionale au-dessus de la Chine ainsi que par l'analyse de premières séries temporelles hémisphériques sur quatre ans.
Au Chapitre 3, nous évaluons quatre ans (du 1 janvier 2008 au 31 décembre 2011) de mesures matinales de IASI ainsi que de simulations du modèle LOTOS-EUROS, effectuées au-dessus de l'Europe et de l'ouest de la Russie. Nous décrivons une méthodologie pour prendre en compte, dans la comparaison avec le modèle, la sensibilité variable de l'instrument IASI pour le NH3. Les comparaisons montrent alors une bonne concordance générale entre les mesures et les simulations. Les distributions pointent trois régions sources: la vallée du Pô, le nord-ouest de l'Europe continentale et la vallée de l'Ebre. L'analyse des distributions annuelles montre qu'en moyenne, les colonnes de NH3 mesurées sont plus élevées que celles simulées, à part pour quelques cas spécifiques. Des différences importantes ont été identifiées au-dessus de zones industrielles en Europe de l'est et en Russie, ce qui tend à incriminer une sub-estimation voire une absence de ces sources dans les inventaires d'émissions utilisés en entrée du modèle. Nous avons également montré que la saisonnalité est bien reproduite une fois la sensibilité des mesures satellites prise en compte. La meilleure concordance entre le modèle et IASI est observée pour les Pays-Bas, ce qui est certainement dû au fait que le profil temporel des émissions utilisé pour les simulations LOTOS-EUROS est basé sur des études expérimentales réalisées dans ce pays. L'étude des séries temporelles journalières indique que la dynamique du modèle est raisonnablement en accord avec les mesures mais pointe néanmoins une possible mauvaise représentation du profil temporel ainsi que de l'ampleur des émissions. Finalement, l'étude des importants feux ayant eu cours en Russie à l'été 2010 a montré que les panaches modélisés sont moins étendus que ceux observés, ce qui a été confirmé grâce à une comparaison avec des mesures sols.
Le chapitre 4 est dédié à la confrontation des mesures IASI avec différents jeux de données indépendants acquis depuis le sol et par avion. Les distributions globales annuelles sont concordantes, bien que la couverture spatiale des mesures sols soit limitée. Des mesures effectuées à la surface en Europe, en Chine et en Afrique sont utilisées pour les comparaisons mensuelles. Ces dernières révèlent une bonne concordance générale, bien que les mesures satellites montrent une plus faible amplitude de variations de concentrations. Des corrélations statistiquement significatives ont été calculées pour de nombreux sites, mais les régressions linéaires sont caractérisées par des pentes faibles et des ordonnées à l'origine élevées dans tous les cas. Au minimum, trois raisons contribuent à expliquer cela: (1) le manque de représentativité des mesures ponctuelles pour l'étendue des pixels IASI, (2) l'utilisation d'une seule forme de profil vertical pour la restitution des concentrations, qui ne prend dès lors pas en compte la hauteur de la couche limite, (3) l'impact de la procédure utilisée pour moyenner les observations satellites afin d'obtenir des quantités comparables aux mesures sols mensuelles. La prise en compte de mesures en surface effectuées à plus haute résolution temporelle ainsi que de mesures faites depuis un avion permet d'évaluer les observations IASI individuelles. Les coefficients de corrélation calculés sont bien plus élevés, en particulier pour la comparaison avec les mesures effectuées depuis l'avion NOAA WP-3D pendant la campagne CalNex en 2010. Ces résultats démontrent la nécessité de ce type d'observations, effectuées à différentes altitudes et couvrant une plus grande surface du pixel, pour valider les colonnes IASI-NH3.
Les six ans de données IASI disponibles à la fin de cette thèse sont utilisées pour tracer les premières séries temporelles sub-continentales (Chapitre 5). Plus spécifiquement, nous explorons les mesures IASI durant cette période (du 1 janvier 2008 jusqu'au 31 décembre 2013) pour identifier des structures saisonnières ainsi que la variabilité inter-annuelle à l'échelle sous-continentale. Pour arriver à cela, des moyennes saisonnières composites ont été produites ainsi que des séries temporelles mensuelles au-dessus de 12 régions du globe (Europe, est de la Russie et nord de l'Asie, Australie, Mexique, Amérique du Sud, 2 sous-régions en Amérique du nord et en Asie du sud et 3 sous-régions en Afrique), considérant séparément mais simultanément les mesures matinales et nocturnes de IASI. Le cycle saisonnier est raisonnablement bien décrit pour la plupart des régions. La relation entre la quantité de NH3 atmosphérique et ses sources d'émission est mise en exergue à l'échelle plus régionale par l'extraction à haute résolution spatiale d'une climatologie des mois de colonnes maximales. Dans certaines régions, la prédominance d'un processus source apparait clairement (par exemple l'agriculture en Europe et en Amérique du nord, les feux en Afrique du Sud et en Amérique du Sud), alors que, pour d'autres, la diversité des sources d'émissions est démontrée (par exemple pour le nord de l'Afrique centrale et l'Asie du sud-ouest).
Le Chapitre 6 reprend brièvement les principaux aboutissements de cette thèse et présente les différentes recherches en cours et les perspectives associées.
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
DeLuca, Cecelia. "Means and variability of some aspects of the hydrological cycle." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10669.
Full textHu, Wenjie. "The semiannual cycle of sea surface and free air temperatures." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/54415.
Full textShannon, Sarah R. "Modelling the atmospheric mineral dust cycle using a dynamic global vegetation model." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520308.
Full textBooks on the topic "Atmospheric cycle"
K, Arpe, and Fouquart Y, eds. The atmospheric energy and water cycle. Amsterdam: Elsevier, 1991.
Find full textEnting, I. G. Calculating future atmospheric CO2 concentrations. Australia: CSIRO, 1991.
Find full textR, Trabalka John, and United States. Dept. of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division., eds. Atmospheric carbon dioxide and the global carbon cycle. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, 1985.
Find full textUnited States. Department of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division, ed. Atmospheric carbon dioxide and the global carbon cycle. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, 1986.
Find full textNATO, Advanced Study Institute on the Contemporary Global Carbon Cycle (1991 Il Cioccio Italy). The global carbon cycle. Berlin: Springer-Verlag in association with NATO Scientific Affairs Division, 1993.
Find full textShersti͡ukov, B. G. Korotkoperiodnye t͡siklicheskie izmenenii͡a v nizhneĭ atmosfere i geliogeofizicheskie prot͡sessy. Moskva: Moskovskoe otd-nie Gidrometeoizdata, 1986.
Find full textConglong, Zhao, and Climate Monitoring and Diagnostics Laboratory (U.S.), eds. CMDL/Carbon Cycle Gases Group standards preparation and stability. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1999.
Find full textG, Restelli, Angeletti G. 1943-, Commission of the European Communities., and Danish Centre for Atmospheric Research., eds. Dimethylsulphide: Oceans, atmosphere, and climate : proceedings of the international symposium held in Belgirate, Italy, 13-15 October 1992. Dordrecht: Kluwer Academic, 1993.
Find full textEnting, I. G. Constraining the atmospheric carbon budget: A preliminary assessment. Australia: CSIRO, 1992.
Find full textEnting, I. G. Constraining the atmospheric carbon budget: A preliminary assessment. [Melbourne]: CSIRO Division of Atmospheric Research, 1992.
Find full textBook chapters on the topic "Atmospheric cycle"
Oshima, Kazuhiro, and Koji Yamazaki. "Atmospheric Water Cycle." In Ecological Studies, 25–42. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6317-7_2.
Full textDämmgen, Ulrich, Kerr Walker, Ludger Grünhage, and Hans-Jürgen Jäger. "The Atmospheric Sulphur Cycle." In Nutrients in Ecosystems, 75–114. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5100-9_3.
Full textKarol, I. L. "The Methane Atmospheric Cycle." In The Role of the Stratosphere in Global Change, 153–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78306-7_6.
Full textMcPeters, R. D., and C. H. Jackman. "Ozone Depletion During Solar Proton Events in Solar Cycle 21." In Atmospheric Ozone, 676–79. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5313-0_133.
Full textManning, Martin R. "Seasonal Cycles in Atmospheric CO2 Concentrations." In The Global Carbon Cycle, 65–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84608-3_3.
Full textKeeling, Charles D. "Lecture 1: Global Observations Of Atmospheric Co2." In The Global Carbon Cycle, 1–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84608-3_1.
Full textEriksson, Erik. "The Atmospheric Transport of Tritium." In Isotope Techniques in the Hydrologic Cycle, 56–57. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm011p0056.
Full textLanding, William M., and Christopher D. Holmes. "Overview of the Atmospheric Mercury Cycle." In Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration, 47–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20070-1_3.
Full textPeixoto, José Pinto. "Atmospheric Energetics and the Water Cycle." In Energy and Water Cycles in the Climate System, 1–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76957-3_1.
Full textDeshler, Terry. "Stratospheric Aerosol: Measurements, Importance, Life Cycle, Anomalous Aerosol." In Nucleation and Atmospheric Aerosols, 613–24. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6475-3_121.
Full textConference papers on the topic "Atmospheric cycle"
Lamendola, Joel, and Mark Anderson. "Limit cycle PIO analysis with asymmetric saturation." In 23rd Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4332.
Full textHunt, Robert. "Flight Powered by an Atmospheric Power Cycle." In AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7346.
Full textDomínguez-Castro, Fernando, Sergio Vicente-Serrano, Jaak Jaagus, Miquel Tomas-Burguera, Makki Khorchani, Marina Peña-Gallardo, and Tim McVicar. "Climatic influence on atmospheric evaporative demand in Estonia (1951-2015)." In First International Electronic Conference on the Hydrological Cycle. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/chycle-2017-04860.
Full textLin, Guofeng, Edward Lan, and Jay Brandon. "Simulation of aircraft-pilot coupling as limit-cycle oscillations." In 23rd Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4147.
Full textTanrikulu, Omer, Kemal Ozgoren, Omer Tanrikulu, and Kemal Ozgoren. "Limit cycle behavior in persistent resonance of unguided missiles." In 22nd Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3491.
Full textVázquez, Marta, Karina Pereira, Raquel Nieto, and Luis Gimeno. "The origin of moisture feeding up Atmospheric Rivers over the Arctic." In First International Electronic Conference on the Hydrological Cycle. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/chycle-2017-04829.
Full textGruzdev, Aleksandr, and Viacheslav Bezverkhnii. "Analysis of relation of Central England surface air temperature to the 11-year solar cycle." In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2502904.
Full textHays, Thomas C., and Andrew S. Arena. "Feasibility Study of Closed Cycle Propulsion for Unmanned Aerial Systems." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-2859.
Full textMehra, R., and R. Prasanth. "Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations." In 23rd Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4249.
Full textMedvedeva, Irina V., Konstantin Ratovsky, and Maxim Tolstikov. "Year-to-year changes in atmospheric and ionospheric variability in the 24th solar cycle." In 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2022. http://dx.doi.org/10.1117/12.2644623.
Full textReports on the topic "Atmospheric cycle"
Trabalka, J. Atmospheric carbon dioxide and the global carbon cycle. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6048470.
Full textWeiss, P. S. The oceanic cycle and global atmospheric budget of carbonyl sulfide. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/527495.
Full textGutowski, Jr, W. J. Modeling the Pan-Arctic terrestrial and atmospheric water cycle. Final report. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/771364.
Full textSchwinger, Jörg. Report on modifications of ocean carbon cycle feedbacks under ocean alkalinization. OceanNETs, June 2022. http://dx.doi.org/10.3289/oceannets_d4.2.
Full textCooley, S. R., D. J. P. Moore, S. R. Alin, D. Butman, D. W. Clow, N. H. F. French, R. A. Feely, et al. Chapter 17: Biogeochemical Effects of Rising Atmospheric Carbon Dioxide. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch17.
Full textJacobson, A. R., J. B. Miller, A. Ballantyne, S. Basu, L. Bruhwiler, A. Chatterjee, S. Denning, and L. Ott. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.
Full textCampbell, Elliott, Joe Berry, and Ulli Seibt. Scaling from Flux Towers to Ecosystem Models: Regional Constraints on Carbon Cycle Processes from Atmospheric Carbonyl Sulfide. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1974339.
Full textXavier, Prince, Martin Willett, Tim Graham, Paul Earnshaw, Dan Copsey, Charline Marzin, Alistair Sellar, et al. Assessment of the Met Office Global Coupled model version 4 (GC4) configurations. Met Office, June 2024. http://dx.doi.org/10.62998/uzui3766.
Full textLetcher, Theodore, Justin Minder, and Patrick Naple. Understanding and improving snow processes in Noah-MP over the Northeast United States via the New York State Mesonet. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/45060.
Full textPiper, Stephen, and Ralph Keeling. Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1032487.
Full text