Academic literature on the topic 'Astroparticle physic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Astroparticle physic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Astroparticle physic"

1

Lang, Rodrigo Guedes, Humberto Martínez-Huerta, and Vitor de Souza. "Ultra-High-Energy Astroparticles as Probes for Lorentz Invariance Violation." Universe 8, no. 8 (August 22, 2022): 435. http://dx.doi.org/10.3390/universe8080435.

Full text
Abstract:
Compelling evidence for Lorentz invariance violation (LIV) would demand a complete revision of modern physics. Therefore, searching for a signal or extending the validity of the invariance is fundamental for building our understanding of the extreme phenomena in the Universe. In this paper, we review the potential of ultra-high-energy astroparticles in setting limits on LIV. The standard framework of LIV studies in astroparticle physics is reviewed and its use on the electromagnetic and hadronic sectors are discussed. In particular, the current status of LIV tests using experimental data on ultra-high-energy photons and cosmic rays is addressed. A detailed discussion with improved argumentation about the LIV kinematics of the relevant interactions is shown. The main previous results are presented together with new calculations based on recently published astrophysical models.
APA, Harvard, Vancouver, ISO, and other styles
2

BETTINI, A. "ASTROPARTICLE PHYSICS." International Journal of Modern Physics A 22, no. 30 (December 10, 2007): 5550–60. http://dx.doi.org/10.1142/s0217751x07038815.

Full text
Abstract:
Astroparticle is a very wide, expanding, sector of Physics; this report covers only a fraction of it complementing the plenary reports of Y. Takahashi and K. Inoue. I will focus, in particular, on the experimental evidence of new physics, beyond the Standard Model. Astroparticle and accelerator experiments will give complementary tools in the search of new particles, like those of the dark matter, and new fundamental fields, like the inflaton.
APA, Harvard, Vancouver, ISO, and other styles
3

Ong, Rene A. "Astroparticle physics." Physica Scripta T158 (December 1, 2013): 014022. http://dx.doi.org/10.1088/0031-8949/2013/t158/014022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SALAM, ABDUS. "ASTROPARTICLE PHYSICS (1988)." International Journal of Modern Physics A 04, no. 03 (February 1989): 583–605. http://dx.doi.org/10.1142/s0217751x89000273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bychkov, Igor, Andrey Demichev, Julia Dubenskaya, Oleg Fedorov, Andreas Haungs, Andreas Heiss, Donghwa Kang, et al. "Russian–German Astroparticle Data Life Cycle Initiative." Data 3, no. 4 (November 28, 2018): 56. http://dx.doi.org/10.3390/data3040056.

Full text
Abstract:
Modern large-scale astroparticle setups measure high-energy particles, gamma rays, neutrinos, radio waves, and the recently discovered gravitational waves. Ongoing and future experiments are located worldwide. The data acquired have different formats, storage concepts, and publication policies. Such differences are a crucial point in the era of Big Data and of multi-messenger analysis in astroparticle physics. We propose an open science web platform called ASTROPARTICLE.ONLINE which enables us to publish, store, search, select, and analyze astroparticle data. In the first stage of the project, the following components of a full data life cycle concept are under development: describing, storing, and reusing astroparticle data; software to perform multi-messenger analysis using deep learning; and outreach for students, post-graduate students, and others who are interested in astroparticle physics. Here we describe the concepts of the web platform and the first obtained results, including the meta data structure for astroparticle data, data analysis by using convolution neural networks, description of the binary data, and the outreach platform for those interested in astroparticle physics. The KASCADE-Grande and TAIGA cosmic-ray experiments were chosen as pilot examples.
APA, Harvard, Vancouver, ISO, and other styles
6

NANOPOULOS, D. V. "Astroparticle Physics and Superstringsb." Annals of the New York Academy of Sciences 647, no. 1 Texas/ESO-Cer (December 1991): 218–43. http://dx.doi.org/10.1111/j.1749-6632.1991.tb32172.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitton, Simon. "Astroparticle physics and cosmology." Lancet 367, no. 9523 (May 2006): 1692–97. http://dx.doi.org/10.1016/s0140-6736(06)68738-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sigl, Günter. "High Energy Astroparticle Physics." Nuclear Physics B - Proceedings Supplements 168 (June 2007): 219–24. http://dx.doi.org/10.1016/j.nuclphysbps.2007.02.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pinfold, James L. "ATLAS and Astroparticle Physics." Nuclear Physics B - Proceedings Supplements 175-176 (January 2008): 25–32. http://dx.doi.org/10.1016/j.nuclphysbps.2007.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bettini, A. "Perspectives of astroparticle physics." Nuclear Physics B - Proceedings Supplements 114 (February 2003): 283–300. http://dx.doi.org/10.1016/s0920-5632(02)01914-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Astroparticle physic"

1

BASILICO, DAVIDE. "FIRST INDICATION OF SOLAR NEUTRINOS FROM THE CNO CYCLE REACTIONS WITH THE BOREXINO EXPERIMENT." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/709966.

Full text
Abstract:
Solar neutrinos play a unique and irreplaceable role for the comprehension of the mechanisms powering our star. The study of solar neutrino fluxes allows us to definitely prove that the Sun is powered by thermonuclear reactions occurring in its core. Several questions concerning solar neutrinos are still unsolved. In particular, neutrinos emitted in the CNO cycle of reactions are the only undetected piece of the solar fusion puzzle. This cycle is believed to be the main engine of very massive stars, while it is expected to contribute only ~1% to the solar luminosity. Observing neutrinos from the CNO reactions would have a striking importance in astrophysics, providing the first direct confirmation of the existence of this important energy source in the core of the stars. The Borexino detector is an ultrapure liquid scintillator-based detector located at the Laboratori Nazionali del Gran Sasso. Throughout a more than ten-year long data taking, Borexino has achieved outstanding results about solar neutrino physics, measuring all the neutrino fluxes emitted from the pp-chain nuclear reactions. This thesis is devoted to the CNO solar neutrino search with Borexino: analyzing the latest three years of data-taking (Phase-III) I provide the first direct experimental indication of a signal of CNO neutrinos. I describe the details of the analysis, the CNO neutrino results and their implications in terms of solar physics.
APA, Harvard, Vancouver, ISO, and other styles
2

Birkel, Michael. "Astroparticle physics beyond the standard model." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Medinaceli, Villegas Eduardo <1976&gt. "Astroparticle physics with nuclear track detectors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/1/Tesi_Medinaceli_Eduardo.pdf.

Full text
Abstract:
This thesis is mainly about the search for exotic heavy particles -Intermediate Mass Magnetic Monopoles, Nuclearites and Q-balls with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m, Bolivia), establishing upper limits (90% CL) in the absence of candidates, which are among the best if not the only one for all three kind of particles. A preliminary study of the background induced by cosmic neutron in CR39 at the SLIM site, using Monte Carlo simulations. The measurement of the elemental abundance of the primary cosmic ray with the CAKE experiment on board of a stratospherical balloon; the charge distribution obtained spans in the range 5≤Z≤31. Both experiments were based on the use of plastic Nuclear Track Detectors, which records the passage of ionizing particles; by using some chemical reagents such passage can be make visible at optical microscopes.
APA, Harvard, Vancouver, ISO, and other styles
4

Medinaceli, Villegas Eduardo <1976&gt. "Astroparticle physics with nuclear track detectors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/.

Full text
Abstract:
This thesis is mainly about the search for exotic heavy particles -Intermediate Mass Magnetic Monopoles, Nuclearites and Q-balls with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m, Bolivia), establishing upper limits (90% CL) in the absence of candidates, which are among the best if not the only one for all three kind of particles. A preliminary study of the background induced by cosmic neutron in CR39 at the SLIM site, using Monte Carlo simulations. The measurement of the elemental abundance of the primary cosmic ray with the CAKE experiment on board of a stratospherical balloon; the charge distribution obtained spans in the range 5≤Z≤31. Both experiments were based on the use of plastic Nuclear Track Detectors, which records the passage of ionizing particles; by using some chemical reagents such passage can be make visible at optical microscopes.
APA, Harvard, Vancouver, ISO, and other styles
5

Robbins, Glenn. "New Physics at Colliders and in Space." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1149/document.

Full text
Abstract:
La quête de la nouvelle physique est un défi impliquant à la fois la recherche de particules de matière noire dans les halos galactiques, et celle, aux collisonneurs, de particules dont l’existence est prédite par des théories au-delà du Modèle Standard, telles que la supersymétrie. Alors que les contraintes expérimentales sur ces particules s’intensifient, il devient capital de combiner les limites provenant de ces deux volets afin de guider la suite des recherches. Pour ce faire, il est indispensable d’évaluer et de tenir compte correctement des incertitudes astrophysiques, cosmologiques et nucléaires, pourtant souvent ignorées. La première partie de cette thèse est dédiée à l’étude de ces incertitudes et leur impact sur les contraintes obtenues en supersymétrie, ainsi que la complémentarité entre les contraintes des collisionneurs et de matière noire pour la recherche de nouvelle physique. La deuxième partie est consacrée au développement d’outils de calculs pour les détections directe et indirecte de matière noire, conçus afin de prendre correctement en compte les incertitudes astrophysiques et nucléaires, et à leur implémentation dans le code public SuperIso Relic. Enfin la troisième partie du travail concerne l’étude des implications cosmologiques d’une éventuelle découverte de nouvelles particules aux collisionneurs. Nous avons montré qu’il serait possible de tester les hypothèses du modèle cosmologique standard et d’obtenir des informations sur les propriétés de l’Univers primordial à une époque observationnellement inaccessible
The quest for new physics is a challenging task which involves, on the one hand, the search for dark matter particles from space, and on the other hand, the search at colliders for particles predicted by theories beyond the Standard Model, such as supersymmetry. With the experimental constraints on new particles getting stronger, it becomes crucial to combine the limits from both sectors in order to guide future searches. To this end, it is essential to estimate and take into account correctly the astrophysical, nuclear and cosmological uncertainties, which are most often ignored. The first part of this thesis is dedicated to the study of such uncertainties and to their impact on the constraints applied on supersymmetry. Moreover, we investigate the interplay between the constraints from colliders and dark matter searches in some detail. The second part concerns the development and the implementation in the public code SuperIso Relic of numerical tools for the calculation of direct and indirect dark matter detection constraints which were designed specifically to take correctly into account astrophysical and nuclear uncertainties. Finally, in the third part of this work, we consider the cosmological implications of a hypothetical discovery of new particles at colliders. We show that it would be possible to test the assumptions of the standard cosmological model and to obtain information on the properties of the primordial Universe at an epoch which is beyond observational reach
APA, Harvard, Vancouver, ISO, and other styles
6

Serpico, Pasquale Dario. "High energy astroparticle physics with cosmic rays and neutrinos." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980374863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiegand, Alexander [Verfasser]. "The inhomogeneous Universe : its average expansion and cosmic variance / Alexander Wiegand. Fakultät für Physik - Cosmology and Astroparticle Physics." Bielefeld : Universitätsbibliothek Bielefeld, Hochschulschriften, 2012. http://d-nb.info/1026077605/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kernan, Peter John. "Two astroparticle physics problems : solar neutrinos, and primordial 4[superscript]Helium /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487846354482934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wildner, Elena. "Accelerators for Physics Experiments : From Diagnostics and Control to Design." Doctoral thesis, Stockholm : Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bardenet, Rémi. "Towards adaptive learning and inference : applications to hyperparameter tuning and astroparticle physics." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112307.

Full text
Abstract:
Les algorithmes d'inférence ou d'optimisation possèdent généralement des hyperparamètres qu'il est nécessaire d'ajuster. Nous nous intéressons ici à l'automatisation de cette étape d'ajustement et considérons différentes méthodes qui y parviennent en apprenant en ligne la structure du problème considéré.La première moitié de cette thèse explore l'ajustement des hyperparamètres en apprentissage artificiel. Après avoir présenté et amélioré le cadre générique de l'optimisation séquentielle à base de modèles (SMBO), nous montrons que SMBO s'applique avec succès à l'ajustement des hyperparamètres de réseaux de neurones profonds. Nous proposons ensuite un algorithme collaboratif d'ajustement qui mime la mémoire qu'ont les humains d'expériences passées avec le même algorithme sur d'autres données.La seconde moitié de cette thèse porte sur les algorithmes MCMC adaptatifs, des algorithmes d'échantillonnage qui explorent des distributions de probabilité souvent complexes en ajustant leurs paramètres internes en ligne. Pour motiver leur étude, nous décrivons d'abord l'observatoire Pierre Auger, une expérience de physique des particules dédiée à l'étude des rayons cosmiques. Nous proposons une première partie du modèle génératif d'Auger et introduisons une procédure d'inférence des paramètres individuels de chaque événement d'Auger qui ne requiert que ce premier modèle. Ensuite, nous remarquons que ce modèle est sujet à un problème connu sous le nom de label switching. Après avoir présenté les solutions existantes, nous proposons AMOR, le premier algorithme MCMC adaptatif doté d'un réétiquetage en ligne qui résout le label switching. Nous présentons une étude empirique et des résultats théoriques de consistance d'AMOR, qui mettent en lumière des liens entre le réétiquetage et la quantification vectorielle
Inference and optimization algorithms usually have hyperparameters that require to be tuned in order to achieve efficiency. We consider here different approaches to efficiently automatize the hyperparameter tuning step by learning online the structure of the addressed problem. The first half of this thesis is devoted to hyperparameter tuning in machine learning. After presenting and improving the generic sequential model-based optimization (SMBO) framework, we show that SMBO successfully applies to the task of tuning the numerous hyperparameters of deep belief networks. We then propose an algorithm that performs tuning across datasets, mimicking the memory that humans have of past experiments with the same algorithm on different datasets. The second half of this thesis deals with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algorithms that explore complex probability distributions while self-tuning their internal parameters on the fly. We start by describing the Pierre Auger observatory, a large-scale particle physics experiment dedicated to the observation of atmospheric showers triggered by cosmic rays. The models involved in the analysis of Auger data motivated our study of adaptive MCMC. We derive the first part of the Auger generative model and introduce a procedure to perform inference on shower parameters that requires only this bottom part. Our model inherently suffers from label switching, a common difficulty in MCMC inference, which makes marginal inference useless because of redundant modes of the target distribution. After reviewing existing solutions to label switching, we propose AMOR, the first adaptive MCMC algorithm with online relabeling. We give both an empirical and theoretical study of AMOR, unveiling interesting links between relabeling algorithms and vector quantization
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Astroparticle physic"

1

Falkenburg, Brigitte. From Ultra Rays to Astroparticles: A Historical Introduction to Astroparticle Physics. Dordrecht: Springer Netherlands, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grupen, Claus. Astroparticle Physics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, G., G. Senjanovic, and A. Yu Smirnov. Astroparticle physics and cosmology. Trieste, Italy: Abdus Salam International Centre for Theoretical Physics, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Angelis, Alessandro, Mário Pimenta, and Ruben Conceição. Particle and Astroparticle Physics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73116-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohanty, Subhendra. Astroparticle Physics and Cosmology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56201-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bosetti, Peter Christian, ed. Trends in Astroparticle-Physics. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-01466-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarkar, U. Particle and astroparticle physics. New York: Taylor & Francis, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1948-, Bosetti Peter Christian, ed. Trends in astroparticle-physics. Stuttgart: B.G. Teubner, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sigl, Günter. Astroparticle Physics: Theory and Phenomenology. Paris: Atlantis Press, 2017. http://dx.doi.org/10.2991/978-94-6239-243-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Angelis, Alessandro, and Mário Pimenta. Introduction to Particle and Astroparticle Physics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78181-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Astroparticle physic"

1

Raffelt, Georg G. "Astroparticle Physics." In International Europhysics Conference on High Energy Physics, 114–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salam, Abdus. "Astroparticle Physics (1988)." In Astronomy, Cosmology and Fundamental Physics, 1–22. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0965-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grupen, Claus. "Historical Introduction." In Astroparticle Physics, 1–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grupen, Claus. "Big Bang Nucleosynthesis." In Astroparticle Physics, 339–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Grupen, Claus. "The Cosmic Microwave Background." In Astroparticle Physics, 357–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grupen, Claus. "Inflation." In Astroparticle Physics, 375–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grupen, Claus. "Dark Energy and Dark Matter." In Astroparticle Physics, 401–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grupen, Claus. "Astrobiology." In Astroparticle Physics, 435–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grupen, Claus. "Outlook." In Astroparticle Physics, 449–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grupen, Claus. "The Standard Model of Elementary Particles." In Astroparticle Physics, 29–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27339-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Astroparticle physic"

1

BETTINI, A. "ASTROPARTICLE PHYSICS." In Proceedings of the 33rd International Conference. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812790873_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

OLIVE, KEITH A. "ASTROPARTICLE PHYSICS." In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773579_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nanopoulos, D. V. "ASTROPARTICLE PHYSICS." In International School on Astroparticle Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zepeda, Arnulfo. "Astroparticle Physics." In PARTICLES AND FIELDS: X Mexican Workshop on Particles and Fields. AIP, 2006. http://dx.doi.org/10.1063/1.2359398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gil Botella, Ines. "Astroparticle Physics at DUNE." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.314.0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Graziani, Giacomo. "LHCb inputs to astroparticle physics." In European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.364.0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

PALANQUE-DELABROUILLE, Nathalie. "Results From Astroparticle Physics." In Physics at LHC 2008. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.055.0097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Köpke, Lutz. "Astroparticle Physics with Neutrinos." In XXV PHYSICS IN COLLISION: Proceedings of the XXV International Conference on Physics in Collision. AIP, 2006. http://dx.doi.org/10.1063/1.2173579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ELLIS, John. "PROSPECTS IN ASTROPARTICLE PHYSICS." In Proceedings of the First Madagascar International Conference on High-Energy Physics. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776983_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cline, D., and R. Peccei. "Trends in Astroparticle Physics." In UCLA International Conference. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814538220.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Astroparticle physic"

1

Grashorn, Eric William. Astroparticle physics with the MINOS Far Detector. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/1415813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koushiappas, Savvas M. Fundamental problems in astroparticle physics and cosmology. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1600111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alford, Mark G., Carl M. Bender, Claude W. Bernard, James H. Buckley, Francesc Ferrer, Henric S. Krawczynski, and Michael C. Ogilvie. Studies in Quantum Field Theory and Astroparticle Physics. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1135921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krennrich, Frank. Investigations in γ-Ray Astrophysics and Astroparticle Physics. Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1259531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aihara, Hiroaki. Latin American Strategy for Research Infrastructures for High Energy, Cosmology, Astroparticle Physics LASF4RI for HECAP. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1827394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography