Dissertations / Theses on the topic 'Asymptotic distribution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Asymptotic distribution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hofmann, Glenn, Erhard Cramer, N. Balakrishnan, and Gerd Kunert. "An Asymptotic Approach to Progressive Censoring." Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200201539.
Full textBaligh, Mohammadhadi. "Analysis of the Asymptotic Performance of Turbo Codes." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/883.
Full textStewart, Michael. "Asymptotic methods for tests of homogeneity for finite mixture models." Connect to full text, 2002. http://hdl.handle.net/2123/855.
Full textTitle from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Mathematics and Statistics, Faculty of Science. Includes bibliography. Also available in print form.
Unger, William Ramsay. "Asymptotics of increasing trees." Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26633.
Full textHeimbürger, Axel. "Asymptotic Distribution of Two-Protected Nodes in m-ary Search Trees." Thesis, KTH, Matematik (Avd.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151318.
Full textI detta examensarbete studeras antalet tvåskyddade noder i m-ära sökträd. En nod kallas tvaskyddad ifall den ar minst två kanter fran ett löv i trädet. Dessa noder är av intresse eftersom de beskriver lokala egenskaper nära löven i de m-ära sökträden. Detta studeras genom att använda en generaliserad Pólya urna och genom att relatera denna urna till hur ett m-ärt sökträd expanderar när nya nycklar placeras in i trädet. Det bevisas att antalet tvåskyddade noder i ett m-ärt sökträd har en asymptotiskt normalfördelad sannolikhetsfördelning för m = 4, 5, 6 när antalet nycklar i trädet går mot oändligheten. Detta stämmer överens med tidigare resultat för m = 2, 3, som har bevisats genom att använda samma metod. Metoden och algoritmerna som används för att beräkna dessa resultat presenteras på ett sådant sätt att de går att applicera på större m utan modifiering. Givet resultaten för m = 2,…, 6 presenteras en möjlig väg för att expandera dessa resultat för större m.
Mwawasi, Grace Makanda. "Approximations and asymptotic expansions for the distribution of quadratic and bilinear forms." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56952.
Full textChi-square type approximations, normal approximations, the mixture approximation and the laplacian approximation to the exact distribution of positive definite and indefinite quadratic forms and bilinear forms are discussed. Several asymptotic results are also discussed.
Some numerical computations giving probabilities and percentage points and also some simulation for the distribution function of quadratic and bilinear forms are given to give more insight into the approximations.
Breimesser, Sandra Verena. "Asymptotic value distribution for solutions of the Schrödinger equation and Herglotz functions." Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272024.
Full textBulger, Daniel. "The high energy asymptotic distribution of the eigenvalues of the scattering matrix." Thesis, King's College London (University of London), 2013. https://kclpure.kcl.ac.uk/portal/en/theses/the-high-energy-asymptotic-distribution-of-the-eigenvalues-of-the-scattering-matrix(541fc908-ff77-4f0f-b3ba-af1fe53e19dd).html.
Full textJoyner, James Thomas. "ASYMPTOTIC ANALYSIS OF FRONTAL POLYMERIZATION IN A MEDIUM WITH PERIODIC MONOMER DISTRIBUTION." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1153773428.
Full textBalabdaoui, Fadoua. "Nonparametric estimation of a k-monotone density : a new asymptotic distribution theory /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8964.
Full textO'Connell, W. Richard Jr. "Estimates for the St. Petersburg game." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/28858.
Full textSödergren, Anders. "Asymptotic Problems on Homogeneous Spaces." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132645.
Full textPetersson, Mikael. "Asymptotic Expansions for Perturbed Discrete Time Renewal Equations." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-95490.
Full textYaobin, Wen. "Asymptotic Analysis of Interference in Cognitive Radio Networks." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23997.
Full textEmberson, E. A. "The asymptotic distribution and robustness of the likelihood ratio and score test statistics." Thesis, University of St Andrews, 1995. http://hdl.handle.net/10023/13738.
Full textZeileis, Achim, and Torsten Hothorn. "Permutation Tests for Structural Change." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2006. http://epub.wu.ac.at/1182/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Stewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." Thesis, The University of Sydney, 2002. http://hdl.handle.net/2123/855.
Full textStewart, Michael Ian. "Asymptotic methods for tests of homogeneity for finite mixture models." University of Sydney. Mathematics and Statistics, 2002. http://hdl.handle.net/2123/855.
Full textEtienne, Roland Jean [Verfasser]. "On the asymptotic distribution of the Dirichlet eigenvalues of fractal chains / Roland Jean Etienne." Siegen : Universitätsbibliothek der Universität Siegen, 2015. http://d-nb.info/1068362863/34.
Full textPielaszkiewicz, Jolanta. "On the asymptotic spectral distribution of random matrices : Closed form solutions using free independence." Licentiate thesis, Linköpings universitet, Matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92637.
Full textPielaszkiewicz, Jolanta Maria. "On the asymptotic spectral distribution of random matrices : closed form solutions using free independence." Licentiate thesis, Linköping University, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58181.
Full textOsaka, Haruki. "Asymptotics of Mixture Model Selection." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27230.
Full textKim, Jung-Kyung. "Tail asymptotics of queueing networks with subexponential service times." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29734.
Full textCommittee Chair: Ayhan, Hayriye; Committee Member: Foley, Robert D.; Committee Member: Goldsman, David M.; Committee Member: Reed, Joshua; Committee Member: Zwart, Bert. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Pilon, Paul J. "Gamma type distribution: Maximum likelihood values of the T-year event and their asymptotic variance." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5837.
Full textYuan, Zhongyi. "Quantitative analysis of extreme risks in insurance and finance." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/2422.
Full textReinhold, Küstner. "Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation." Nice, 2003. http://www.theses.fr/2003NICE4054.
Full textWe determine the asymptotic pole distribution for three types of best approximants (Padé at infinity, rational in L2 on the unit circle, meromorphic in the unit disk in Lp on the unit circle, p>2) of the Cauchy transform of a complex measure under the hypothesis that the support S of the measure is of positive capacity and included in (-1 1), that the measure satisfies a density condition and that the argument of the measure is the restriction of a function of bounded variation ? The denominator polynomials of the approximants satisfay orthogonality relations ? By means of a theorem of Kestelman we obtain geometric constraints for the zeros which imply that every weak limit measure of the associated counting measures has support included in S. Then, with the help of results from potential theory in the plane, we show that the counting measures converge weakly to the logarithmic respectively hyperbolic equilibrium distribution of S
Cartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.
Full textIn this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
Hothorn, Torsten, and Achim Zeileis. "Generalized Maximally Selected Statistics." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/1252/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Szyszkowicz, B. (Barbara) Carleton University Dissertation Mathematics. "Weak convergence of stochastic processes in weighted metrics and their applications to contiguous changepoint analysis." Ottawa, 1992.
Find full textKimura, Tatsuaki. "Studies on Asymptotic Analysis of GI/G/1-type Markov Chains." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225742.
Full textHudson, Richard James Frederick. "Long memory spectral regression : an approach using generalised least squares." Thesis, Queensland University of Technology, 2002.
Find full textMinsker, Stanislav. "Non-asymptotic bounds for prediction problems and density estimation." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44808.
Full textHoshaw-Woodard, Stacy. "Large sample methods for analyzing longitudinal data in rehabilitation research /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946263.
Full textLitherland, Trevis J. "On the limiting shape of random young tableaux for Markovian words." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26607.
Full textCommittee Chair: Houdre, Christian; Committee Member: Bakhtin, Yuri; Committee Member: Foley, Robert; Committee Member: Koltchinskii, Vladimir; Committee Member: Lifshitz, Mikhail; Committee Member: Matzinger, Heinrich; Committee Member: Popescu, Ionel. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Köhnlein, Dieter. "Asymptotisches Verhalten von Lösungen stochastischer linearer Differenzengleichungen im Rd." Bonn : [s.n.], 1988. http://catalog.hathitrust.org/api/volumes/oclc/20267120.html.
Full textPailden, Junvie Montealto. "Applications of Empirical Likelihood to Zero-Inflated Data and Epidemic Change Point." Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1367579613.
Full textLee, Sungwook. "Semiparametric regression with random effects /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842547.
Full textCalhoun, Grayson Ford. "Limit theory for overfit models." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359804.
Full textTitle from first page of PDF file (viewed July 23, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 104-109).
Liu, Xi. "Bayesian Designing and Analysis of Simple Step-Stress Accelerated Life Test with Weibull Lifetime Distribution." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1283365980.
Full textLynch, O'Neil. "Mixture distributions with application to microarray data analysis." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/2075.
Full textHitz, Adrien. "Modelling of extremes." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ad32f298-b140-4aae-b50e-931259714085.
Full textChen, Ying-Ju. "Jackknife Empirical Likelihood And Change Point Problems." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1430823961.
Full textRuppert, Julia [Verfasser], Tobias [Akademischer Betreuer] Kaiser, and Jean-Philippe [Akademischer Betreuer] Rolin. "Asymptotic Expansion for the Time Evolution of the Probability Distribution Given by the Brownian Motion on Semialgebraic Sets / Julia Ruppert ; Tobias Kaiser, Jean-Philippe Rolin." Passau : Universität Passau, 2017. http://d-nb.info/1144611504/34.
Full textRydén, Patrik. "Statistical analysis and simulation methods related to load-sharing models." Doctoral thesis, Umeå universitet, Matematisk statistik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46772.
Full textHu, Yanling. "SOME CONTRIBUTIONS TO THE CENSORED EMPIRICAL LIKELIHOOD WITH HAZARD-TYPE CONSTRAINTS." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/150.
Full textCassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.
Full textLa construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.
Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.
Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).
Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.
Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.
Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.
Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.
Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.
A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.
Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Nold, Mariana Saskia Verfasser], Susanne [Akademischer Betreuer] [Rässler, and Georg [Akademischer Betreuer] Heinze. "Behavior of convergence in logistic regression models - Assessing the drop of the Kolmogorov distance between the sampling distribution and the asymptotic distribution of estimators and test statistics in logistic regression analysis / Mariana Saskia Nold. Betreuer: Susanne Rässler ; Georg Heinze." Bamberg : Otto-Friedrich-Universität Bamberg, 2014. http://d-nb.info/1058554395/34.
Full textGao, Zhenguo. "Variance Change Point Detection under A Smoothly-changing Mean Trend with Application to Liver Procurement." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82351.
Full textPh. D.
Kong, Fanhui. "Asymptotic distributions of Buckley-James estimator." Online access via UMI:, 2005.
Find full textYi, Yun. "On the structure of asymptotic distributions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ50004.pdf.
Full text