Academic literature on the topic 'Atmospheric circulation Australia Mathematical models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atmospheric circulation Australia Mathematical models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Atmospheric circulation Australia Mathematical models"

1

Grose, Michael R., James S. Risbey, Aurel F. Moise, Stacey Osbrough, Craig Heady, Louise Wilson, and Tim Erwin. "Constraints on Southern Australian Rainfall Change Based on Atmospheric Circulation in CMIP5 Simulations." Journal of Climate 30, no. 1 (January 2017): 225–42. http://dx.doi.org/10.1175/jcli-d-16-0142.1.

Full text
Abstract:
Atmospheric circulation change is likely to be the dominant driver of multidecadal rainfall trends in the midlatitudes with climate change this century. This study examines circulation features relevant to southern Australian rainfall in January and July and explores emergent constraints suggested by the intermodel spread and their impact on the resulting rainfall projection in the CMIP5 ensemble. The authors find relationships between models’ bias and projected change for four features in July, each with suggestions for constraining forced change. The features are the strength of the subtropical jet over Australia, the frequency of blocked days in eastern Australia, the longitude of the peak blocking frequency east of Australia, and the latitude of the storm track within the polar front branch of the split jet. Rejecting models where the bias suggests either the direction or magnitude of change in the features is implausible produces a constraint on the projected rainfall reduction for southern Australia. For RCP8.5 by the end of the century the constrained projections are for a reduction of at least 5% in July (with models showing increase or little change being rejected). Rejecting these models in the January projections, with the assumption the bias affects the entire simulation, leads to a rejection of wet and dry outliers.
APA, Harvard, Vancouver, ISO, and other styles
2

Colberg, Frank, Kathleen L. McInnes, Julian O'Grady, and Ron Hoeke. "Atmospheric circulation changes and their impact on extreme sea levels around Australia." Natural Hazards and Earth System Sciences 19, no. 5 (May 21, 2019): 1067–86. http://dx.doi.org/10.5194/nhess-19-1067-2019.

Full text
Abstract:
Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.
APA, Harvard, Vancouver, ISO, and other styles
3

Tozer, Carly R., James S. Risbey, Didier P. Monselesan, Dougal T. Squire, Matthew A. Chamberlain, Richard J. Matear, and Tilo Ziehn. "Assessing the Representation of Australian Regional Climate Extremes and Their Associated Atmospheric Circulation in Climate Models." Journal of Climate 33, no. 4 (February 15, 2020): 1227–45. http://dx.doi.org/10.1175/jcli-d-19-0287.1.

Full text
Abstract:
AbstractWe assess the representation of multiday temperature and rainfall extremes in southeast Australia in three coupled general circulation models (GCMs) of varying resolution. We evaluate the statistics of the modeled extremes in terms of their frequency, duration, and magnitude compared to observations, and the model representation of the midtropospheric circulation (synoptic and large scale) associated with the extremes. We find that the models capture the statistics of observed heatwaves reasonably well, though some models are “too wet” to adequately capture the observed duration of dry spells but not always wet enough to capture the magnitude of extreme wet events. Despite the inability of the models to simulate all extreme event statistics, the process evaluation indicates that the onset and decay of the observed synoptic structures are well simulated in the models, including for wet and dry extremes. We also show that the large-scale wave train structures associated with the observed extremes are reasonably well simulated by the models although their broader onset and decay is not always captured in the models. The results presented here provide some context for, and confidence in, the use of the coupled GCMs in climate prediction and projection studies for regional extremes.
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Wenju, Tim Cowan, Arnold Sullivan, Joachim Ribbe, and Ge Shi. "Are Anthropogenic Aerosols Responsible for the Northwest Australia Summer Rainfall Increase? A CMIP3 Perspective and Implications." Journal of Climate 24, no. 10 (May 15, 2011): 2556–64. http://dx.doi.org/10.1175/2010jcli3832.1.

Full text
Abstract:
Abstract Severe rainfall deficiencies have plagued southern and eastern Australian regions over the past decades, where the long-term rainfall is projected to decrease. By contrast, there has been an increase over northwest Australia (NWA) in austral summer, which, if it continues, could be an important future water resource. If increasing anthropogenic aerosols contribute to the observed increase in summer rainfall, then, as anthropogenic aerosols are projected to decrease, what will the likely impact over NWA be? This study uses output from 24 climate models submitted to phase 3 of the Coupled Model Intercomparison Project (CMIP3) with a total of 75 experiments to provide a multimodel perspective. The authors find that none of the ensemble averages, either with both the direct and indirect anthropogenic aerosol effect (10 models, 32 experiments) or with the direct effect only (14 models, 43 experiments), simulate the observed NWA rainfall increase. Given this, it follows that a projected rainfall reduction is not due to a projected decline in future aerosol concentrations. The authors show that the projected NWA rainfall reduction is associated with an unrealistic and overly strong NWA rainfall teleconnection with the El Niño–Southern Oscillation (ENSO). The unrealistic teleconnection is primarily caused by a model equatorial Pacific cold tongue that extends too far into the western Pacific, with the ascending branch of the Walker circulation situated too far west, exerting an influence on rainfall over NWA rather than over northeast Australia. Models with a greater present-day ENSO amplitude produce a greater reduction in the Walker circulation and hence a greater reduction in NWA rainfall in a warming climate. Hence, the cold bias and its impact represent a source of uncertainty for climate projections.
APA, Harvard, Vancouver, ISO, and other styles
5

Johnson, Fiona, and Ashish Sharma. "A Comparison of Australian Open Water Body Evaporation Trends for Current and Future Climates Estimated from Class A Evaporation Pans and General Circulation Models." Journal of Hydrometeorology 11, no. 1 (February 1, 2010): 105–21. http://dx.doi.org/10.1175/2009jhm1158.1.

Full text
Abstract:
Abstract Trends of decreasing pan evaporation around the world have renewed interest in evaporation and its behavior in a warming world. Observed pan evaporation around Australia has been modeled to attribute changes in its constituent variables. It is found that wind speed decreases have generally led to decreases in pan evaporation. Trends were also calculated from reanalysis and general circulation model (GCM) outputs. The reanalysis reflected the general pattern and magnitude of the observed station trends across Australia. However, unlike the station trends, the reanalysis trends are mainly driven by vapor pressure deficit changes than wind speed changes. Some of the GCMs modeled the trends well, but most showed an average positive trend for Australia. Half the GCMs analyzed show increasing wind speed trends, and most show larger changes in vapor pressure deficit than would be expected based on the station data. Future changes to open water body evaporation have also been assessed using projections for two emission scenarios. Averaged across Australia, the models show a 5% increase in open water body evaporation by 2070 compared to 1990 levels. There is considerable variability in the model projections, particularly for the aerodynamic component of evaporation. Assumptions of increases in evaporation in a warming world need to be considered in light of the variability in the parameters that affect evaporation.
APA, Harvard, Vancouver, ISO, and other styles
6

Bates, Bryson C., Andrew J. Dowdy, and Richard E. Chandler. "Lightning Prediction for Australia Using Multivariate Analyses of Large-Scale Atmospheric Variables." Journal of Applied Meteorology and Climatology 57, no. 3 (March 2018): 525–34. http://dx.doi.org/10.1175/jamc-d-17-0214.1.

Full text
Abstract:
AbstractLightning is a natural hazard that can lead to the ignition of wildfires, disruption and damage to power and telecommunication infrastructures, human and livestock injuries and fatalities, and disruption to airport activities. This paper examines the ability of six statistical and machine-learning classification techniques to distinguish between nonlightning and lightning days at the coarse spatial and temporal scales of current general circulation models and reanalyses. The classification techniques considered were 1) a combination of principal component analysis and logistic regression, 2) classification and regression trees, 3) random forests, 4) linear discriminant analysis, 5) quadratic discriminant analysis, and 6) logistic regression. Lightning-flash counts at six locations across Australia for 2004–13 were used, together with atmospheric variables from the ERA-Interim dataset. Tenfold cross validation was used to evaluate classification performance. It was found that logistic regression was superior to the other classifiers considered and that its prediction skill is much better than using climatological values. The sets of atmospheric variables included in the final logistic-regression models were primarily composed of spatial mean measures of instability and lifting potential, along with atmospheric water content. The memberships of these sets varied among climatic zones.
APA, Harvard, Vancouver, ISO, and other styles
7

Horenko, Illia. "On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns." Journal of the Atmospheric Sciences 66, no. 7 (July 1, 2009): 2059–72. http://dx.doi.org/10.1175/2008jas2959.1.

Full text
Abstract:
Abstract Identification and analysis of temporal trends and low-frequency variability in discrete time series is an important practical topic in the understanding and prediction of many atmospheric processes, for example, in analysis of climate change. Widely used numerical techniques of trend identification (like local Gaussian kernel smoothing) impose some strong mathematical assumptions on the analyzed data and are not robust to model sensitivity. The latter issue becomes crucial when analyzing historical observation data with a short record. Two global robust numerical methods for the trend estimation in discrete nonstationary Markovian data based on different sets of implicit mathematical assumptions are introduced and compared here. The methods are first compared on a simple model example; then the importance of mathematical assumptions on the data is explained and numerical problems of local Gaussian kernel smoothing are demonstrated. Presented methods are applied to analysis of the historical sequence of atmospheric circulation patterns over the United Kingdom between 1946 and 2007. It is demonstrated that the influence of the seasonal pattern variability on transition processes is dominated by the long-term effects revealed by the introduced methods. Despite the differences in the mathematical assumptions implied by both presented methods, almost identical symmetrical changes of the cyclonic and anticyclonic pattern probabilities are identified in the analyzed data, with the confidence intervals being smaller than in the case of the local Gaussian kernel smoothing algorithm. Analysis results are investigated with respect to model sensitivity and compared to a standard analysis technique based on a local Gaussian kernel smoothing. Finally, the implications of the discussed strategies on long-range predictability of the data-fitted Markovian models are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Gibson, Peter B., Andrew J. Pitman, Ruth Lorenz, and Sarah E. Perkins-Kirkpatrick. "The Role of Circulation and Land Surface Conditions in Current and Future Australian Heat Waves." Journal of Climate 30, no. 24 (December 2017): 9933–48. http://dx.doi.org/10.1175/jcli-d-17-0265.1.

Full text
Abstract:
Understanding the physical drivers of heat waves is essential for improving short-term forecasts of individual events and long-term projections of heat waves under climate change. This study provides the first analysis of the influence of the large-scale circulation on Australian heat waves, conditional on the land surface conditions. Circulation types, sourced from reanalysis, are used to characterize the different large-scale circulation patterns that drive heat wave events across Australia. The importance of horizontal temperature advection is illustrated in these circulation patterns, and the pattern occurrence frequency is shown to reorganize through different modes of climate variability. It is further shown that the relative likelihood of a particular synoptic situation being associated with a heat wave is strongly modulated by the localized partitioning of available energy between surface sensible and latent heat fluxes (as measured through evaporative fraction) in many regions in reanalysis data. In particular, a several-fold increase in the likelihood of heat wave day occurrence is found during days of reduced evaporative fraction under favorable circulation conditions. The atmospheric circulation and land surface conditions linked to heat waves in reanalysis were then examined in the context of CMIP5 climate model projections. Large uncertainty was found to exist for many regions, especially in terms of the direction of future land surface changes and in terms of the magnitude of atmospheric circulation changes. Efforts to constrain uncertainty in both atmospheric and land surface processes in climate models, while challenging, should translate to more robust regional projections of heat waves.
APA, Harvard, Vancouver, ISO, and other styles
9

Charles, S. P., B. C. Bates, and N. R. Viney. "Linking atmospheric circulation to daily rainfall patterns across the Murrumbidgee River Basin." Water Science and Technology 48, no. 7 (October 1, 2003): 233–40. http://dx.doi.org/10.2166/wst.2003.0445.

Full text
Abstract:
The hydrological cycle in Australia covers an extraordinary range of climatic and hydrologic regimes. It is now widely accepted that Australian hydrology is significantly different from all other regions and continents with the partial exception of southern Africa. Rainfall variability is very high in almost all regions with respect to amount and the lengths of wet and dry spells. These factors are keys to the behaviour and health of Australian aquatic ecosystems and water resources. Thus assessment of how rainfall may change under a potential future climate is critical. For a case study of the Murrumbidgee River Basin (MRB), a statistical downscaling model that links broad scale atmospheric circulation to multi-site, daily precipitation is assessed using observed data. This model can be driven with climate model simulations to produce rainfall scenarios at the scale required by impacts models. These can then be used in probabilistic risk assessments of climate change impacts on river health. These issues will be discussed in the context of assessing the potential impacts of precipitation changes due to projected climate change on river health.
APA, Harvard, Vancouver, ISO, and other styles
10

Spinoni, Jonathan, Paulo Barbosa, Edoardo Bucchignani, John Cassano, Tereza Cavazos, Jens H. Christensen, Ole B. Christensen, et al. "Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data." Journal of Climate 33, no. 9 (May 1, 2020): 3635–61. http://dx.doi.org/10.1175/jcli-d-19-0084.1.

Full text
Abstract:
AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Atmospheric circulation Australia Mathematical models"

1

Dionne, Pierre 1962. "Numerical simulation of blocking by the resonance of topographically forced waves." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, XiaoJing 1977. "The mechanisms and the predictability of the Arctic oscillation and the North Atlantic oscillation /." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103026.

Full text
Abstract:
The Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO) are the most pronounced modes of extratropical atmospheric wintertime variability in the Northern Hemisphere. This thesis investigates different aspects of the AO and NAO on the in traseasonal and seasonal time scales. First, the question of how the differences between the AO and NAO are influenced by the choice of the definitions of the NAO and to what extent the AO and NAO differ from each other is investigated using the daily NCEP/NCAR reanalysis data spanning 51 boreal winters. One AO index and four different NAO indices are used in this study. It is found that the AO and NAO are quite similar to each other when both are defined using pattern-based indices, while some notable differences are observed between them when the NAO is defined using a station/gridpoint-based index. Then the predictability of the AO and NAO is examined using a simple general circulation model (SGCM). Numerical experiments are performed to determine the sensitivity of the setup processes of the AO and NAO to the details of the initial conditions. The predictive skills for the AO and NAO are compared to each other. Finally, the potential role of tropical Pacific forcing in driving the seasonal variability of the AO is explored using both observations and the SGCM. The results indicate that a negative thermal forcing over the western tropical Pacific and a positive forcing north of the equatorial mid-Pacific play important roles in producing an AO-like atmospheric response.
APA, Harvard, Vancouver, ISO, and other styles
3

Hang, Jian, and 杭建. "Wind conditions and urban ventilation in idealized city models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaspi, Yohai. "Turbulent convection in the anelastic rotating sphere : a model for the circulation on the giant planets." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45780.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008.
Includes bibliographical references (p. 207-221).
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior.
(cont.) We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter.
by Yohai Kaspi.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhai, Ping Ph D. Massachusetts Institute of Technology. "Buoyancy-driven circulation in the Red Sea." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95561.

Full text
Abstract:
Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 175-180).
This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin's method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x10-5 m 2 s-1. The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including [beta]-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
by Ping Zhai.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Lina, and 阳丽娜. "City ventilation of Hong Kong by thermal buoyancy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Luo, Zhiwen, and 罗志文. "City ventilation by slope wind." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B46089962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mazloff, Matthew R. "Production and analysis of a Southern Ocean state estimate." Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.

Full text
Abstract:
Thesis (M.S.)--Joint Program in Oceanography/ Applied Ocean Science and Engineering, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 2006.
"September 2006." Bibliography: p. 97-106.
APA, Harvard, Vancouver, ISO, and other styles
9

Dail, Holly Janine. "Atlantic Ocean circulation at the last glacial maximum : inferences from data and models." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.

Full text
Abstract:
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
10

Comer, Neil Thomas. "Validation and heterogeneity investigation of the Canadian Land Surface Scheme (CLASS) for wetland landscapes." Thesis, McGill University, 2001. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38173.

Full text
Abstract:
This thesis examines the development and validation of Canadian Land Surface Scheme (CLASS) for various wetland landscapes individually, along with an evaluation of modelled results over a heterogeneous surface with airborne observations. A further statistical analysis of the effects of land surface classification procedures over the study area and their influence on modelled results is performed. CLASS is tested over individual wetland types: bog, fen and marsh in a stand-alone (non-GCM coupled) mode. Atmospheric conditions are provided for the eight site locations from tower measured data, while each surface is parameterized within the model from site specific measurements. Resulting model turbulent and radiative flux output is then statistically evaluated against observed tower data. Findings show that while CLASS models vascular dominated wetland areas (fen and marsh) quite well, non-vascular wetlands (bogs) are poorly represented, even with improved soil descriptions. At times when the water table is close to the surface, evaporation is greatly overestimated, whereas lowered water tables generate a vastly underestimated latent heat flux. Because CLASS does not include a moisture transfer scheme applicable for non-vascular vegetation, the description of this vegetation type as either a vascular plant or bare soil appears inappropriate.
CLASS was then tuned for a specific bog location found in the Hudson Bay Lowland (HBL) during the Northern Wetlands Study (NOWES). With bog surfaces better described within the model, testing of CLASS over a highly heterogeneous 169 km2 HBL region is then undertaken. The model is first modified for lake and pond surfaces and then separate runs for bog, fen, lake and tree/shrub categories is undertaken. Using a GIS, the test region under which airborne flux measurements are available is divided into 104 grid cells and proportions of each surface type are calculated within each cell. Findings indicate that although the modelled grid average radiation and flux values are reasonably well reproduced (4% error for net radiation, 10% for latent heat flux and 30% for sensible heat flux), spatial agreement between modelled and observed grid cells is disappointing. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Atmospheric circulation Australia Mathematical models"

1

Whetton, Peter. Australian Region intercomparison of the results of some general circulation models used in enhanced greenhouse experiments. Australia: CSIRO, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Enting, I. G. A strategy for calibrating atmospheric transport models. Melbourne: Commonwealth Scientific and Industrial Research Organization, Australia, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tschuck, Peter. Atmospheric blocking in a general circulation model. Zürich: Geographisches Institut ETH, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mansbridge, J. V. Sensitivity studies in a two-dimensional atmospheric transport model. Australia: CSIRO, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Enting, I. G. Preliminary studies with a two-dimensional model using transport fields derived from a GCM. Melbourne: Commonwealth Scientific and Industrial Research Organization, Australia, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berner, Judith. Detection and stochastic modeling of nonlinear signatures in the geopotential height field of an atmospheric general circulation model. St. Augustin [Germany]: Asgard Verlag, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sempf, Mario. Nichtlineare Dynamik atmosphärischer Zirkulationsregime in einem idealisierten Modell: Nonlinear dynamics of atmospheric circulation regimes in an idealized model. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weisheimer, Antje. Niederfrequente Variabilität grossräumiger atmosphärischer Zirkulationsstrukturen in spektralen Modellen niederer Ordnung =: Ultra-low-frequency variability of large scale atmospheric circulation patterns in spectral low-order models. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Enting, I. G. Preliminary studies with a two-dimensional model using transport fields derived from a GCM. Melbourne: CISRO Australia, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donner, Leo Joseph, Richard Somerville, and Wayne H. Schubert. The development of atmospheric general circulation models: Complexity, synthesis, and computation. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Atmospheric circulation Australia Mathematical models"

1

Lenhard, Johannes. "Experiment and Artificiality." In Calculated Surprises, 17–45. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190873288.003.0002.

Full text
Abstract:
This chapter works out in what way or ways experimentation is fitted into the process of simulation modeling: how much do numerical experiments contribute to making simulation modeling a special type of mathematical modeling? The main point of the chapter is that the discreteness of the computer makes it necessary to perform repeated experimental adjustments throughout the modeling process. Experimentation and modeling, it is argued, build an explorative cooperation. Experimental practice (in the ordinary sense) is bound up with adjustments such as calibrating instruments. With simulation, they become essential to mathematical modeling, as well. Atmospheric circulation models are discussed as an illustrating case.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Atmospheric circulation Australia Mathematical models"

1

Babanin, Alexander V. "Wave-Induced Turbulence, Linking Metocean and Large Scales." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18373.

Full text
Abstract:
Abstract Until recently, large-scale models did not explicitly take account of ocean surface waves which are a process of much smaller scales. However, it is rapidly becoming clear that many large-scale geophysical processes are essentially coupled with the surface waves, and those include ocean circulation, weather, Tropical Cyclones and polar sea ice in both Hemispheres, climate and other phenomena in the atmosphere, at air/sea, sea/ice and sea/land interface, and many issues of the upper-ocean mixing below the surface. Besides, the wind-wave climate itself experiences large-scale trends and fluctuations, and can serve as an indicator for changes in the weather climate. In the presentation, we will discuss wave influences at scales from turbulence to climate, on the atmospheric and oceanic sides. At the atmospheric side of the interface, the air-sea coupling is usually described by means of the drag coefficient Cd, which is parameterised in terms of the wind speed, but the scatter of experimental data with respect to such dependences is very significant and has not improved noticeably over some 40 years. It is argued that the scatter is due to multiple mechanisms which contribute into the sea drag, many of them are due to surface waves and cannot be accounted for unless the waves are explicitly known. The Cd concept invokes the assumption of constant-flux layer, which is also employed for vertical profiling of the wind measured at some elevation near the ocean surface. The surface waves, however, modify the balance of turbulent stresses very near the surface, and therefore such extrapolations can introduce significant biases. This is particularly essential for buoy measurements in extreme conditions, when the anemometer mast is within the Wave Boundary Layer (WBL) or even below the wave crests. In this presentation, field data and a WBL model are used to investigate such biases. It is shown that near the surface the turbulent fluxes are less than those obtained by extrapolation using the logarithmic-layer assumption, and the mean wind speeds very near the surface, based on Lake George field observations, are up to 5% larger. The dynamics is then simulated by means of a WBL model coupled with nonlinear waves, which revealed further details of complex behaviours at wind-wave boundary layer. Furthermore, we analyse the structure of WBL for strong winds (U10 > 20 m/s) based on field observations. We used vertical distribution of wind speed and momentum flux measured in Topical Cyclone Olwyn (April 2015) in the North-West shelf of Australia. A well-established layer of constant stress is observed. The values obtained for u⁎ from the logarithmic profile law against u⁎ from turbulence measurements (eddy correlation method) differ significantly as wind speed increases. Among wave-induced influences at the ocean side, the ocean mixing is most important. Until recently, turbulence produced by the orbital motion of surface waves was not accounted for, and this fact limits performance of the models for the upper-ocean circulation and ultimately large-scale air-sea interactions. While the role of breaking waves in producing turbulence is well appreciated, such turbulence is only injected under the interface at the vertical scale of wave height. The wave-orbital turbulence is depth-distributed at the scale of wavelength (∼10 times the wave height) and thus can mix through the ocean thermocline in the spring-summer seasons. Such mixing then produces feedback to the large-scale processes, from weather to climate. In order to account for the wave-turbulence effects, large-scale air-sea interaction models need to be coupled with wave models. Theory and practical applications for the wave-induced turbulence will be reviewed in the presentation. These include viscous and instability theories of wave turbulence, direct numerical simulations and laboratory experiments, field and remote sensing observations and validations, and finally implementations in ocean, Tropical Cyclone, ocean and ice models. As a specific example of a wave-coupled environment, the wave climate in the Arctic as observed by altimeters will be presented. This is an important topic for the Arctic Seas, which are opening from ice in summer time. Challenges, however, are many as their Metocean environment is more complicated and, in addition to winds and waves, requires knowledge and understanding of ice material properties and its trends. On one hand, no traditional statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current trends into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography