Dissertations / Theses on the topic 'Atmosphere interactions'

To see the other types of publications on this topic, follow the link: Atmosphere interactions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Atmosphere interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Steiner, Allison L. "The influence of atmospheric chemistry and climate on atmosphere-biosphere interactions." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/25751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grant, Eleanor Rose. "Canopy-atmosphere interactions over complex terrain." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.550799.

Full text
Abstract:
The study of boundary layer flow through a forest canopy on complex terrain has, until recently, been limited to modelling and laboratory studies. This thesis presents a unique set of field measurements from within and above a canopy situated on a ridge. A climatological study of the observed dataset is presented to identify the significant fea- tures of these flows that differentiate them from air flows above and within a homogeneous canopy on flat terrain. The ridge is found to impact on the flows in the following ways. On the summit the velocity profile resembles that of a canopy profile on flat terrain with little variation in wind.speed below the canopy and an obvious inflection point at the canopy top. On the windward slope, the inflection point disappears. Significant amounts of -u'w' at the canopy top indicates that turbulent mixing acts strongly to transport higher mo- mentum air down into the canopy, which smooths the layer of shear. The profile on the lee slope is dependent on the size of a separation region that can develop on the lee slope of the forested ridge. The direction of the mean wind within the canopy on the lee slope is dependent on the hill-induced pressure gradient, which tends to drive a reversed flow up the lee slope, and on the turbulent mixing which tends to drive the flow down-slope through the mixing of higher momentum air from above the canopy. If the hill slope is sufficiently large (so the pressure gradient is large), or the canopy is sufficiently deep (so that turbulence is unable to mix the higher momentum air all the way to the bottom), then flow separation can occur. Case studies are presented to investigate the formation and development of the separation region on the lee slope of the forested ridge. The presence of a flow separation region is observed to extend the width of the dynamic pressure profile such that, as the separation region expands up the lee slope towards the summit, the minimum is forced back to the upwind edge of the separation region. Large scale separation is observed on the ridge, whereby the separation region extends beyond the top of the canopy. Within the separation region, there is little variation in wind speed or vertical momentum flux with height as the inflection point is elevated to the top of the separation region. Comparisons between the observed case studies and model simulations are made to quan- tify the success of the model at simulating canopy air flows over complex terrain. The model is found to successfully capture the main features the these flows. Areas where the model was less successful are attributed to the inhomogeneous nature of the canopy and the terrain at the field site, and to the low resolution of the model.
APA, Harvard, Vancouver, ISO, and other styles
3

Goodman, Jason (Jason Curtis) 1973. "Interannual middle-latitude atmosphere-ocean interactions." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16779.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2001.
Includes bibliographical references (p. 144-151).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
This thesis discusses the interaction of atmosphere and ocean in midlatitudes on interannual and decadal timescales. We investigate the extent to which mutuallycoupled atmosphere-ocean feedback can explain the observed coupled variability on these timescales, and look for preferred modes of atmospheric response to forcing by sea-surface temperature anomalies. First, we formulate and study a very simple analytical model of the mutual interaction of the middle-latitude atmosphere and ocean. The model is found to support coupled modes in which oceanic baroclinic Rossby waves of decadal period grow through positive coupled feedback between the thermal forcing of the atmosphere induced by associated SST anomalies and the resulting windstress forcing of the ocean. Growth only occurs if the atmospheric response to thermal forcing is equivalent barotropic, with a particular phase relationship with the underlying SST anomalies. The dependence of the growth rate and structure of the modes on the nature of the assumed physics of air-sea interaction is explored, and their possible relation to observed phenomena discussed. We then construct a numerical model with the same physics; this enables us to consider the effects of nontrivial boundary conditions and background flows within the model. We find that the finite fetch of a closed ocean basin reduces growth rate and can lead to decay. However, the coupled mode described above remains the least-damped, and is thus the pattern most easily energized by stochastic forcing. Using a non-uniform atmospheric background flow focuses perturbation energy into particular areas, so that the coupled mode's expression in the atmosphere becomes fixed in space, rather than propagating. This improves the mode's resemblance to observed patterns of variability, such as the North Atlantic Oscillation, which are generally stationary patterns which fluctuate in intensity. The atmospheric component of the coupled mode exists in a balance between Rossby-wave propagation and vorticity advection. This is the same balance as the "neutral vectors" described by Marshall and Molteni (1993). Neutral vectors are the right singular vectors of the linearized atmospheric model's tendency matrix that have the smallest eigenvalues; they are also the patterns that exhibit the largest response to forcing perturbations in the linear model. We explain how the coupled mode arises as the ocean excites atmospheric neutral vectors. Neutral vectors act as pattern-specific amplifiers of ocean SST anomalies. We then proceed to study the neutral vectors of a quasigeostrophic model with realistic mean flow. We find a striking similarity between these patterns and the dominant patterns of variability observed in both the full nonlinear model and in the real world. We provide a mathematical explanation for this connection. Investigation of the "optimal forcing patterns" - the left singular vectors - proves to be less fruitful. The neutral modes have equivalent barotropic vertical structure, but their optimal forcing patterns are baroclinic and seem to be associated with low level heating. But the horizontal patterns of the forcing patterns are not robust, and are sensitive to the form of the inner product used in the SVD analysis. Additionally, applying "optimal" forcing patterns as perturbations to the full nonlinear model does not generate the response suggested by the linear model.
by Jason Goodman.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
4

Shannon, Debbie Anne. "Atmosphere-vegetation interactions over South Africa." Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/22109.

Full text
Abstract:
Bibliography: pages 107-118.
This study examines the sensitivity of the atmospheric circulation to vegetation change over South Africa in the context of the portended global warming. This is achieved using a vegetation model driven by climate change information and subsequently incorporated within a general circulation model (GCM). The stand-alone vegetation model is driven using precipitation, temperature and relative humidity derived from downscaling using artificial neural networks. The vegetation model is then run with perturbed precipitation, temperature and relative humidity from downscaled model data from lxCO₂ and 2xCO₂ GCM simulations. The resultant vegetation perturbation response to climate change is then examined and incorporated into the GCM in order to ascertain the atmospheric sensitivity to vegetation changes. The off-line results of the vegetation model indicate a moderate degree of sensitivity of the vegetation to perturbations in precipitation, temperature and relative humidity. The general trend in response to the CO₂ climate is a westwards and altitudinal shift of lowland vegetation over the eastern part of the country, and a southwards and eastwards shift of the more dryland vegetation in the west. These shifts are in accordance with expected responses, since lowland vegetation responds more to temperature changes and the dryland vegetation to precipitation changes. Nonetheless, the use of the model provides a physically justifiable scenario on which to base the GCM studies, and at a finer resolution than otherwise available. A GCM simulation with the perturbed vegetation was then performed using sea surface temperature boundary conditions for 1980 and compared to an identical GCM run without the perturbation. 1980 was chosen since this year does not represent either a strong El Niño or La Niña year. The atmospheric sensitivity to the vegetation perturbation has been examined in terms of climatic variables such as temperature, precipitation, pressure, specific humidity, horizontal divergence, and sensible and latent heat fluxes. The results show that the atmosphere is quite sensitive to relatively small vegetation changes. Atmospheric response to vegetation perturbations indicates greater sensitivity over the NW and SE regions of southern Africa. The perturbation indicates a reduction in precipitation over the SE interior, related to less moisture feeding in over the interior from the SE Indian Ocean. Wind speed changes over the adjacent ocean were also evident, and are probably related to the changes in the South Atlantic and Indian high pressures. A southwards extension of the Hadley Cell was also suggested, as well as changes in sensible and latent heat fluxes, relating to precipitation and temperature changes. It is suggested that changes may be in response to the general drying out of the country and the associated increase in aridity. This research forms the preliminary investigation for further work incorporating the atmospheric perturbation response back into driving the vegetation model in order to examine the direction of the feedback -- whether this is positive or negative in the longer term. Thus, this study has demonstrated that the atmosphere is significantly sensitive to vegetation changes over South Africa and reinforces the need for improved land surface parameterization schemes and vegetation models in general circulation models.
APA, Harvard, Vancouver, ISO, and other styles
5

Sefcik, Lesley T. "Biophere-atmosphere interactions Northern hardwood seedling responses to anthropogenic atmospheric resource alteration." Saarbrücken VDM Verlag Dr. Müller, 2001. http://d-nb.info/988972131/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sefcik, Lesley T. "Biophere-atmosphere interactions : Northern hardwood seedling responses to anthropogenic atmospheric resource alteration /." Saarbrücken : VDM Verlag Dr. Müller, 2008. http://d-nb.info/988972131/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonot, Jean-Yves. "Contributions a l'etude des interactions ocean-atmosphere." Paris 6, 1988. http://www.theses.fr/1988PA066541.

Full text
Abstract:
En vue du couplage avec un modele de la circulation generale atmospherique, pour realiser des experiences de simulation du climat et de ses changements, un modele de couche melangee oceanique global a ete developpe comprenant une modelisation de la turbulence integree sur les couches superficielles de l'ocean, un schema de transport horizontal du contenu thermique par des courants et une diffusion climatiques prescrits, une parametrisation du pompage d'ekman et de l'upwelling equatorial. En mode local, le modele est utilise pour simuler deux cycles saisonniers de temperature de surface au point meteorologique r, ainsi que pour evaluer l'impact de la retro-action thermique, via les proprietes optiques, due a une simulation du cycle saisonnier de phytoplancton. Des etudes de climatologie des flux de surface necessaires au forcage du modele ont ete realisees en analysant plusieurs annees de champs journaliers predits quotidiennement par un modele de prevision operationnelle du temps. Ces etudes ont permis de mettre en evidence des biais systematiques du modele, mais ont aussi montre que ces champs contiennent une information climatologique non negligeable. Enfin, des methodes satellitaires ont ete utilisees afin de produire des champs de flux de surface. Les resultats montrent une grande imprecision sur ces methodes avec les capteurs actuels, mais demontrent leur grande potentialite en ce qui concerne les capteurs en cours de developpement
APA, Harvard, Vancouver, ISO, and other styles
8

Kala, Jatin. "Land-atmosphere interactions in Southwest Western Australia." Thesis, Kala, Jatin ORCID: 0000-0001-9338-2965 (2011) Land-atmosphere interactions in Southwest Western Australia. PhD thesis, Murdoch University, 2011. https://researchrepository.murdoch.edu.au/id/eprint/10624/.

Full text
Abstract:
The Southwest of Western Australia (SWWA) is a region of extensive land cover change with an estimated 13 million hectares of native vegetation cleared since European settlement. Whilst previous studies have suggested meteorological and climatological implications of this change in land use, no studies have explicitly focussed on the detailed mechanisms behind the impacts of land-cover change on individual meteorological phenomena. This thesis seeks to identify the physical mechanisms inducing changes within the atmosphere by using the Regional Atmospheric Modeling System (RAMS V6.0) to simulate the impact of land use change on meteorological phenomena at different scales and evaluate these model results against high resolution atmospheric soundings, station observations, and gridded rainfall analyses where appropriate. Sensitivity tests show that land-cover change results in an increase in low-level atmospheric moisture advection associated with the southern sea-breeze due to a reduction in surface roughness. It also results in a decrease in convective precipitation associated with cold-fronts and convective clouds associated with the surface heat trough, due to an increase in wind speed, and a decrease in turbulent kinetic energy and vertically integrated moisture convergence within the PBL. Large-eddy simulations further highlight the role of land-cover change and soil moisture, as well as the contributions of surface versus entrainment fluxes on the growth of the PBL and development of convective clouds. These results are discussed within the broader context of the meteorology of the region.
APA, Harvard, Vancouver, ISO, and other styles
9

Mohr, Karen Irene. "An investigation of land/atmosphere interactions : soil moisture, heat fluxes, and atmospheric convection /." Digital version:, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p9992875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Virmani, Jyotika I. "Ocean-atmosphere interactions on the West Florida shelf." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maze, Guillaume. "Interactions Basses Frequences Ocean-Atmosphere dans l'Ocean Austral." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00515553.

Full text
Abstract:
Les modes de variabilités interannuelles du système couplé océan-atmosphère auxmoyennes latitudes de l'hémisphère sud sont étudiés avec un modèle de compléxité intermédiaire. L'objectif est de déterminer les mécanismes d'interactions océan-atmosphère indépendamment du forçage tropicale. Le modèle est un modèle atmosphérique quasi-géostrophique à 3 niveaux, couplé à une couche de mélange océanique de profondeur constante incluant l'advection géostrophique par le courant circumpolaire Antarctique (ACC). Le couplage océanatmosphère se fait par les flux de chaleur de surface et les transports d'Ekman forcés par la tension de vent de surface. Dans une simulation totalement couplée, l'atmosphère, qui inclue la dynamique des transitoires baroclines, exhibe un mode annulaire (SAM) comme premier mode de variabilité interannuelle. Les anomalies de vent induites par le SAM créent des courants méridiens d'Ekman dans la couche de mélange qui induisent à leur tour des anomalies de température océanique de surface qui sont ensuite avectées par l'ACC. Un mécanisme purement forcé où le rôle de l'océan est réduit à l'advection des anomalies de SST est suffisant pour reproduire les caractéristiques principales de la variabilité. Néanmoins, une rétroaction positive de l'océan est mise en évidence par l'analyse de la réponse stationnaire atmosphérique à une anomalie de SST (SSTa). Celle-ci est déterminée pour un ensemble d'expériences où une SSTa idéalisée est localisée en 14 longitudes différentes, uniformément réparties le long d'un cercle de moyenne latitude. En projetant les réponses obtenues sur les modes verticaux atmosphériques, il est mis en évidence la partition de la réponse en une composante barocline identique quelque soit la position de la SSTa et une composante barotrope se projetant sur le mode dominant de variabilité atmosphérique du modèle. La SSTa induit une anomalie d'air chaud dans la couche basse atmosphérique qui engendre une réponse barocline 45o à l'est. Cette réponse est due à l'advection du vortex stretching induit par la SSTa, par les vents d'ouest quasi-stationnaires. La réponse barotrope consiste en une haute pression aux moyennes latitudes et une basse pression sur le pôle quand les SSTa sont localisées de l'océan Atlantique ouest au centre de l'océan Indien ; et d'une haute pression sur le pôle quand elle est localisée du bassin Autralo- Antarctique au centre de l'océan Pacifique. Les réponses barotropes ont une composante tourbillonnaire identique. La différence entre les réponses est déterminée par la composante zonalement symétrique qui se projette sur le SAM. La réponse barotrope est formée par le terme d'advection de vorticité relative basse fréquence qui est lui-même déterminé par l'impact sur le pôle des interactions de l'anomalie de vorticité relative aux moyennes latitudes avec les ondes stationnaires du modèle.
APA, Harvard, Vancouver, ISO, and other styles
12

Semedo, Alvaro. "Atmosphere-ocean Interactions in Swell Dominated Wave Fields." Doctoral thesis, Uppsala universitet, Geovetenskapliga sektionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-130650.

Full text
Abstract:
Ocean wind waves represent the atmosphere-ocean boundary, playing a central role in the air-sea exchanging processes. Heat, mass and momentum are transferred across this boundary, with waves mediating the exchange of principally the momentum between the winds and the ocean surface. During the generation process waves are called wind sea. When they leave their generation area or outrun their generating wind they are called swell. The wave field can be said to be dominated either by wind sea or swell. Depending on the wave regime the momentum and energy exchanging processes and the degree of coupling between the waves and the wind is different. During the growing process, waves act as a drag on the surface wind and the momentum flux is directed downward. When swell dominates the wave field a reverse momentum flux mechanism occurs triggered by swell waves traveling considerably faster than the surface winds. The momentum transfer is now directed from the waves to the atmosphere, and takes place because swell waves perform work on the atmosphere as part of their attenuation process. This upward momentum transfer has an impact on the lower atmosphere dynamics, and on the overall turbulence structure of the boundary layer. A detailed qualitative climatology of the global wind sea and swell fields from wave reanalysis data, is presented, revealing a very strong swell dominance of the World Ocean. The areas of larger potential impact of swell on the atmosphere, from a climatological point of view, are also studied. A model that reproduces the swell impact on the lower atmosphere dynamics, conceptually based on the energy transfer from the waves to the atmosphere, is presented – a  new parameterization for the wave-induced stress is also proposed. The model results are compared with field observations. A modeling simulation, using a coupled wave-atmosphere model system, is used to study the impact of swell in a regional climate model, by using different formulations on how to introduce the wave state effect in the modeling system.
Gränsen mellan hav och atmosfär beskrivs av vågor, dessa spelar en central roll i utbytesprocesser mellan hav och atmosfär. Värme, massa och rörelsemängd överförs vid ytan och utbytet av rörelsemängd mellan vind och havsyta styrs i stor utsträckning av vågorna. Då vågor skapas kallas de för vinddrivna vågor. När vågorna sedan lämnar området där de genererats eller rör sig fortare än den vind som genererat dem kallas de dyning. Ett vågfält kan sägas vara dominerat av antingen vinddrivna vågor eller dyningsvågor. Beroende på vilken vågregim som råder så är kopplingen mellan vågor och vind olika och därmed också utbytesprocesserna för rörelsemängd och energi. Då vågorna genereras fungerar de som en bromsande kraft för vinden och impulsutbytet är nedåtriktat. När dyning dominerar vågfältet inträffar en mekanism för omvänt impulsutbyte som sätts igång av dyningsvågor som färdas avsevärt snabbare än vinden. Rörelsemängd överförs då från vågorna till atmosfären, eftersom dyningsvågorna utför arbete på atmosfären då de dämpas. Den uppåtriktade transporten av rörelsemängd har en stor effekt på dynamiken och turbulensstrukturen i lägre delen av atmosfären. En detaljerad kvalitativ klimatologi av globala vågfält (vinddrivna och dyning) från återanalysdata presenteras och visar att dyning dominerar vågfältet på världshaven. Områden där man kan förvänta sig störst effekt av dyning på atmosfären har identifierats. En konceptuellt baserad modell som reproducerar effekten av dyning på dynamiken i lägre delen av atmosfären presenteras. Modellen styrs av överföring av energi från vågor till atmosfären. I modellen föreslås även en ny parameterisering för våginducerad kraft på havsytan. Modellresultaten är utvärderade mot fältmätningar. En regional klimatmodell, med ett kopplat våg-atmosfärssystem, har använts för att studera den långtida effekten av dyning vid klimatsimulering. Olika formuleringar för beskrivningen av vågornas effekt på atmosfären har använts, beroende på om vinddrivna vågor eller dyning dominerar vågfältet.
APA, Harvard, Vancouver, ISO, and other styles
13

White, Cary Blake, and Cary Blake White. "Soil Moisture Variability in Land Surface-Atmosphere Interactions." Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/626791.

Full text
Abstract:
Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modeling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behavior was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters are used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain falling in a typical convective storm (commonly 10% of the vegetation's root zone saturation), in a semi-arid environment, any non-linearity in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.
APA, Harvard, Vancouver, ISO, and other styles
14

Batstone, Crispian Peter. "Ocean-atmosphere interactions within the Madden-Julian Oscillation." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Carr, Joanne Rachels. "Ice-ocean-atmosphere interactions in the Arctic Seas." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10746/.

Full text
Abstract:
Arctic ice masses have rapidly lost mass during the past two decades, coincident with marked climatic and oceanic change. Accelerated ice discharge through marine-terminating outlet glaciers has been a primary contributor to deficits. However, substantial uncertainty exists over the factors controlling Arctic outlet glacier dynamics and their spatial variation. This thesis aims to quantify outlet glacier retreat rates across the Atlantic sector of the Arctic and to assess observed changes in relation to climatic, oceanic and glacier-specific controls. Results from a study region in north-west Greenland recorded dramatic retreat on Alison Glacier, coincident with marked atmospheric warming and sea ice decline. However, retreat rates varied substantially within the region, suggesting that fjord width variability and basal topography were important controls on glacier response to external forcing. The influence of fjord width variability was further explored on Novaya Zemlya, Russian High Arctic, where a statistically significant relationship between total retreat and along-fjord width variation was found and the first empirical categories of this relationship were defined. Here, retreat rates were an order of magnitude greater on marine-terminating outlets than on land-terminating glaciers and accelerated retreat from 2000 onwards was linked to sea ice decline. In a further case study, Humboldt Glacier, northern Greenland, retreated rapidly from 1999, coincident with atmospheric warming. However, retreat rates were an order of magnitude greater on its northern section, due to a major subglacial trough, which strongly modulated its response to external forcing. Overall, during the past decade, outlet glacier retreat was widespread and rapid in the Atlantic Arctic. Although some regional-scale patterns of retreat and response to forcing were evident, retreat rates varied markedly. Fjord width variation was identified as an important and widespread control on outlet glacier retreat, which highlights the need to consider glacier-specific factors when forecasting glacier response to climate change.
APA, Harvard, Vancouver, ISO, and other styles
16

McAtee, Brendon Kynnie. "Surface-atmosphere interactions in the thermal infrared (8 - 14um)." Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/408.

Full text
Abstract:
Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required if one is to accurately measure the temperature of the land surface from a space-borne platform. In practice, most satellite-based sensors designed to measure LST over the surface of the Earth are polar orbiting. They scan swaths of the order of 2000 km, utilizing zenith angles of observation of up to 60°. As such, satellite viewing geometry is important when comparing estimates of LST between different overpasses of the same point on the Earth's surface. In the case of the atmosphere, the optical path length through which the surfaceleaving radiance propagates increases with increasing zenith angle of observation. A longer optical path may in turn alter the relative contributions which molecular absorption and emission processes make to the radiance measured at the satellite sensor. A means of estimating the magnitudes of these radiative components in relation to the viewing geometry of the satellite needs to be developed if their impacts on the at-sensor radiance are to be accurately accounted for. The problem of accurately describing radiative transfer between the surface and the satellite sensor is further complicated by the fact that the surface-leaving radiance itself may also vary with sensor viewing geometry. Physical properties of the surface such as emissivity are known to vary as the zenith angle of observation changes. The proportions of sunlit and shaded areas with the field-of-view of the sensor may also change with viewing geometry depending on the type of cover (eg vegetation), further impacting the surface emissivity.Investigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor.Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
APA, Harvard, Vancouver, ISO, and other styles
17

McAtee, Brendon Kynnie. "Surface-atmosphere interactions in the thermal infrared (8 - 14um)." Curtin University of Technology, Department of Applied Physics, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14481.

Full text
Abstract:
Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required if one is to accurately measure the temperature of the land surface from a space-borne platform. In practice, most satellite-based sensors designed to measure LST over the surface of the Earth are polar orbiting. They scan swaths of the order of 2000 km, utilizing zenith angles of observation of up to 60°. As such, satellite viewing geometry is important when comparing estimates of LST between different overpasses of the same point on the Earth's surface. In the case of the atmosphere, the optical path length through which the surfaceleaving radiance propagates increases with increasing zenith angle of observation. A longer optical path may in turn alter the relative contributions which molecular absorption and emission processes make to the radiance measured at the satellite sensor. A means of estimating the magnitudes of these radiative components in relation to the viewing geometry of the satellite needs to be developed if their impacts on the at-sensor radiance are to be accurately accounted for. The problem of accurately describing radiative transfer between the surface and the satellite sensor is further complicated by the fact that the surface-leaving radiance itself may also vary with sensor viewing geometry. Physical properties of the surface such as emissivity are known to vary as the zenith angle of observation changes. The proportions of sunlit and shaded areas with the field-of-view of the sensor may also change with viewing geometry depending on the type of cover (eg vegetation), further impacting the surface emissivity.
Investigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor.
Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
APA, Harvard, Vancouver, ISO, and other styles
18

Wu, Zhaohua. "Thermally driven surface winds in the tropics /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/10075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Yuan. "An observational study of atmosphere-ocean interactions in the northern oceans on interannual and interdecadal time-scale /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McAtee, Brendon Kynnie. "Surface-atmosphere interactions in the thermal infrared (8 - 14℗æm) /." Full text available, 2003. http://adt.curtin.edu.au/theses/available/adt-WCU20040324.085644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Goncalves, de Goncalves Luis Gustavo. "LAND SURFACE-ATMOSPHERE INTERACTIONS IN REGIONAL MODELING OVER SOUTH AMERICA." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/195893.

Full text
Abstract:
Land surface processes play an important role when modeling weather and climate, and understanding and representing such processes in South America is a particular challenge because of the large variations in regional climate and surface features such as vegetation and soil. Numerical models have been used to explore the climate and weather of continental South America, but without appropriate initiation of land surface conditions model simulations can rapidly diverge from reality. This initiation problem is exacerbated by the fact that conventional surface observations over South America are scarce and biased towards the urban centers and coastal areas. This dissertation explores issues related to the apt representation of land surface processes and their impacts in numerical simulations with a regional atmospheric model (specifically the Eta model) over South America. The impacts of vegetation heterogeneity in regional weather forecast were first investigated. A South American Land Data Assimilation System (SALDAS) was then created analogous to that currently used in North America to estimate soil moisture fields for initializing regional atmospheric models. The land surface model (LSM) used in this SALDAS is the Simplified Simple Biosphere (SSiB). Precipitation fields are critical when calculating soil moisture and, because conventional surface observations are scarce in South America, some of the most important remote sensed precipitation products were evaluated as potential precipitation forcing for the SALDAS. Spin up states for SSiB where then compared with climatological estimates of land surface fields and significant differences found. Finally, an assessment was made of the value of SALDAS-derived soil moisture fields on Eta model forecasts. The primary result was that model performance is enhanced over the entire continent in up to 72h forecasts using SALDAS surface fields
APA, Harvard, Vancouver, ISO, and other styles
22

Scott, Russell Lawrence. "Riparian and rangeland soil-vegetation-atmosphere interactions in southeastern Arizona." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284006.

Full text
Abstract:
In the riparian corridor of the San Pedro River in southeastern Arizona, the fluxes of water and energy over three riparian vegetation groupings were monitored and modeled in order to determine their annual water use and water sources. In situ micrometeorological and soil moisture measurements were made from 1996-1998 at a floodplain grassland site composed mainly of the perennial floodplain grass, Sporobolus wrightii (sacaton), and a tree/shrub grouping dominated by Prosopis velutina (mesquite). The results indicate that the grassland obtained water only from the near-surface (recent precipitation), while the mesquite accessed moisture from deeper in the vadose zone and/or from the water table. Both of these sites exhibited little interaction with the underlying groundwater, suggesting that the majority of the groundwater use from riparian vegetation is limited to the areas of dense mesquite and the forest gallery adjacent to the river. Measurements of the forest gallery water use composed mainly of Populus fremontii (cottonwood) and Salix gooddingii (willow) were available for some shorter term periods in 1997. These measurements were used to calibrate the Penman-Monteith model for evaporation in order to determine the water use from the forest gallery for the entire growing season. The total seasonal water use from the forest was considerably less than potential evaporation estimates. Observations of soil moisture under two rangeland sites in the San Pedro Basin were examined in order to determine the magnitude and the depth of root zone recharge characteristics in this semiarid region. Intermittent TDR observations made from 1990 to 1998 show that deeper root zone recharge occurred primarily during the wintertime, when the plants were senescent and evaporation demand was diminished. A physically-based variably-saturated flow model was used to determine the wintertime recharge. Using an automatic calibration algorithm, the model proved capable of reproducing the observations with small error. Simulated wintertime infiltration amounts indicated that substantial, deeper root zone recharge did occur during wet winters, but that the large year-to-year variability of this recharge implies that deeper-rooted plants would still need access to moisture in shallow root zone.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Yan. "Influence of biomass burning aerosol on land-atmosphere interactions over Amazonia." Thesis, Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-07122005-120105/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bain, Caroline Louise. "Interactions between the Land Surface and the Atmosphere over West Africa." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491661.

Full text
Abstract:
The north-south gradient in surface temperature and rainfall in West Africa leads to the summertime monsoon circulation. Here, the full extent of the relationship between the land surface and the atmosphere is discussed with particular reference to the impact that soil moisture has on the atmosphere at different spatial scales. Observations from the AMMA field campaign in 2005 and 2006 are combined with satellite analysis and model simulations to discuss various interactions between the land surface and the atmosphere. Tethered balloon observations from Mali in August 2005 are used to assess the characteristics of the nocturnal boundary layer. It is observed that a stronger surface temperature inversion after sunset leads to a faster nocturnal jet, and these findings are further investigated using surface station data. Case studies of two nights of observations are used to discuss the variation of observed boundary layer structures. It is found that on nights where the nocturnal jet is weaker, the winds align with African Easterly Wave (AEW) circulations on the larger scale. . Following this, the impact that AEWs had on sl1rface properties is examined. Flux data from Niamey showed little statistical correlation with wave passage. It is suggested this could be partly due to the study year having more westerly initiating waves than climatology. The inducement of circulations by soil moisture inhomogeneities are discussed in regard to previous literature, where a moist cool surface leads to high pressure and anticyclonic circulation. The relation of this theory to the synoptic scale is investigated using a case study from 25-29 July 2006. During this time, an unusually-structured AEW left a distinct synoptic 'wave' pattern of soil moisture in the Sahel region due to its modulation of convection. The structure of this wave and the initial conditions which lead to the soil moisture pattern are discussed. The atmospheric impact of the soil moisture wave is investigated using the Met Office Unified Model. It is found that th~ enhanced soil moisture leads to a cooler, moister, . thinner boundary layer. This leads to divergent winds at low levels and a reduction in the monsoon flow due to the reduction in the north-south pressure gradient. There is indication that low-level anticyclonic circulations are enhanced. The enhanced soil moisture wave also leads to an increase in easterly winds at the African Easterly Jet level: it is shown that this is due to a decrease in boundary layer height and a reduction in turbulence. Inspection of wave energetics shows the case study wave appears to be in a decaying phase. There is evidence that the soil moisture wave increases the thermal decay by decreasing the temperature behind the trough in the warm region, reducing the temperature eddies and re-establishing the zonal temperature gradient. This study has implications for weather forecasting as the results suggest that patterns in soil moisture on the large scale are able to alter atmospheric dynamics at the synoptic scale within the time frame of a few days. This leads to further questions as to whether a realistic representation of soil moisture in mo.dels would lead to an improvement in the simulation 'of tropical synoptic dynamics.
APA, Harvard, Vancouver, ISO, and other styles
25

Andronache, Constantin. "A study of aerosol interactions in aircraft wake and background atmosphere." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/26008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hunt, Richard Jeffrey. "Ice-ocean-atmosphere interactions at high latitudes in the southern hemisphere." Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Barros, Ana Paula. "Modeling of orographic precipitation with multilevel coupling of land-atmosphere interactions /." Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/10144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ekhtiari, Nikoo. "Interactions between water-bodies and atmosphere at regional to global scales." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20565.

Full text
Abstract:
Ziel dieser Dissertation ist es, mithilfe zweier Herangehensweisen, das Verständnis der Zusammenhänge verschiedener physikalischer Prozesse des Klimasystems zu verbessern. Im ersten Teil verwende ich Klimanetzwerke zu die gemeinsame Abhängigkeit von Meeresoberflächentemperaturen (SSTs) und Niederschlägen in Hinsicht auf globale charakteristiken und räumlichen Muster untersuchen. In diesem Kontext ist die El Niño Southern Oscillation (ENSO) das wichtigste Phänomen, welches großskalig SSTs und Niederschläge beeinflusst. Durch meine Analyse decke ich kurz und weitreichende Verbindungen auf und zeige deren Abhängigkeit von der jeweiligen ENSO-Phase (El Nino, La Nina, neutrale Phase). Darüber hinaus werden durch die Kombination einer diskreten Wavelet-Transformation mit dem Konzept der gekoppelten Klimanetzwerkanalyse die skalenspezifischen Verbindungen aufgelöst, die bei der ursprünglichen Auflösung der Daten oft übersehen werden. Im zweiten Teil der Arbeit verwende ich Simulationen des COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Modell (CCLM) und untersuche die Auswirkungen des Sobradinho-Stausees. In dieser Arbeit benutzen ich das Flake Modell, um das vertikale Temperaturprofil des Sees zu bestimmen. Durch die Einbettung des Flake Modells in das CCLM konnte ich den Sobradinho-Stausee untersuchen. Dabei simuliere ich zwei verschiedene Szenarien. Die Simulationsergebnisse verifiziere ich mithilfe meteorologischer Daten von Oberflächen- und Satellitenmessungen. Die Ergebnisse zeigen, dass der See sowohl die bodennahe Temperatur als auch Wind- und Luftfeuchtigkeitsmuster der Umgebung beeinflusst. Zudem wird die Luftfeuchtigkeit durch den See erhöht und bewirkt Seewinde. Die Effekte des Sees auf die Luftfeuchtigkeit und temperaturen beschränken sich nicht nur auf die Nähe des Sees, sondern auch auf relativ weit entfernte Gebiete.
This dissertation aims at improving our understanding of the mechanisms of interactions between physical processes within the climate system via two different approaches. In the first part, I have utilized climate networks to understand the mutual interdependence between sea surface temperatures (SST) and precipitation (PCP) in terms of global characteristics and spatial patterns. In this context, the globally most relevant phenomenon is the El Niño Southern Oscillation (ENSO), which strongly affects large-scale SST variability as well as PCP patterns all around the globe. My analysis uncovers both local and remote statistical connections and demonstrates their dependence on the current ENSO phase (El Niño, La Niña or neutral phase). Furthermore by combining time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis unravel the scale-specific connections that are often overlooked at the original resolution of the data. In the second part of this thesis, I have focused on simulations with the COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Model (CCLM) and investigate the effects of Lake Sobradinho, a large reservoir in Northeastern Brazil, on the local near-surface atmospheric and boundary layer conditions. In this thesis, the FLake model (Freshwater Lake model) is applied for obtaining the lake’s vertical temperature profile. I have simulated two alternative scenarios. The performance of the simulation is compared with data from surface meteorological stations as well as satellite data. The obtained results demonstrate that the lake affects the near-surface air temperature of the surrounding area as well as its humidity and wind patterns. Moreover, the humidity is significantly increased as a result of the lake’s presence and causes a lake breeze. The observed effects on humidity and air temperature also extend over areas relatively far away from the lake.
APA, Harvard, Vancouver, ISO, and other styles
29

Lytle, William. "Coupled Evaluation of Below- and Above-Ground Energy and Water Cycle Variables from Reanalysis Products Over Five Flux Tower Sites in the U.S." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/595636.

Full text
Abstract:
Reanalysis products are widely used to study the land-atmosphere exchanges of energy, water, and carbon fluxes, and have been evaluated using in situ data above or below ground. Here measurements for several years at five flux tower sites in the U.S. (with a total of 315,576 hours of data) are used for the coupled evaluation of both below- and above-ground processes from three global reanalysis products and six global land data assimilation products. All products show systematic errors in precipitation, snow depth, and the timing of the melting and onset of snow. Despite the biases in soil moisture, all products show significant correlations with observed daily soil moisture for the periods with unfrozen soil. While errors in 2 meter air temperature are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal snow. While net shortwave and longwave radiation flux errors have opposite signs across all products, the net radiation and ground heat flux errors are usually smaller in magnitude than turbulent flux errors. On the other hand, the all-product averages usually agree well with the observations on the evaporative fraction, defined as the ratio of latent heat over the sum of latent and sensible heat fluxes. This study identifies the strengths and weaknesses of these widely-used products, and helps understand the connection of their errors in above- versus below-ground quantities.
APA, Harvard, Vancouver, ISO, and other styles
30

Zeineddine, Mohamad Nour. "Heterogeneous Interactions of Volatile Organic Compounds with Natural Mineral Dust Samples." Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2018. http://www.theses.fr/2018MTLD0005/document.

Full text
Abstract:
Ce travail de thèse vise à caractériser l’interaction entre composés organiques volatils et poussières minérales atmosphériques. Les COV sélectionnés sont l’isopropanol (IPA), l’isoprène (ISP) et l’acide acétique (AcA). Cinq échantillons naturels de poussières minérales provenant de zones désertiques situées dans plusieurs régions du globe ont été retenus.Il a été mis en évidence que l’origine et donc la composition chimique des poussières naturelles joue un rôle majeur dans la nature de leur interaction avec les COV. Plus particulièrement, les coefficients de capture tendent à croître avec les rapports élémentaires Al/Si et Fe/Si. De plus, il est montré que l’interaction entre COV et poussières est fortement impactée par l’humidité relative et la température.Plusieurs modes d’interaction entre les COV et les poussières étudiés ont été mis en évidence : physisorption, chimisorption ou adsorption réactive. Ils dépendent de la composition chimique des poussières et de la structure des COV. En fonction du mode d’interaction, ces processus hétérogènes peuvent être considérés comme des puits de COV primaires voire des sources de COV secondaires en phase gazeuse. Ce travail met en lumière la contribution des processus hétérogènes dans l’atmosphère
This thesis investigates the interactions of volatile organic compounds (VOCs) with natural mineral dust samples. The VOCs used are isopropanol (IPA), isoprene (ISP) and acetic acid (AcA). Five natural mineral dust samples originating from various desert regions all over the world are used in this study.It is evidenced that the origin, I.E. the chemical composition, of the natural dust sample plays a significant role in defining the nature of its interaction with the VOCs. In particular, an increase of uptake is observed with increasing Al/Si and Fe/Si elemental rations. Moreover, the dust-VOC interaction is evidenced as being highly impacted by relative humidity and temperature.Various interactions modes have been evidenced between dust and VOCs such as physisorption, chemisorption and reactive sorption depending on the chemical composition of the dust and the structure of the VOC. Depending on the interaction mode, heterogeneous processes can act as a sink of primary VOCs or even a soure of secondary oxygenated VOCs in the gas phase. This work emphasiez the contribution of heterogeneous processes to the atmosphere
APA, Harvard, Vancouver, ISO, and other styles
31

Kelly, Patrick. "Evaluation of Land-Atmosphere Interactions in Models of the North American Monsoon." Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_theses/118.

Full text
Abstract:
Improving diurnal errors in surface-based heating processes in models might be a promising step towards improved seasonal simulation of the North American Monsoon (NAM). This study isolates model errors in the surface energy budget and examines diurnal heating implications for seasonal development of the NAM 500hPa anticyclone and 850-500hPa thickness ridge using observations and multi-model output. Field data from the 2004 North American Monsoon Experiment (NAME) and satellite estimates are used to evaluate land-atmosphere interactions in regional and global models as part of the North American Monsoon Model Assessment Project 2 (NAMAP2). Several key findings about heating in the NAM emerge: ? Models exhibit considerable differences in surface radiation of the NAM, beginning with albedo (Fig. 3.1). All models have highly-biased albedo throughout summer (Fig. 3.2). ? Observed net surface radiation is around 125 Wm-2 over land in the NAM region in summer (Table 3.5). Models overestimate it by an average of about 20 Wm-2, despite their high albedo, apparently due to deficiencies in cloud radiative forcing. ? Partitioning of this net radiation into latent and sensible fluxes to the atmosphere differs substantially among models. Sensitivity of this partitioning to rainfall also varies widely among models, and appears clearly excessive in some models relative to observations (Fig. 4.10). ? Total sensible heating exceeds latent heating in the NAM (Table 4.1), since it covers a much larger area than the rainy core region (Fig. 4.11). ? Inter-model differences in sensible heating can be traced consistently from surface heat flux (Table 5.1), to PBL diurnal evolution (Fig. 5.1), to diurnal thickening of the lower troposphere (Fig. 5.2). ? Seasonal biases in the NAM?s synoptic structure correspond well to diurnal heating biases (Fig. 5.3, Fig. 5.5), suggesting that diurnal cycle studies from a single field season may suffice to inform physical process improvements that could impact seasonal simulation and forecasting. These NAMAP2 results highlight the range of uncertainty and errors in contemporary models, including those defining US national weather forecasting capability. Model experimentation will be necessary to fully interpret the lessons and harvest the fruits of this offline inter-comparison exercise.
APA, Harvard, Vancouver, ISO, and other styles
32

Zhuang, Haixiong School of Mathematics UNSW. "Parameterisation of atmosphere-ocean surface interactions, with applications to the Australian monsoon." Awarded by:University of New South Wales. School of Mathematics, 2004. http://handle.unsw.edu.au/1959.4/26170.

Full text
Abstract:
Atmosphere-ocean and atmosphere-land interactions are important processes which determine the development of monsoon systems. In this study, a new atmosphere-ocean surface interaction scheme, referred to as AOSIS, is developed and verified with observed data. AOSIS, together with ALSIS (Atmosphere-Land Surface Interaction Scheme), is then coupled into CEMSYS4 (Computational Environmental Modelling System) to investigate the influences of atmosphere-ocean and atmosphere-land surface interactions on the Australian Monsoon, especially the monsoon onset, break and withdrawal. Numerical experiments are carried out and the simulations are compared with the NCEP (National Center for Environmental Prediction, America) data. AOSIS is constructed with three basic components, i.e., a two-layer ocean temperature model, a wind-wave model and a surface flux model. We divide the ocean into a mixed layer and a deep layer. However, the depth of the mixed layer is not constant but varies with time, depending on surface wind shear and buoyancy flux. In AOSIS, we adapted the approach of relating the stages of wave development by wave age and proposed a new expression for calculating the ocean surface roughness length, $z_{0m}$, with consideration of waves. We test AOSIS in a stand along mode against the Moana data and the NCEP data. The comparison with the Moana data shows that AOSIS has considerable skill in simulating SST (sea surface temperature) and energy fluxes, with the simulated values in good agreement with observed data. AOSIS is also successful in simulating the warm and cool effects considered in the COARE (Coupled Ocean-Atmosphere Response Experiment) scheme. Comparison with the NCEP data also confirms that AOSIS simulates SST well. AOSIS and ALSIS are then coupled into CEMSYS4. We apply the system to the simulation of SST and surface energy fluxes over the Australian region and compared the results with the NCEP data. It is found that the simulated SST and energy fluxes are in good agreement with the NCEP data. Further, we study the synoptic events of the Australian Monsoon onset, break and withdrawal and examine the impacts of atmosphere-ocean and atmosphere-land surface interactions on such synoptic events.
APA, Harvard, Vancouver, ISO, and other styles
33

Howe, Nicola Jane. "Ocean Atmosphere interactions and the Thermohahne Circulation : the role of transformation rates." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Groecke, Darren Richard. "Isotope stratigraphy and ocean-atmosphere interactions in the Jurassic and Early Cretaceous." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ross, Ian. "Nonlinear dimensionality reduction methods in climate data analysis." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492479.

Full text
Abstract:
Linear dimensionality reduction techniques, notably principal component analysis, are widely used in climate data analysis as a means to aid in the interpretation of datasets of high dimensionality. These hnear methods may not be appropriate for the analysis of data arising from nonlinear processes occurring in the climate system. Numerous techniques for nonlinear dimensionality reduction have been developed recently that may provide a potentially useful tool for the identification of low-dimensional manifolds in climate data sets arising from nonlinear dynamics. In this thesis I apply three such techniques to the study of El Niño/Southern Oscillation variability in tropical Pacific sea surface temperatures and thermocline depth, comparing observational data with simulations from coupled atmosphere-ocean general circulation models from the CMIP3 multi-model ensemble.
APA, Harvard, Vancouver, ISO, and other styles
36

Quilfen, Yves. "Variations interannuelles de l'atmosphere atlantique tropicale et interactions avec l'ocean." Paris 6, 1987. http://www.theses.fr/1987PA066592.

Full text
Abstract:
La variabilite interannuelle du systeme couple ocean-atmosphere dans l'ocean atlantique tropical est etudiee a l'aide de donnees historiques. Les fichiers de donnees couvrent l'atlantique entre 30 non=n et 20 non=s, de 1964 a 1979. Les differentes echelles de temps et d'espace sont determinees par l'intermediaire de l'analyse en composantes principales des fichiers de pression atmospherique au niveau de la mer, de temperature de surface de la mer et de tension du vent. Un signal basse frequence est associe a la variabilite atmospherique dans la zone equatoriale. Il fait partie des variations de la circulation atmospherique zonale a l'echelle planetaire et enregistre ainsi la signature dans l'atlantique des evenements chauds du pacifique (bien connus sous le nom de "el nino - oscillation sud"). Un tel index se revele tres utile dans la perspective d'une prevision des evenements chauds de l'atlantique. Il est cependant necessaire de prendre en compte les traits particuliers de l'atlantique tropical parce que: 1) le cycle saisonnier dans l'ocean atlantique peut etre important dans le developpement des anomalies a long terme du systeme couple; 2) les variations intrinseques du systeme couple dans l'atlantique induisent des anomalies a grande echelle independamment du systeme global planetaire (par exemple en 1968); 3) la position meridienne des structures (par exemple de l'itoz) souligne l'importance des anticyclones subtropicaux, specialement celui des acores
APA, Harvard, Vancouver, ISO, and other styles
37

Knist, Sebastian [Verfasser]. "Land-atmosphere interactions in multiscale regional climate change simulations over Europe / Sebastian Knist." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789669/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Allen, Myles R. "Interactions between the atmosphere and oceans on time scales of weeks to years." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ghent, Darren John. "Land surface modelling and Earth observation of land/atmosphere interactions in African savannahs." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10274.

Full text
Abstract:
Land/atmosphere feedback processes play a significant role in determining climate forcing on monthly to decadal timescales. Considerable uncertainty however exists in land surface model representation of these processes. This investigation represents an innovative approach to understanding key land surface processes in African savannahs in the framework of the UK‘s most important land surface model – the Joint UK Land Environment Simulator (JULES). Findings from an investigation into the carbon balance of Africa for a 25-year period from 1982 to 2006 inclusive show that JULES estimated Africa to behave as a carbon sink for most of the 1980‘s and 1990‘s punctuated by three periods as a carbon source, which coincided with the three strongest El Niño events of the period. From 2002 until 2006 the continent was also estimated to be a source of carbon. Overall, the JULES simulation suggests a weakening of the African terrestrial carbon sink during this period primarily caused by hot and dry conditions in savannahs. Applying the model further, land surface temperature (LST) displayed large uncertainty with respect to savannah field measurements from Kruger National Park, South Africa, and JULES systematically underestimated LST with respect to Earth Observation data continent-wide. The postulation was that a reduction in the uncertainty of surface-to-atmosphere heat and water fluxes could be achieved by constraining JULES simulations with satellite-derived LST using an Ensemble Kalman Filter. Findings show statistically significant reductions in root mean square errors with data assimilation than without; for heat flux simulations when compared with Eddy Covariance measurements, and surface soil moisture when compared with derivations from microwave scatterometers. The improved representation of LST was applied to map daily fuel moisture content – one of the most important wildfire determinants - over the mixed tree/grass landscapes of Africa, whereby values were strongly correlated with field measurements acquired from three savannah locations.
APA, Harvard, Vancouver, ISO, and other styles
40

Gong, Cuiling 1964. "The role of land-atmosphere-ocean interactions in rainfall variability over West Africa." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sotiropoulou, Georgia. "The Arctic Atmosphere : Interactions between clouds, boundary-layer turbulence and large-scale circulation." Doctoral thesis, Stockholms universitet, Meteorologiska institutionen (MISU), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-134525.

Full text
Abstract:
Arctic climate is changing fast, but weather forecast and climate models have serious deficiencies in representing the Arctic atmosphere, because of the special conditions that occur in this region. The cold ice surface and the advection of warm air aloft from the south result in a semi-continuous presence of a temperature inversion, known as the “Arctic inversion”, which is governed by interacting large-scale and local processes, such as surface fluxes and cloud formation. In this thesis these poorly understood interactions are investigated using observations from field campaigns on the Swedish icebreaker Oden: The Arctic Summer Cloud Ocean Study (ASCOS) in 2008 and the Arctic Clouds in Summer Experiment (ACSE) in 2014. Two numerical models are also used to explore these data: the IFS global weather forecast model from the European Center for Medium-range Weather Forecasts and the MIMICA LES from Stockholm University. Arctic clouds can persist for a long time, days to weeks, and are usually mixed-phase; a difficult to model mixture of super-cooled cloud droplets and ice crystals. Their persistence has been attributed to several mechanisms, such as large-scale advection, surface evaporation and microphysical processes. ASCOS observations indicate that these clouds are most frequently decoupled from the surface; hence, surface evaporation plays a minor role. The determining factor for cloud-surface decoupling is the altitude of the clouds. Turbulent mixing is generated in the cloud layer, forced by cloud-top radiative cooling, but with a high cloud this cannot penetrate down to the surface mixed layer, which is forced primarily by mechanical turbulence. A special category of clouds is also found: optically thin liquid-only clouds with stable stratification, hence insignificant in-cloud mixing, which occur in low-aerosol conditions. IFS model fails to reproduce the cloud-surface decoupling observed during ASCOS. A new prognostic cloud physics scheme in IFS improves simulation of mixed-phase clouds, but does not improve the warm bias in the model, mostly because IFS fails to disperse low surface-warming clouds when observations indicate cloud-free conditions. With increasing summer open-water areas in a warming Arctic, there is a growing interest in processes related to the ice marginal zones and the summer-to-autumn seasonal transition. ACSE included measurements over both open-water and sea-ice surfaces, during melt and early freeze. The seasonal transition was abrupt, not gradual as would have been expected if it was primarily driven by the gradual changes in net solar radiation. After the transition, the ocean surface remained warmer than the atmosphere, enhancing surface cooling and facilitating sea-ice formation. Observations in melt season showed distinct differences in atmospheric structure between the two surface types; during freeze-up these largely disappear. In summer, large-scale advection of warm and moist air over melting sea ice had large impacts on atmospheric stability and the surface. This is explored with an LES; results indicate that while vertical structure of the lowest atmosphere is primarily sensitive to heat advection, cloud formation, which is of great importance to the surface energy budget, is primarily sensitive to moisture advection.

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.

APA, Harvard, Vancouver, ISO, and other styles
42

GUEREMY, JEAN-FRANCOIS. "Sensibilite de la variabilite intrasaisonniere de la mousson indienne aux interactions sol-atmosphere." Toulouse 3, 1996. http://www.theses.fr/1996TOU30020.

Full text
Abstract:
La mousson indienne est sujette a une variabilite intrasaisonniere (de periode 30 a 50 jours), qui se manifeste par l'existence de phases actives et calmes et d'episodes de transition entre ces phases. Cette variabilite est liee a une oscillation, essentiellement meridienne, de la zone de convergence tropicale (zct). L'objectif de ce travail est determiner la sensibilite de la propagation de la zct aux interactions sol-atmosphere a l'aide de donnees observees et de donnees simulees par des modeles de circulation generale (mcg). A l'aide de donnees satellitales et de donnees analysees pour l'ete 1979, les flux de surface, sensible et latent, ont ete calcules. Il a ete alors demontre la part non negligeable des variables de surface temperature et humidite, par rapport au vent, dans la variabilite intrasaisonniere de ces flux, impliquant l'existence d'un couplage sol-atmosphere. Comme consequence de ce couplage, il apparait un dipole meridien de chaleur sensible, avec de faibles valeurs au lieu de la zct et des valeurs elevees au nord. Cette configuration, de part l'effet de stabilisation de la troposphere au lieu de la zct, et de destabilisation et de convergence de basses couches au nord, presente des conditions favorables a la propagation de la zct. Un tel mecanisme de propagation a ete teste a l'aide d'experiences de sensibilite realisees avec les mcg de florida state university et de meteo-france (mf). Des integrations de 60 jours ont ete effectuees en fixant les valeurs du contenu en eau du sol (resp. De la nebulosite) afin d'annihiler la retroaction precipitations-humidite du sol (resp. Nuages-temperature du sol). Ces integrations ont montre qu'effectivement, la propagation de la zct est tres sensible a ces retroactions. Finalement, le role de la diffusion turbulente de chaleur sensible, en liaison avec ces retroactions, a ete quantifie en faisant appel a un diagnostic de la vitesse verticale, applique a une integration de reference du mcg de mf. Ainsi, ce processus est bien celui qui donne la contribution preponderante a la vitesse verticale en basses couches au nord de la zct et donc a la propagation de cette derniere
APA, Harvard, Vancouver, ISO, and other styles
43

Vialard, Jérôme. "Influence de la salinite sur les interactions ocean - atmosphere dans le pacifique tropical." Paris 6, 1997. http://www.theses.fr/1997PA066576.

Full text
Abstract:
Cette these vise a evaluer l'importance de la structure haline tres specifique du pacifique ouest, en s'appuyant sur des experiences numeriques. La barriere de sel est une couche d'eau chaude et stratifiee en sel, situee entre les eaux de surface du pacifique ouest et celles plus froides de la thermocline. Une etude en mode force permet d'etudier les mecanismes de formation de cette structure. La penetration du flux solaire contribue a la maintenir, mais c'est la dynamique tridimensionnelle qui fournit l'apport d'eau chaude et salee en subsurface necessaire a sa formation. Dans la bande equatoriale, ce processus de subduction est lie au front de salinite, consequence de la convergence zonale des eaux salees du pacifique central et des eaux douces du pacifique ouest. La structure haline contribue activement a ce mecanisme, en piegeant la quantite de mouvement des vents d'ouest dans la couche de surface du pacifique ouest, accentuant ainsi la convergence zonale des courants. Le downwelling associe a cette convergence alimente la subsurface du pacifique ouest en eau chaude et salee. Au sud de l'equateur, le mecanisme de subduction mis en evidence s'apparente a celui propose par shinoda et lukas 95. L'impact de la barriere de sel sur le bilan thermique est double. D'une part, son effet isolant diminue le refroidissement par entrainement des eaux de surface. D'autre part, la stratification haline limite la profondeur de la couche de melange, et donc la quantite de flux solaire penetrant intercepte par celle ci. La maniere dont ces deux effets se compensent est toutefois sensible aux forcages utilises. La reelle evaluation des impacts de la structure haline s'avere delicate en raison de cette sensibilite, et des biais des flux a l'interface ocean - atmosphere en mode couple. Nos resultats suggerent toutefois que la barriere de sel intervient peu dans l'equilibre climatique du pacifique ouest. Elle pourrait en revanche jouer un role dans la variabilite interannuelle du systeme couple. Les coups de vent d'ouest aboutissent a la formation de barriere de sel epaisse dans le pacifique central. L'evaluation de la reponse locale et grande echelle du systeme ocean atmosphere a cette formation de barriere de sel est toutefois difficile a evaluer dans le cadre des experiences que nous avons effectuees avec le modele couple.
APA, Harvard, Vancouver, ISO, and other styles
44

Hague, Mark. "Ice - ocean - atmosphere interactions in the Southern Ocean and implications for phytoplankton phenology." Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33708.

Full text
Abstract:
The annual advance and retreat of sea ice in the Southern Ocean is recognised as one of the largest seasonal events on Earth. Such considerable physical changes have profound effects on the vertical structure of the water column, and hence controls the availability of both light and nutrients to phytoplankton. This means that in the region seasonally covered by sea ice (the SSIZ), the timing of the growth and decline (phenology) of phytoplankton is determined to a large degree by the dynamic interactions between ice, ocean and atmosphere. However, this region is simultaneously one of the most poorly observed in the global ocean, and one of the most complex. This has led to significant gaps in our understanding of how sea ice modulates the exchanges of heat and momentum between atmosphere and ocean, as well as the implications this has for phytoplankton phenology in the SSIZ. This study seeks to address these gaps by combining both model and observationallybased methods. The lack of observational data are directly tackled through an analysis of BGC-Argo float data sampling under ice. Such data reveal high growth rates in the presence of near full ice cover and deep mixed layers, conditions previously thought to prevent growth. These results suggest a revision of our current understanding of the drivers of under ice phytoplankton phenology, which should take into account the unique character of Antarctic sea ice and its effect on the under ice light environment. In addition, results obtained from several numerical process studies indicates that phytoplankton may have a higher affinity for low light conditions than previously thought. From a modelling perspective, an analysis and intercomparison of 11 Earth System Models (ESMs) and their representation of vertical mixing and phenology is presented. This revealed that misrepresentations in phenology where driven by model biases in sea ice cover and vertical mixing. That is, only models with either too much or too little ice cover were able to simulate phenology close to observations. Furthermore, a strong correlation between the location of the ice edge and the extent of vertical mixing suggested that ESMs overly dampen ocean-atmosphere fluxes as mediated by sea ice. This led to the development of a regional ocean-sea ice model of the Atlantic sector of the Southern Ocean, from which experiments enhancing both heat and momentum fluxes could be conducted. It was found that the model responded more uniformly to enhanced heat flux, generally deepening the mixed layer closer to observations in winter. On the other hand, the effects of enhanced momentum flux (implemented by increased air-ice drag) where more complex and spatially heterogeneous, with contrasting responses depending on the initial vertical density structure of the water column. Overall, the argument is made that the unique features of Antarctic sea ice should be included in models if we are to improve the representation of the SSIZ mixed layer, and hence phenology
APA, Harvard, Vancouver, ISO, and other styles
45

Contezac, Jonathan M. "Micrometeorological Observations of Fire-Atmosphere Interactions and Fire Behavior on a Simple Slope." Thesis, San Jose State University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10937563.

Full text
Abstract:

An experiment was designed to capture micrometeorological observations during a fire spread on a simple slope. Three towers equipped with a variety of instrumentation, an array of fire-sensing packages, and a Doppler lidar was deployed to measure various aspects of the fire. Pressure and temperature perturbations were analyzed for each of the grid packages to determine if the fire intensity could be observed in the covariance of the two variables. While two of the packages measured a covariance less than –15 °C hPa, there was no clear trend across the grid. The fire front passage at each of the three towers on the slope yielded extreme swings in observed turbulent kinetic energy and sensible heat flux. Vertical velocity turbulence spectra showed that the high-intensity fire front passage at the bottom tower was 2 to 3 orders of magnitude larger than the low-intensity fire front passages at the top two towers. Opposing wind regimes on the slope caused a unique L-shaped pattern to form in the fire front. A vorticity estimation from the sonic anemometers showed that vorticity reached a maximum just as a fire whirl formed in the bend of the L-shaped fire front, leading to a rapid increase in fire spread.

APA, Harvard, Vancouver, ISO, and other styles
46

Hoffmann, Alex. "Simulating organization of convective cloud fields and interactions with the surface." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245211.

Full text
Abstract:
The mesoscale organization and structure of convective clouds is thought to be rooted in the thermodynamic properties of the atmosphere and in the turbulent to mesoscale dynamics of the flow. Such structure may contribute to the transition between shallow and deep convection. The thermodynamic state of the boundary layer is forced by the amount of surface fluxes from below. Conversely, landscape patterns and land-cover heterogeneity may equally give rise to focused regions for deep convection triggering, in particular when patch sizes exceed 10 km. Since the convective boundary layer has a mediating function between the surface and deep storm clouds, the connection between surface and upper atmosphere is not straightforward. It is generally believed to involve local erosion of the capping inversion layer, the build-up of a moist energy supply, gradual humidification of the lower-free troposphere that reduces dry air entrainment into burgeoning deeper clouds, and thermal mesoscale circulations that can generate moisture convergence and locally forced ascent. To what extent microscale realistic surface heterogeneity and an interactive surface response matter to shallow and deep convection and its organization remains an open question. In this dissertation, we describe the coupling of a physiology-based vegetation model (HYBRID) and of a sea surface flux algorithm (COARE) to the cloud-resolving Active Tracer High-resolution Atmospheric Model (ATHAM). We investigate the full diurnal cycle of convection based on the example of the Hector storm over Tiwi Islands, notably the well-characterized event on 30th November 2005. The model performs well in terms of timing and cloud dynamics in comparison to a range of available observations. Also, ATHAM-HYBRID seems to do well in terms of flux partitioning. Whilst awaiting more thorough flux validation, we remain confident that the interactive surface response of both HYBRID and COARE is suited for the purpose of simulating convective-scale processes. We find the storm system evolution in 3D simulations to be robust with respect to differences in surface configuration and initialization. Within our 3D sensitivity runs, we could not identify a strong dependence on either realistic surface heterogeneity in the island landscape or on the interactive surface response. We conclude that in our case study at least, atmospheric (turbulent) dynamics likely dominate over surface heterogeneity effects, provided that the bulk magnitude of the surface energy fluxes, and their partitioning into sensible and latent heat (Bowen ratio), remain unaltered. This is consistent with 2D sensitivity studies, where we find model grid-spacing and momentum diffusion, governing the dynamics, to have an important influence on the overall evolution of deep convection. Fine grid-spacing is necessary, as the median width of updraught cores mostly does not exceed 1000 m. We associate this influence with the dry air entrainment rate in the wake of rising parcels, and with how resolution and diffusion act on coherent structures in the flow. In 2D sensitivity studies with differences in realistic heterogeneities of surface properties, we find little evidence for a clear deterministic influence of these properties on the transition between shallow and deep convection, in spite of largely different storm evolutions across the various runs. In these runs, we tentatively ascribe triggering to stochastic features in the flow, without discarding the relevance of convergence lines produced by mesoscale density currents, such as the sea breeze and cold pool storm outflows.
APA, Harvard, Vancouver, ISO, and other styles
47

Rasehlomi, Tshikana Phillip. "A comparative study of Phoebetria albatrosses' interactions with mesoscale oceanographic features south of the African continent." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20005.

Full text
Abstract:
Two sympatric Phoebetria albatrosses, P. fusca and palpebrata breeding at Marion Island in the South Indian Ocean were studied. Adult individuals were tracked between 2008 and 2011. The study examined the foraging distribution of the two species in relation to environmental parameters such as sea surface temperature. Interaction with mesoscale features expressed by sea surface temperatures, was tested with statistical models. Tracked P. fusca demonstrated positive association with sea surface temperatures in the Southern Indian Ocean, in particular during incubating and chick-provisioning periods, by travelling shorter distances to the interfaces of mesocale features created as a result of the Agulhas Return Current located << 500 km to the north of breeding islands. During nest construction, tracked P. fusca travelled greater distances in search of food possibly because they had no chick to return to at the colonies. Contrastingly, tracked P. palpebrata did not demonstrate any positive association with sea surface temperatures. During incubating and chick-provisioning periods, tracked P. palpebrata travelled shorter distances to foraging grounds located to the south of breeding islands possibly to maximise returns to chicks while minimising efforts. During nest construction, tracked P. palpebrata travelled to distant foraging grounds to the south of the Antarctic Polar Front in areas of low mesoscale variability suggesting that greater distances can be achieved when they have no chick to feed at the colonies. Individuals of both tracked species foraged within close proximity during energy-demanding periods indicating their ability to employ an efficient foraging strategy that ensures minimal effort whilst maximising returns. Generalised Linear Models with the response variable being species and explanatory variables comprised of sea surface temperatures, annual breeding stages, distance traversed and activity, were conducted to examine the effect of environmental factors on seabird foraging distribution. These models were subjected to robust fitness tests and those that represented ecological reality of the two tracked albatrosses were chosen. The study demonstrates that the most important foraging areas for these two tracked seabird species overlap with the Indian Ocean Tuna Commission Convention area making them vulnerable from incidental capture from high longline fisheries. These results have implications to the conservation of these albatrosses suggesting a need for a multi-faceted approach on fisheries management particularly on mitigation of seabird bycatch in the Indian Ocean Tuna Convention area.
APA, Harvard, Vancouver, ISO, and other styles
48

Bondani, Stefano. "Interactions between Čerenkov radiation and atmosphere: simulations for the volcanic muography at Mount Etna." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17952/.

Full text
Abstract:
The role of Earth's atmosphere in the detection of high energy radiation from cosmic sources lies in the generation of Cherenkov radiation from associated charged particles. The calibration of Imaging Atmospheric Cherenkov Telescopes (IACTs) passes through the study and reconstruction of cones of Cherenkov light produced by muons in the form of rings. The italian project ASTRI located at Mount Etna is a prototype of telescope for future worldwide experiment Cherenkov Telescope Array. Under current investigation is the possibility to offer an additional expendability for such prototype telescope, namely in the volcanic muography, a technique of muon ring reconstruction aimed at non-invasive observations of the interiors of volcanoes. Current state of work has reached the stage of successful simulations; horizontally travelling cosmic muons traversing the volcano reflect the distribution of internal matter via their number density, a quantity retrieved through techniques of muon ring reconstruction. A proper detailing of the interactions between the UV photons of Cherenkov light and the atmospheric air between the volcano and the telescope is still lacking, the current model making use of a standard air from (NASA, 1976) for the basic needs of the model, while neglecting any scattering or absorption process. In this work I provide coverage of the atmospheric properties of the ASTRI site, parameterizing the refractive index of air, and integrating the results into the already existing simulation framework, carried out in the particle physics GEANT4 toolkit from CERN. A toy model in the same framework will expose the role of Rayleigh scattering and aerosol absorption and scattering, wich I have modeled around the troposheric conditions at the site from relevant meteorological historic datasets. This thesis aims at mirroring the academic career of the author, swaying between Atmospheric Physics and Astrophysics, ideally providing for a bridge between the two disciplines.
APA, Harvard, Vancouver, ISO, and other styles
49

Winterrath, Tanja. "Numerical investigations on atmosphere-biosphere interactions impact of radiation fog and leaf surface water /." [S.l. : s.n.], 2002. http://archimed.uni-mainz.de/pub/2002/0143/diss.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Meusel, Hannah [Verfasser]. "Interactions between biosphere and atmosphere as an important source of nitrous acid / Hannah Meusel." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1137581840/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography