Academic literature on the topic 'Atmospheric carbon dioxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Atmospheric carbon dioxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Atmospheric carbon dioxide"
Smith, H. Jesse. "Controlling atmospheric carbon dioxide." Science 370, no. 6522 (December 10, 2020): 1286.13–1288. http://dx.doi.org/10.1126/science.370.6522.1286-m.
Full textLal, R. "Sequestering Atmospheric Carbon Dioxide." Critical Reviews in Plant Sciences 28, no. 3 (April 3, 2009): 90–96. http://dx.doi.org/10.1080/07352680902782711.
Full textLockwood, John G. "Changing atmospheric carbon dioxide." Progress in Physical Geography: Earth and Environment 11, no. 4 (December 1987): 581–89. http://dx.doi.org/10.1177/030913338701100406.
Full textBeatty, Thomas G., Luis Welbanks, Everett Schlawin, Taylor J. Bell, Michael R. Line, Matthew Murphy, Isaac Edelman, et al. "Sulfur Dioxide and Other Molecular Species in the Atmosphere of the Sub-Neptune GJ 3470 b." Astrophysical Journal Letters 970, no. 1 (July 1, 2024): L10. http://dx.doi.org/10.3847/2041-8213/ad55e9.
Full textRadmilović-Radjenović, Marija, Martin Sabo, and Branislav Radjenović. "Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets." Atmosphere 12, no. 4 (March 29, 2021): 438. http://dx.doi.org/10.3390/atmos12040438.
Full textMatyukha, Volodymyr, and Olena Sukhina. "МЕТОДОЛОГІЯ ВИЗНАЧЕННЯ РОЗМІРУ ЕКОЛОГІЧНОГО ПОДАТКУ ЗА ВИКИДИ В АТМОСФЕРНЕ ПОВІТРЯ ДВООКИСУ ВУГЛЕЦЮ." Economical 2, no. 28 (2023): 4–14. http://dx.doi.org/10.31474/1680-0044-2023-2(28)-4-14.
Full textTamás, András. "The effect of rising concentration of atmospheric carbone dioxide on crop production." Acta Agraria Debreceniensis, no. 67 (February 3, 2016): 81–84. http://dx.doi.org/10.34101/actaagrar/67/1758.
Full textSarmiento, Jorge L., Corinne Le Quéré, and Stephen W. Pacala. "Limiting future atmospheric carbon dioxide." Global Biogeochemical Cycles 9, no. 1 (March 1995): 121–37. http://dx.doi.org/10.1029/94gb01779.
Full textSmith, H. J. "Down with atmospheric carbon dioxide." Science 348, no. 6231 (April 9, 2015): 196–98. http://dx.doi.org/10.1126/science.348.6231.196-l.
Full textJoos, F. "The Atmospheric Carbon Dioxide Perturbation." Europhysics News 27, no. 6 (1996): 213–18. http://dx.doi.org/10.1051/epn/19962706213.
Full textDissertations / Theses on the topic "Atmospheric carbon dioxide"
Barkley, Michael P. "Measuring atmospheric carbon dioxide from space." Thesis, University of Leicester, 2007. http://hdl.handle.net/2381/30591.
Full textHaworth, Matthew. "Mesozoic atmospheric carbon dioxide concentrations from fossil plant cutucles." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442779.
Full textMurphy, Paulette P. "The carbonate system in seawater : laboratory and field studies /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/8509.
Full textCheng, Yufu. "Effects of manipulated atmospheric carbon dioxide concentrations on carbon dioxide and water vapor fluxes in Southern California chaparral /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Full textIncludes bibliographical references (leaves 95-101). Also available via the World Wide Web. (Restricted to UC campuses).
DeLacy, Brendan G. Bandy A. R. "The determination of carbon dioxide flux in the atmosphere using atmospheric pressure ionization mass spectrometry and isotopic dilution /." Philadelphia, Pa. : Drexel University, 2006. http://dspace.library.drexel.edu/handle/1860%20/868.
Full textSindhøj, Erik. "Elevated atmospheric CO₂ in a semi-natural grassland : root dynamics, decomposition and soil C balances /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2001. http://epsilon.slu.se/avh/2001/91-576-5797-1.pdf.
Full textKessler, Toby Jonathan 1974. "Calculating the global flux of carbon dioxide into groundwater." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/54439.
Full textIncludes bibliographical references (leaves 85-90).
In this research, the global annual flux of inorganic carbon into groundwater was calculated to be 4.4 GtC/y, with a lower bound of 1.4 GtC/y and an upper bound of 27.5 GtC/y. Starting with 44 soil PCO2 measurements, the dissolved inorganic carbon (DIC) of the groundwater was determined by equilibrium equations for the carbonate system. The calculated DIC was then multiplied by the groundwater recharge to determine the annual carbon flux per area. These PCO2 estimates were assigned to specific bio-temperatures and precipitations according to the Holdridge life-zone classification system, and regressions between PCO2, biotemperature, and precipitation were used to provide estimates for regions of the world that lacked PCO2 measurements. The fluxes were mapped on a generalized Holdridge life-zone map, and the total flux for each life-zone was found by multiplying the calculated flux by the area in each life-zone. While there was a wide range in the error, the calculations in this study strongly suggest that the flux of carbon into groundwater is comparable to many of the major fluxes that have been tabulated for the carbon cycle. The large flux that was calculated in this study was due to the high PCO2 that is common in soils. The elevated PCO2 levels are due to the decomposition of organic matter in soils, and the absorption of oxygen by plant roots. After the groundwater enters into rivers, it is possible that large amounts of CO2 is released from the surface of rives, as the carbon-rich waters re-equilibrate with the low atmospheric PCO2-
by Toby Jonathan Kessler.
S.M.
Kambis, Alexis Demitrios. "A numerical model of the global carbon cycle to predict atmospheric carbon dioxide concentrations." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539616709.
Full textOsterman, My. "Carbon dioxide in agricultural streams : Magnitude and patterns of an understudied atmospheric carbon source." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355402.
Full textCollins, Sinead. "Microalgal adaptation to changes in carbon dioxide." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100340.
Full textBooks on the topic "Atmospheric carbon dioxide"
R, Trabalka John, and United States. Dept. of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division., eds. Atmospheric carbon dioxide and the global carbon cycle. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, 1985.
Find full textUnited States. Department of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division, ed. Atmospheric carbon dioxide and the global carbon cycle. Washington, D.C: U.S. Dept. of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division, 1986.
Find full textCarbon Dioxide Information Analysis Center (U.S.), ed. Glossary: Carbon dioxide and climate. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1990.
Find full textW, Koch George, and Mooney Harold A, eds. Carbon dioxide and terrestrial ecosystems. San Diego: Academic Press, 1996.
Find full textYiqi, Luo, and Mooney Harold A, eds. Carbon dioxide and environmental stress. San Diego, CA: Academic Press, 1999.
Find full textChristian, Körner, and Bazzaz F. A, eds. Carbon dioxide, populations, and communities. San Diego: Academic Press, 1996.
Find full textUnited States. Dept. of Energy. Office of Basic Energy Sciences., ed. Atmospheric carbon dioxide and the greenhouse effect. Washington, D.C: The Department, 1989.
Find full textReklaw, Jesse. World health, carbon dioxide & the weather. Santa Cruz, Calif: Robin Rose Pub., 1993.
Find full textDuarte, Pedro. Oceans and the Atmospheric Carbon Content. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textMatsueda, Hidekazu. Kishōchō oyobi Kishō Kenkyūjo ni okeru nisanka tanso no chōki kansoku ni shiyōsareta hyōjun gasu no sukēru to sono anteisei no saihyōka ni kansuru chōsa kenkyū: Re-evaluation for scale and stability of CO₂ standard gases used as long-term observations at the Japan Meteorological Agency and the Meteorological Research Institute. Ibaraki-ken Tsukuba-shi: Kishō Kenkyūjo, 2004.
Find full textBook chapters on the topic "Atmospheric carbon dioxide"
Lin, Hua. "Changes in Atmospheric Carbon Dioxide." In Global Environmental Change, 61–67. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-5784-4_48.
Full textHashimoto, Koji. "Global Temperature and Atmospheric Carbon Dioxide Concentration." In Global Carbon Dioxide Recycling, 5–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8584-1_3.
Full textHoughton, R. A. "Tropical Deforestation and Atmospheric Carbon Dioxide." In Tropical Forests and Climate, 99–118. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-3608-4_10.
Full textRanjan, Manju Rawat, Pallavi Bhardwaj, and Ashutosh Tripathi. "Microbial Sequestration of Atmospheric Carbon Dioxide." In Soil Biology, 199–216. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76863-8_10.
Full textSchulz, Kai G., and Damien T. Maher. "Atmospheric Carbon Dioxide and Changing Ocean Chemistry." In Springer Textbooks in Earth Sciences, Geography and Environment, 247–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-10127-4_11.
Full textAgrawal, M., and S. S. Deepak. "Elevated Atmospheric Carbon Dioxide and Plant Responses." In Environmental Stress: Indication, Mitigation and Eco-conservation, 89–102. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9532-2_8.
Full textUprety, D. C., A. P. Mitra, S. C. Garg, B. Kimball, and D. Lawlor. "Rising Atmospheric Carbon Dioxide and Crop Responses." In Plant Breeding, 749–58. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1040-5_31.
Full textShackleton, N. J., and N. G. Pisias. "Atmospheric Carbon Dioxide, Orbital Forcing, and Climate." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 303–17. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0303.
Full textLabetski, Dzmitry G., J. Hrubý, and M. E. H. van Dongen. "n-Nonane Nucleation in the Presence of Carbon Dioxide." In Nucleation and Atmospheric Aerosols, 78–82. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6475-3_15.
Full textSundquist, Eric T. "Geological Perspectives on Carbon Dioxide and the Carbon Cycle." In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 55–59. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0005.
Full textConference papers on the topic "Atmospheric carbon dioxide"
Christensen, A. J., Greg Shirah, Helen-Nicole Kostis, Anansa B. Keaton-Ashanti, Mark Subbarao, Brenda Lopez-Silva, and Lesley Ott. "Atmospheric Carbon Dioxide Tagged by Source." In SIGGRAPH '24: ACM SIGGRAPH 2024 Electronic Theater. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3641230.3653486.
Full textSolodov, A. A., T. M. Petrova, Yu N. Ponomarev, A. M. Solodov, I. A. Vasilenko, and V. M. Deichuli. "Investigation of interaction of carbon dioxide with aerogel's nanopores." In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205561.
Full textPetrova, T. M., Yu N. Ponomarev, A. A. Solodov, A. M. Solodov, and V. M. Deichuli. "Line broadening of carbon dioxide confined in nanoporous aerogel." In XXII International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Gennadii G. Matvienko and Oleg A. Romanovskii. SPIE, 2016. http://dx.doi.org/10.1117/12.2249464.
Full textGolovko, Vladimir F. "Line shape narrowing in carbon dioxide at high pressures." In Eighth Joint International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Gelii A. Zherebtsov, Gennadii G. Matvienko, Viktor A. Banakh, and Vladimir V. Koshelev. SPIE, 2002. http://dx.doi.org/10.1117/12.458445.
Full textRob, Mohammad A., and Larry H. Mack. "Absorption Spectra of Propylene at Carbon Dioxide (CO2) Laser Wavelengths." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.tub.7.
Full textSukhanov, Alexander. "Possibility estimation of determining carbon dioxide sources by airborne lidar." In 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2022. http://dx.doi.org/10.1117/12.2643920.
Full textKachelmyer, A. L., R. E. Knowlden, and W. E. Keicher. "Atmospheric Distortion of Wideband Carbon Dioxide Laser Waveforms." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.wc3.
Full textStephen, Mark, James Abshire, Jeffrey Chen, Kenji Numata, Stewart Wu, Brayler Gonzales, Michael Rodriguez, et al. "Laser-based Remote Sensing of Atmospheric Carbon Dioxide." In Optical Sensors. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/sensors.2019.stu4a.2.
Full textPredoi-Cross, Adriana, Amr Ibrahim, Alice Wismath, Philippe M. Teillet, V. Malathy Devi, D. Chris Benner, Brant Billinghurst, Adriana Predoi-Cross, and Brant E. Billinghurst. "Carbon Dioxide Line Shapes for Atmospheric Remote Sensing." In WIRMS 2009 5TH INTERNATIONAL WORKSHOP ON INFRARED MICROSCOPY AND SPECTROSCOPY WITH ACCELERATOR BASED SOURCES. AIP, 2010. http://dx.doi.org/10.1063/1.3326332.
Full textSukhanov, Alexander, and Gennadii Matvienko. "Possibility estimation of determining carbon dioxide sources by the spaceborne lidar." In 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2022. http://dx.doi.org/10.1117/12.2643912.
Full textReports on the topic "Atmospheric carbon dioxide"
Trabalka, J. Atmospheric carbon dioxide and the global carbon cycle. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6048470.
Full textFirestine, M. W. Atmospheric carbon dioxide and the greenhouse effect. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5993221.
Full textBerner, Robert A. Plants, Weathering, and the Evolution of Atmospheric Carbon Dioxide and Oxygen. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/923048.
Full textOechel, W. C., and N. E. Grulke. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report]. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/230285.
Full textCooley, S. R., D. J. P. Moore, S. R. Alin, D. Butman, D. W. Clow, N. H. F. French, R. A. Feely, et al. Chapter 17: Biogeochemical Effects of Rising Atmospheric Carbon Dioxide. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch17.
Full textJacobson, A. R., J. B. Miller, A. Ballantyne, S. Basu, L. Bruhwiler, A. Chatterjee, S. Denning, and L. Ott. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, M. A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.
Full textFelix, Meier, Wilfried Rickels, Christian Traeger, and Martin Quaas. Working paper published on NETs in strategically interacting regions based on simulation and analysis in an extended ACE model. OceanNets, 2022. http://dx.doi.org/10.3289/oceannets_d1.5.
Full textMeier, Felix, Wilfried Rickels, Christian Traeger, and Martin Quaas. Working paper published on NETs in strategically interacting regions based on simulation and analysis in an extended ACE model. OceanNets, September 2023. http://dx.doi.org/10.3289/oceannets_d1.5_v2.
Full textWilliam Goddard. Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/968337.
Full textBrady D. Lee, William A. Apel, and Michelle R. Walton. Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations ? Final Project Report. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/911640.
Full text