Academic literature on the topic 'Astrometric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Astrometric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Astrometric"
Klioner, S. A. "Relativistic astrometry and astrometric relativity." Proceedings of the International Astronomical Union 3, S248 (October 2007): 356–62. http://dx.doi.org/10.1017/s174392130801956x.
Full textTubbs, R., N. M. Elias, R. Launhardt, S. Reffert, F. Delplancke, A. Quirrenbach, T. Henning, and D. Queloz. "ESPRI data-reduction strategy and error budget for PRIMA." Proceedings of the International Astronomical Union 3, S248 (October 2007): 132–33. http://dx.doi.org/10.1017/s1743921308018887.
Full textSeidelmann, P. K. "Space Astrometry and the HST Wide Field/Planetary Camera." Symposium - International Astronomical Union 141 (1990): 347–54. http://dx.doi.org/10.1017/s0074180900087040.
Full textSakai, N. "SYNERGY BETWEEN OPTICAL (GAIA) AND RADIO (VLBI)ASTROMETRIC RESEARCHES." Revista Mexicana de Astronomía y Astrofísica Serie de Conferencias 52 (October 5, 2020): 9–11. http://dx.doi.org/10.22201/ia.14052059p.2020.52.03.
Full textSchilbach, E., Wenjing Jin, M. Crézé, P. D. Hemenway, I. I. Kumkova, I. K. Platais, S. Röser, C. Turon, and J. J. Wang. "Commission 24: Photographic Astrometry: (Astrometrie Photographique)." Transactions of the International Astronomical Union 24, no. 1 (2000): 48–59. http://dx.doi.org/10.1017/s0251107x00002571.
Full textFey, Alan L. "Limits on Astrometric Accuracy." International Astronomical Union Colloquium 180 (March 2000): 20–28. http://dx.doi.org/10.1017/s0252921100000063.
Full textHobbs, David, Berry Holl, Lennart Lindegren, Frédéric Raison, Sergei Klioner, and Alexey Butkevich. "Determining PPN γ with Gaia's astrometric core solution." Proceedings of the International Astronomical Union 5, S261 (April 2009): 315–19. http://dx.doi.org/10.1017/s1743921309990561.
Full textPlatais, I., A. L. Fey, S. Frey, S. G. Djorgovski, C. Ducourant, Ž. Ivezić, A. Rest, C. Veillet, R. F. G. Wyse, and N. Zacharias. "Deep Astrometric Standards." Proceedings of the International Astronomical Union 3, S248 (October 2007): 320–23. http://dx.doi.org/10.1017/s1743921308019455.
Full textZhang, Yigong, Jiancheng Wang, Jie Su, Xiangming Cheng, and Zhenjun Zhang. "Astrometric Observations of a Near-Earth Object Using the Image Fusion Technique." Astronomical Journal 162, no. 6 (November 19, 2021): 250. http://dx.doi.org/10.3847/1538-3881/ac2c6f.
Full textNeuhäuser, R., A. Seifahrt, T. Röll, A. Bedalov, and M. Mugrauer. "Detectability of Planets in Wide Binaries by Ground-Based Relative Astrometry with AO." Proceedings of the International Astronomical Union 2, S240 (August 2006): 261–63. http://dx.doi.org/10.1017/s1743921307004139.
Full textDissertations / Theses on the topic "Astrometric"
O'Mullane, William. "Implementing the Gaia Astrometric Solution." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/83861.
Full textEsta tesis presenta el marco numérico y computacional para la solución astrométrica Gaia. También cubre las consideraciones astrofísicas relativas a la solución y los aspectos relacionados con la gestión de la implementación de un sistema tan complejo.
Bauer, Christina, of Western Sydney Nepean University, and Faculty of Science and Technology. "Astrometric observations of wide southern double stars." THESIS_FST_XXX_Bauer_C.xml, 1995. http://handle.uws.edu.au:8081/1959.7/251.
Full textMaster of Science (Hons)
Bauer, Christina. "Astrometric observations of wide southern double stars." Thesis, View thesis, 1995. http://handle.uws.edu.au:8081/1959.7/251.
Full textBauer, Christina. "Astrometric observations of wide southern double stars /." View thesis, 1995. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030827.113613/index.html.
Full textPasquato, Ester. "Effects of stellar surface inhomogeneities on astrometric accuracy." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209872.
Full textIn the case of a red supergiant star, the average photocentre shift is about 0.1 AU. Such a photocentric noise translates in a 10% inaccuracy on the parallax (independently of the distance), which becomes larger than the statistical error on the parallax derived from the data reduction for stars that are up to about 4 kpc away. For the most nearby stars, we derive an inaccuracy on the parallax that can be 10 times its statistical error. Finally we estimate that up to about 4000 stars among red supergiants and bright giants may have astrometric parameters that are inaccurate at levels bigger than expected because of the surface brightness asymmetries. In the determination of this number, a crucial role is played by the Gaia observable magnitude range. The fact that Gaia will not observe stars brighter than 5.6 in the Gaia G band means that the closest stars will not be observed. Yet, the impact of the surface brightness asymmetries is proportional to their angular size, meaning that the stars whose astrometric accuracy would be most affected are not observed.
Various non-Gaussian spot models (as applicable in the case of magnetic spots) have been implemented and analytical predictions for the effects of such magnetic spots are computed for the most representative classes of magnetic stars.
Another effect of the presence of surface brightness asymmetries is their impact on Gaia data processing flow. The quality of the fit of the data is evaluated with the F2 parameter that is a transformation of χ2 such that it has a unit normal distribution when the model is adequate and it is independent of the number of measurements. If the goodness-of-fit F2 of the single-star solution is not good enough (F2>3), a chain of solution of growing complexity is tried until a satisfactory one (with F2<3) is obtained. If no good solution is found, a so-called stochastic solution is computed where a "cosmic" error is added to the data in order to obtain a single-star solution with F2=0. We show that the photocentre noise induces an increase in the goodness-of-fit parameter, causing this chain of solutions to be entered. Depending on the characteristics of the photocentre noise, a variable fraction of the stars in our simulations end up with a non-single-star solution. Yet, we show that these (orbital) solutions are not acceptable because non-significant or non-physical. Finally, an important fraction of stars is assigned a stochastic solution with a cosmic noise matching well the photocentric noise.
/
Les asymétries de brillance de surface sont une caractéristique commune des étoiles. Parmi d'autres effets, elles provoquent une différence entre la projection du centre de masse et le photocentre. L'évolution de ces structures de surface rend cette différence variable avec le temps. Dans certains cas, le déplacement du photocentre peut être une fraction non négligeable du rayon de l'étoile R et, si R>1 UA, de la parallaxe. Nous examinons l'impact des asymétries de brillance de surface sur la solution astrométrique de Gaia et sur le processus de traitement des données. En particulier nous dérivons des expressions analytiques pour le changement des paramètres astrométriques déerivées pour une étoile simple, par rapport aux paramètres pour une étoile uniformément lumineuse, en fonction des caractéristiques des asymétries de brillance de surface. Ces prévisions sont confirmées par les résultats de simulations du traitement des données astrométriques de Gaia, auxquelles des mouvements du photocentre causés par des asymétries de brillance de surface ont été ajoutés en utilisant un modèle gaussien markovien.
Dans le cas d'une étoile super-géante rouge, le décalage moyen du photocentre est d'environ 0.1 UA. Un bruit photocentrique de cette amplitude se traduit dans une imprécision de 10% sur la parallaxe (indépendamment de la distance), qui peut devenir plus grande que l'erreur statistique sur la parallaxe déerivée par la réduction des données, pour les étoiles plus proches d'environ 4 kpc. Pour les étoiles les plus proches, nous évaluons une imprécision sur la parallaxe qui peut être 10 fois leur erreur statistique. Finalement, nous estimons que jusqu'à environ 4000 étoiles parmi les super-géantes rouges et géantes brillantes peuvent avoir des paramètres astrométriques inexactes à des niveaux plus grands que prévu en raison des asymétries de brillance de surface. Dans la détermination de ce nombre, la gamme de magnitudes observables par Gaia joue un rôle crucial. Le fait que Gaia n'observera pas les étoiles plus brillantes que 5.6 mag (en bande Gaia) signifie que les étoiles les plus proches ne seront pas observées. Pourtant, l'impact des asymétries de brillance de surface est proportionnel à leur taille angulaire, ce qui signifie que les étoiles dont la précision astrométrique seraient la plus affecté ne seront pas observées.
Différents modèles de taches ont été réalisés et des prédictions analytiques pour les effets de ces taches magnétiques sont calculés pour les classes les plus représentatives des étoiles magnétiques.
Un autre effet de la présence des asymétries de brillance de surface est leur impact sur le traitement des données de Gaia. La qualité de l'ajustement des données est évaluée avec le paramètre F2 qui est une transformation de χ2 telle qu'il ait une distribution normale lorsque le modèle est adéquat. Si la qualité de l'ajustement F2 de la solution étoile-simple n'est pas acceptable (F2>3), une chaîne de solutions de complexité croissante est essayée jusqu'à ce qu'une solution satisfaisante (avec F2<3) soit obtenue. Si aucune solution satisfaisante n'est trouvée, une solution dite stochastique est calculée où une erreur "cosmique" est ajoutée aux données afin d'obtenir une solution étoile-simple avec F2=0. Nous montrons que le bruit du photocentre induit une augmentation de F2, ce qui provoque l'activation de cette chaîne de solutions. Selon les caractéristiques du bruit du photocentre, une solution étoile-non-simple est obtenue pour une fraction variable des étoiles dans nos simulations. Nous montrons que ces solutions (orbitales) ainsi obtenues ne sont pas acceptables car non significatives ou non-physiques. Enfin, une fraction importante d'étoiles se voient attribuer une solution stochastique avec un bruit cosmique correspondant au bruit photocentrique.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Andrei, Alexandre Humberto. "Observed and predicted data in radio astrometric observations." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279145.
Full textColavita, Michael Mark. "Atmospheric limitations of a two-color astrometric interferometer." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15223.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 381-389.
by Michael Mark Colavita.
Ph.D.
Huang, Chunsheng. "Design and analysis of the Astrometric Telescope Facility." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/184994.
Full textEriksson, Urban. "Stellar Surface Structures and the Astrometric Serach for Exoplnaets." Licentiate thesis, Kristianstad University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235229.
Full textBrannigan, Emma Leigh. "A spectroscopic and spectro-astrometric study of T Tauri stars." Thesis, University of Hertfordshire, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440155.
Full textBooks on the topic "Astrometric"
Kopal, Zdeněk, and Jürgen Rahe, eds. Astrometric Binaries. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5343-7.
Full textEichhorn, Heinrich K., and Robert J. Leacock, eds. Astrometric Techniques. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4676-7.
Full textCharlie, Sobeck, and Ames Research Center, eds. Astrometric telescope facility.: Preliminary systems definition study. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Find full textAlfano, Roberto. Astrometria Fotografica: Photographic Astrometry. Genoa, Italy: Genoa Astronomical Observatory, 1988.
Find full textRobertson, Douglas Scott. Geodetic and astrometric measurements with very-long-baseline interferometry. [Rockville, Md.]: U.S. Department of Commerce, National Oceanic and Atmospheric Administratrion, 1985.
Find full textC, Perryman M. A., European Space Agency, and FAST Consortium, eds. The Hipparcos and Tycho catalogues: Astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission. Noordwijk, Netherlands: ESA Publications Division, 1997.
Find full textNishioka, Kenji. An astrometric facility for planetary detection on the space station. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Find full textC, Perryman M. A., Leeuwen Floor van 1952-, Guyenne T. D, Royal Greenwich Observatory, and European Space Agency, eds. Future possibilities for astrometry in space: A workshop organised jointly by the Royal Greenwich Observatory and the European Space Agency, Cambridge, UK, 19-21 June 1995. Noordwijk, The Netherlands: European Space Agency, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Astrometric observations of comets and asteroids and subsequent orbital investigations: Final report. [Washington, D.C.?: National Aeronautics and Space Administration, 1989.
Find full textMarel, H. van der. On the "great circle reduction" in the data analysis for the astrometric satellite Hipparcos. Delft, The Netherlands: Rijkscommissie voor Geodesie, 1988.
Find full textBook chapters on the topic "Astrometric"
Benedict, G. Fritz. "Astrometric Planets." In Encyclopedia of Astrobiology, 113–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_121.
Full textLatham, David W. "Astrometric Orbit." In Encyclopedia of Astrobiology, 113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_122.
Full textBenedict, G. Fritz, and Nader Haghighipour. "Astrometric Planets." In Encyclopedia of Astrobiology, 192–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_121.
Full textLatham, David W., and Nader Haghighipour. "Astrometric Orbit." In Encyclopedia of Astrobiology, 191–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_122.
Full textColavita, M. M. "Astrometric Techniques." In Planets Outside the Solar System: Theory and Observations, 177–88. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4623-4_13.
Full textBenedict, G. Fritz, and Nader Haghighipour. "Astrometric Planets." In Encyclopedia of Astrobiology, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_121-8.
Full textBenedict, G. Fritz, and Nader Haghighipour. "Astrometric Planets." In Encyclopedia of Astrobiology, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_121-7.
Full textLatham, David W., and Nader Haghighipour. "Astrometric Orbit." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_122-3.
Full textDommanget, J. "HIPPARCOS Astrometric Binaries." In Astrometric Binaries, 47–63. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5343-7_5.
Full textReasenberg, Robert D. "Microarcsecond Astrometric Interferometry." In Astrometric Techniques, 321–30. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4676-7_40.
Full textConference papers on the topic "Astrometric"
Hutter, Donald J. "USNO Astrometric Interferometer." In 1994 Symposium on Astronomical Telescopes & Instrumentation for the 21st Century, edited by James B. Breckinridge. SPIE, 1994. http://dx.doi.org/10.1117/12.177229.
Full textHorner, Scott D., Marvin E. Germain, Frederick H. Harris, Mark S. Johnson, Kenneth J. Johnston, David G. Monet, Marc A. Murison, et al. "Full-sky Astrometric Mapping Explorer: an optical astrometric survey mission." In Astronomical Telescopes and Instrumentation, edited by James B. Breckinridge and Peter Jakobsen. SPIE, 2000. http://dx.doi.org/10.1117/12.394030.
Full textPhillips, James D. "Spectrometer for astrometric interferometry." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Robert D. Reasenberg. SPIE, 1995. http://dx.doi.org/10.1117/12.212990.
Full textSwartz, Raymond. "The SIM astrometric grid." In Astronomical Telescopes and Instrumentation. SPIE, 2003. http://dx.doi.org/10.1117/12.460861.
Full textCranney, Jesse, Israel Vaughn, Dionne Haynes, Trevor Mendel, Stephanie Monty, Davide Greggio, David Brodrick, and François Rigaut. "MAVIS: astrometric calibration technique." In Adaptive Optics Systems VIII, edited by Dirk Schmidt, Laura Schreiber, and Elise Vernet. SPIE, 2022. http://dx.doi.org/10.1117/12.2629678.
Full textVondrák, J., V. Štefka, Vasile Mioc, Cristiana Dumitrache, and Nedelia A. Popescu. "Combination of space- and ground-based astrometric observations to create astrometric catalogs." In EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993626.
Full textBusonero, Deborah. "Astrometric instrument modeling in the context of Gaia astrometric verification: tasks and activities." In SPIE Astronomical Telescopes + Instrumentation, edited by George Z. Angeli and Philippe Dierickx. SPIE, 2012. http://dx.doi.org/10.1117/12.926703.
Full textWiramihardja, S. D., M. I. Arifyanto, Y. Sugianto, C. Kunjaya, Manuel de León, D. M. de Diego, and R. M. Ros. "Astrometric Study of Lo 1339." In MATHEMATICS AND ASTRONOMY: A JOINT LONG JOURNEY: Proceedings of the International Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3506078.
Full textPhillips, James D., Robert W. Babcock, Marc A. Murison, Robert D. Reasenberg, Allen J. Bronowicki, Milton H. Gran, Charles F. Lillie, William McKinley, and Robert J. Zielinski. "Newcomb: a small astrometric interferometer." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Robert D. Reasenberg. SPIE, 1995. http://dx.doi.org/10.1117/12.212993.
Full textKorsch, Dietrich. "Design Optimization Of Astrometric Reflectors." In SPIE 1989 Technical Symposium on Aerospace Sensing, edited by Dietrich G. Korsch. SPIE, 1989. http://dx.doi.org/10.1117/12.955570.
Full textReports on the topic "Astrometric"
Kaplan, G. H. A Comparison of Radio and Optical Astrometric Reduction Algorithms. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada423227.
Full textPerlmutter, S. An astrometric search for a stellar companion to the sun. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6484337.
Full textTaff, Laurence G. The Analysis of Near-Earth Satellite Astrometric Data at the ETS. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada163902.
Full textTucker, Douglas. The Photometric and Astrometric Properties of DECam as Enablers of Precision Science. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1460564.
Full textJohnston, K. J. Astrometry and Reference Frames. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada389881.
Full textJohnston, Kenneth J. The Future of Space Astrometry. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada435796.
Full textHenry, Todd J., David G. Monet, Paul D. Shankland, Mark J. Reid, William van Altena, and Norbert Zacharias. Ground-Based Astrometry 2010-2020. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada524845.
Full textJohnston, Kenneth J. Advances in Astrometry and Geophysics Made Possible by Radio Interferometry. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada400378.
Full textWinter, L. SIM Grid Star Observations: Astrometry With a New High Dynamic Range Imaging Device. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada435793.
Full text