Academic literature on the topic 'Astaxanthin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Astaxanthin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Astaxanthin"
Nishida, Yasuhiro, Allah Nawaz, Karen Hecht, and Kazuyuki Tobe. "Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants." Nutrients 14, no. 1 (December 27, 2021): 107. http://dx.doi.org/10.3390/nu14010107.
Full textMularczyk, Malwina, Nabila Bourebaba, Krzysztof Marycz, and Lynda Bourebaba. "Astaxanthin Carotenoid Modulates Oxidative Stress in Adipose-Derived Stromal Cells Isolated from Equine Metabolic Syndrome Affected Horses by Targeting Mitochondrial Biogenesis." Biomolecules 12, no. 8 (July 27, 2022): 1039. http://dx.doi.org/10.3390/biom12081039.
Full textTurujman, Saleh A., Wayne G. Wamer, Rong Rong Wei, and Richard H. Albert. "Rapid Liquid Chromatographic Method to Distinguish Wild Salmon from Aquacultured Salmon Fed Synthetic Astaxanthin." Journal of AOAC INTERNATIONAL 80, no. 3 (May 1, 1997): 622–32. http://dx.doi.org/10.1093/jaoac/80.3.622.
Full textRodriguez-Ruiz, Violeta, José Salatti-Dorado, Abolfazl Barzegari, Alba Nicolas-Boluda, Amel Houaoui, Carmen Caballo, Noelia Caballero-Casero, et al. "Astaxanthin-Loaded Nanostructured Lipid Carriers for Preservation of Antioxidant Activity." Molecules 23, no. 10 (October 11, 2018): 2601. http://dx.doi.org/10.3390/molecules23102601.
Full textŠimat, Vida, Nikheel Bhojraj Rathod, Martina Čagalj, Imen Hamed, and Ivana Generalić Mekinić. "Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application." Marine Drugs 20, no. 3 (March 12, 2022): 206. http://dx.doi.org/10.3390/md20030206.
Full textLaja, Rana Salsabila Putri. "Astaxanthin untuk Kesehatan Kardiovaskular." Jurnal Penelitian Perawat Profesional 3, no. 2 (April 13, 2021): 243–52. http://dx.doi.org/10.37287/jppp.v3i2.259.
Full textAribisala, Jamiu Olaseni, Sonto Nkosi, Kehinde Idowu, Ismaila Olanrewaju Nurain, Gaositwe Melvin Makolomakwa, Francis O. Shode, and Saheed Sabiu. "Astaxanthin-Mediated Bacterial Lethality: Evidence from Oxidative Stress Contribution and Molecular Dynamics Simulation." Oxidative Medicine and Cellular Longevity 2021 (December 9, 2021): 1–24. http://dx.doi.org/10.1155/2021/7159652.
Full textToyoshima, Hiroki, Ami Miyata, Risako Yoshida, Taichiro Ishige, Shinichi Takaichi, and Shinji Kawasaki. "Distribution of the Water-Soluble Astaxanthin Binding Carotenoprotein (AstaP) in Scenedesmaceae." Marine Drugs 19, no. 6 (June 20, 2021): 349. http://dx.doi.org/10.3390/md19060349.
Full textBAUMANN, LESLIE S. "Astaxanthin." Skin & Allergy News 43, no. 3 (March 2012): 23. http://dx.doi.org/10.1016/s0037-6337(12)70100-6.
Full textKindlund, Petra J. "Astaxanthin." Nutrafoods 10, no. 1 (January 2011): 27–31. http://dx.doi.org/10.1007/bf03223352.
Full textDissertations / Theses on the topic "Astaxanthin"
Silva, Danielle Alves da. "Maximização da produção de astaxantina por Phaffia rhodozyma (Xanthophyllomyces dendrohous) utilizando água de parboilização do arroz." reponame:Repositório Institucional da FURG, 2009. http://repositorio.furg.br/handle/1/2575.
Full textSubmitted by Caroline Silva (krol_bilhar@hotmail.com) on 2012-09-04T20:03:07Z No. of bitstreams: 1 danielle.pdf: 1295792 bytes, checksum: e255e078050df8af82b19c58f6dcc0f3 (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2012-09-22T18:42:17Z (GMT) No. of bitstreams: 1 danielle.pdf: 1295792 bytes, checksum: e255e078050df8af82b19c58f6dcc0f3 (MD5)
Made available in DSpace on 2012-09-22T18:42:17Z (GMT). No. of bitstreams: 1 danielle.pdf: 1295792 bytes, checksum: e255e078050df8af82b19c58f6dcc0f3 (MD5) Previous issue date: 2009
O interesse na produção de astaxantina por fontes naturais vem aumentando significativamente nos últimos anos, devido a possibilidade de atuar como corante e sua capacidade antioxidante biológica potente. É o carotenóide principal encontrado na levedura Phaffia rhodozyma, sendo esse microrganismo adequado para o uso como fonte do pigmento industrial em razão de seu metabolismo heterotrófico, padrão de crescimento relativamente rápido, qualidade nutricional e seguro como aditivo alimentar. A presente dissertação teve como objetivo principal realizar cultivos utilizando a levedura Phaffia rhodozyma, estudando diferentes meios de cultura, empregando a água de parboilização do arroz como substrato. Inicialmente selecionou-se dentre 3 cepas de P. rhodozyma: NRRL Y-17268, NRRL Y-10921 e NRRL Y-10922, a mais promissora quanto a produção de astaxantina, utilizando glicose e sacarose como fonte de carbono. Os cultivos foram realizados em frascos agitados a 25ºC, 150rpm, por um período de 168h. Através do acompanhamento da bioprodução de astaxantina, a levedura P. rhodozyma NRRL Y-17268 foi selecionada, pois se destacou como boa produtora do carotenóide, alcançando 7,0g.L-1 de biomassa, 350,2μg.g-1 de produção de astaxantina específica e 2,4μg.mL-1 de astaxantina volumétrica, utilizando sacarose. Utilizou-se a metodologia de planejamento experimenta e análise de superfície de resposta para verificar os efeitos das variáveis em estudo e as condições que levaram a melhor bioprodução da astaxantina. Um planejamento experimental fracionário 2IV 6-2 foi realizado para determinar as variáveis que mais influenciavam na produção da astaxantina. As variáveis independentes estudadas foram concentrações de extrato de levedura (1 a 10g.L-1), extrato de malte (1 a 10g.L-1), peptona (1 a 10g.L-1), sacarose (5 a 20g.L-1), efluente da parboilização do arroz (0 a 180g.L-1) e o pH inicial do meio (4 a 6), tendo como resposta a produção de biomassa, produção de astaxantina específica e produção de astaxantina volumétrica. Os valores máximos obtidos foram 8,9g.L-1 de biomassa, 538,4μg.g-1 de astaxantina específica e 3,1μg.mL-1 de astaxantina volumétrica, em diferentes condições de composição de meio de cultivo. O extrato de levedura não apresentou efeito significativo em nenhuma das respostas avaliadas, sendo realizado um teste de Tukey na faixa de 0 a 1g.L-1. A concentração de extrato de levedura não apresentou diferença significativa, sendo retirado do meio de cultivo. No segundo planejamento foram ampliadas as faixas de estudo das variáveis selecionadas: concentrações de extrato de malte (8,75 a 16,25g.L-1), sacarose (15 a 35g.L-1), peptona (8,75 a 16,25g.L-1) e o pH mantido no ponto central 5,0. A partir dos resultados, verificou-se um incremento na concentração máxima de biomassa obtida, alcançando 10,9g.L-1 e na produção de astaxantina específica para 628,8μg.g-1. As melhores condições encontradas através das superfícies de resposta para maximização da produção de astaxantina volumétrica foram: 16,25g.L-1 de extrato de malte, 8,75g.L-1 de peptona, 15g.L-1 de sacarose e 87,5g.L-1 de água de parboilização do arroz, alcançando em torno de 5,4μg.mL-1.
The interest in astaxanthin production by natural sources has increased significantly in the last few years, because of its possibility of acting as corants and its powerfull biological antioxidant capacity. It’s the most important carotenoid found in the yeast Phaffia rhodozyma and this microorganism is appropriate to use in the source of industrial pigment due to its heterotrophic metabolism, relatively rapid growth, nutritional quality and safe as a food additive. The present dissertation had as main objective, through fermentation, using the yeast Phaffia rhodozyma studying different culture medium and the rice parboilization wastewater as a substrate. Firstly, the greatest astaxanthin producer, using glucose and sucrose as carbon source was selected amongst three strains of Phaffia rhodozyma: NRRL Y-17268, NRRL Y-10921 and NRRL Y-10922. The cultivation condition was realized in a rotatory flasks, at 25ºC, 150rpm, for 168h. Through the accompaniment of the bioproduction of astaxanthin, the yeast P. rhodozyma NRRL Y-17268 was selected, because it stood out as a good producer of the carotenoid, 7.0g.L-1 of biomass, 350.2μg.g-1 of specific production of astaxanthin and 2.4μg.mL-1 of volumetric production of astaxanthin, using sucrose. The techniques of experimental design and analysis of response surfaces were used to verify the effects of the studied variables and the condictions wich led to the best production of astaxanthin. A fractional experimental design 2IV 6-2 was used to determine the independents variables that most influenced in the production of astaxanhin. The studied independents variables were yeast extract concentration (1 to 10g.L-1), malt extract (1 to 10g.L-1), peptone (1 to 10g.L-1), sucrose (5 to 20g.L-1), rice parboilization wastewater (0 to 180g.L-1) and the initial pH (4 to 6), having as answer the biomass production, specific production of astaxanthin and volumetric production of astaxanthin. The highest values obtained were 8.9g.L-1 of biomass, 538.4μg.g-1 of specific astaxanthin and 3.1μg.mL-1 of volumetric astaxanthin, in differents conditions of composition of cultivation medium. The yeast extract didn’t show significant effect in any answer, being made a Tukey test in the range of 0 to 1g.L-1. In this test the yeast extract concentration didn’t show significant difference, then it was removed from the cultivation medium. In a second design the range were amplied: malt extract concentration (8.75 to 16.25g.L-1), sucrose (15 to 35g.L-1), peptone (8.75 to 16.25g.L-1) and the pH was maintained in the central point (5.0). From the results, verify an increased in the maximum biomass concentration obtained, reaching 10.9g.L-1 and in a specific production of astaxanthin to 628.8μg.g-1. The better conditions found through of response surface to the maximization of volumetric production of astaxanthin was: 16.25g.L-1 of malt extract, 8.75g.L-1 of peptone, 15g.L-1 of sucrose and 87.5g.L-1 of rice parboilization waste water, reaching around 5.4μg.mL-1.
Zuluaga, tamayo Marisol. "Systèmes hydrophiles antioxydants pour applications cardiovasculaires : synthèse, caractérisation, études in vitro et in vivo." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCD041/document.
Full textAn over concentration of reactive oxygen species induces a redox imbalance within the cell inducing oxidative tissue damage and leading to oxidative stress related diseases, particularly cardiovascular pathologies. Astaxanthin, a well-known and studied antioxidant molecule, member of the xanthophyll carotenoid family, presents an important therapeutic potential. However, the chemical structure confers to astaxanthin a hydrophobic character and renders it susceptible to air, light and temperate degradation. During this thesis, a carrier system based on astaxanthin inclusion within hydroxypropyl-β-cyclodextrin(CD-A) was developed. We demonstrate that after astaxanthin inclusion, not only its stability was enhanced by also the antioxidant scavenging capabilities were preserved, confirmed by chemical and biological tests. The action of CD-A seems to be mediated by PTEN/AKT, Nrf2/OH1/NQO1 signaling pathways of endothelial cells submitted to oxidative stress. Then, two systems based on PVA/dextran and Pullulan/Dextran loaded within CD-A were evaluated for astaxanthin in situ delivery in the stressed environment. The feasibility of using these systems in the local treatment of ischemia/reperfusion injury was evaluated as a proof of concept. PVA/Dextran patches showed good in vitro compatibility, high mechanical and stability properties, while preserving CD-A antioxidant capabilities, also the path suturability to the cardiac muscle and the in vivo biocompatibility were studied. The second system based on pullulan/dextran scaffolds were evaluated in vitro and in vivo in an ischemic/reperfusion model at different implantation periods. Results showed an inner body defense mechanism to foreign materials. Additionally, the Nrf2 translocation could indicate a protective effect of CD-A in treated tissues. This manuscript provides a support evidence of the therapeutic potential of CD astaxanthin delivery system, to act against oxidative stress linked to cardiovascular conditions
Xu, Simin, and 徐思敏. "Characterization of astaxanthin accumulation in green algae." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278553.
Full textXu, Simin. "Characterization of astaxanthin accumulation in green algae." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278553.
Full textBertolo, Adilson Luís. "Avaliação de um processo de extração e recuperação dos carotenóides presentes no resíduo da industrialização do camarão-rosa (Farfantepenaeus paulensis)." reponame:Repositório Institucional da FURG, 2007. http://repositorio.furg.br/handle/1/3515.
Full textSubmitted by Caroline Silva (krol_bilhar@hotmail.com) on 2012-09-25T22:01:19Z No. of bitstreams: 1 avaliao de um processo de extrao e recuperao dos carotenides presentes no resduo da industrializao do camaro-rosa farfantepenaeus paulensis.pdf: 1948791 bytes, checksum: 9ef49c6fc9309bc36c75d41139143d07 (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-06-12T18:09:40Z (GMT) No. of bitstreams: 1 avaliao de um processo de extrao e recuperao dos carotenides presentes no resduo da industrializao do camaro-rosa farfantepenaeus paulensis.pdf: 1948791 bytes, checksum: 9ef49c6fc9309bc36c75d41139143d07 (MD5)
Made available in DSpace on 2013-06-12T18:09:40Z (GMT). No. of bitstreams: 1 avaliao de um processo de extrao e recuperao dos carotenides presentes no resduo da industrializao do camaro-rosa farfantepenaeus paulensis.pdf: 1948791 bytes, checksum: 9ef49c6fc9309bc36c75d41139143d07 (MD5) Previous issue date: 2007
A astaxantina é um carotenóide da classe das xantofilas, amplamente distribuída em animais marinhos e aquáticos, sendo muito utilizada em formulações para aqüicultura e por suas propriedades antioxidantes, podendo também ser utilizada como corante alimentício por sua coloração avermelhada. Este carotenóide pode ser extraído de algas, bactérias e também de crustáceos como o camarão-rosa. Este crustáceo é amplamente capturado na região sul do Rio Grande do Sul, sendo que seu processamento gera mais de 60% de resíduos. O aproveitamento destes resíduos surge como uma alternativa a problemas de impacto ambiental, oriundos do seu despejo na lagoa dos Patos, bem como uma fonte alternativa de recursos para as indústrias e pescadores locais. Neste contexto, o objetivo deste trabalho foi a obtenção de carotenoproteína, utilizando resíduos provenientes da industrialização do camarãorosa(Farfantepenaeus paulensis) por meio de hidrólise enzimática com adição da enzima proteolítica Flavourzyme, e a partir dela, a purificação química da astaxantina, visando avaliar quais variáveis do processo possuíam efeito significativo, e depois de obtido o extrato, foi estudada sua estabilidade frente à luz e temperatura, utilizando astaxantina dissolvida em óleo de soja, como oleoresina. Para analisar quais as variáveis que realmente influenciam no processo de obtenção da carotenoproteína, optou-se pela utilização do planejamento experimental saturado 23 com três pontos centrais, onde se têm três variáveis independentes em dois níveis: tempo (2 e 3 h), temperatura (40 e 50ºC) e concentração de enzima/substrato (0,1 e 0,3%); e como variáveis dependentes: rendimento, porcentagem de proteína e de lipídios. As condições ótimas para o processamento foram: tempo de hidrolise de 2 horas, temperatura de hidrólise de 50°C e concentração de Enzima/Substrato de 0,3%, obtendo um rendimento do processo 9,4% , um teor de proteínas de 70,9% e teor de lipídios de 1,6%. Já para o processo de purificação química da carotenoproteína também foi utilizado um planejamento experimental quadrático completo do tipo 23, com três variáveis independentes em dois níveis, sendo elas: tempo de extração (80 e 280 min), temperatura de extração (26,6 e 43,4°C) e proporção de hexano/ acetona (8 e 92%) e como variáveis dependentes a concentração de astaxantina com três pontos centrais e dois axiais, sendo que com um tempo de extração química de 120 mim, temperatura de extração de 30 °C e com uma proporção de Hexano e Acetona de 25% foi obtida a maior concentração de astaxantina que foi de 197,41 ppm.15. Finalmente foi estudada a estabilidade da oleoresina frente ao calor, apresentando-se estável durante as 8 primeiras horas de exposição à temperatura de 105°C. Já na estabilidade frente à luz, a oleoresina mostrou-se estável por um período de 7 dias.
The Astaxanthin is a carotenoide of the xanthophylls class, widely distributed in marine and aquatic animals, and is often used in formulations for aquaculture and for their antioxidant properties and may also be used as food coloring on its reddish color. Astaxanthin can be extracted of seaweed, bacteria and also of crustaceans as the pink-shrimp. The pink-shrimp is amply captured in the southern region of Rio Grande do Sul, where their processing generates more than 60% of waste. The use of such waste emerges as an alternative to problems of the environmental impact of their eviction from the Pato´s lagoon, as well as an alternative source of resources for industries and local fishermen. In this context, the aim of this study is the obtainment of carotenoprotein using wastes from pink-shrimp processing (Farfantepenaeus Paulensis) through the proteolitic enzyme Flavourzyme, and its chemical purification, aiming to evaluate which of the process variables have significant effects. Once obtained the extract, its stability was studied faced to light and temperature, using astaxanthin dissolved in soy resin oil. To analyze the variables that really influenced the process of carotenoprotein obtainment, it was used an experimental design saturated 23, with three independent variables in two levels: time (2 and 3h), temperature (40 and 50°C) and concentration enzyme/substrate (0.1 and 0.3%) and as dependent variables the yield, lipids and proteins percentage, with three central points. The best conditions for processing were hidrolysys time of 2 hours and 50ºC of temperature, concentration enzyme/substrate of 0.3%, and the yield obtained on the process was 9.4%, protein level of 70,9% and lipids of 1.6%. To the process of chemical purification of the carotenoprotein it was also used an experimental design saturated 23, with three independent variables in two levels: time of extraction (80 and 280 minutes), temperature of chemical extraction (26,6 and 43,4°C) and hexane and acetone proportion (8 and 92%) and as dependent variable the astaxanthin concentration, with three central points and two axial points considering 16 an chemical extraction time of 120 minutes, extraction temperature of 30ºC and hexane and acetone in a 25% proportion the highest astaxanthin concentration gained was 197,41 ppm. Finally the stability of the resin oil faced to heat was studied, presenting stable during the 8 early hours of exposure to temperature of 105ºC. Faced to light, the oil resin became stable during 7 days.
Dermiki, Maria. "Recovery of astaxanthin using colloidal gas aphrons (CGA)." Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500537.
Full text劉愛霞 and Oi-ha Lau. "The growth and astaxanthin formation of haematococcus lacustris." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215488.
Full textGrant, Stephanie Mary. "Production of astaxanthin by the yeast Phaffia rhodozyma." Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324833.
Full textLau, Oi-ha. "The growth and astaxanthin formation of haematococcus lacustris." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19738195.
Full textObalil, Jiří. "Miniaturizované techniky pro analýzu průmyslových kvasinek." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2008. http://www.nusl.cz/ntk/nusl-216334.
Full textBooks on the topic "Astaxanthin"
Global Perspectives on Astaxanthin. Elsevier, 2021. http://dx.doi.org/10.1016/c2019-0-01800-6.
Full textNatural Astaxanthin Hawaii's Supernutrient. William Sears MD, 2015.
Find full textHosokawa, Masashi, and Hayato Maeda, eds. Fucoxanthin and Astaxanthin—Production, Biofunction, and Application. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-6325-1.
Full textMelborne, Paul A. Essential Guide to Astaxanthin: Dietary Sources, Properties and Health Benefits. Nova Science Publishers, Incorporated, 2019.
Find full textNagaraj, Subramani, and Ramasamy Rengasamy. Antioxidant and Anticancer Potential of Haematococcus Pluvialis Flotow: Astaxanthin against Hepatocarcinogenesis. LAP Lambert Academic Publishing, 2012.
Find full textPerfect Lifestyle Perfect Lifestyle Masterminds. Astaxanthin: Die Wahrheit über das Stärkste Natürliche Antioxidans - Wirkung, Einnahme, Dosierung. Independently Published, 2019.
Find full textRavishankar, G. A., and Rangarao Ambati. Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications. Elsevier Science & Technology Books, 2021.
Find full textGlobal Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications. Elsevier Science & Technology, 2021.
Find full textMinatelli, John A. Composition and Method to Alleviate Joint Pain Using Phospholipids and Astaxanthin: United States Patent 9974756. Independently Published, 2020.
Find full textLilienthal, Tristan. Die 20 Besten Nahrungsergänzungsmittel: Ein Gesundes, Vitales und Langes Leben Mit 5 HTP, Astaxanthin, Alpha Liponsäure, B12, Basenpulver, Kurkuma, Calcium, Chrom, Chlorella, Coenzym Q10, D3. Independently Published, 2017.
Find full textBook chapters on the topic "Astaxanthin"
Asker, Dalal, Tarek S. Awad, Teruhiko Beppu, and Kenji Ueda. "A Novel Radio-Tolerant Astaxanthin-Producing Bacterium Reveals a New Astaxanthin Derivative: Astaxanthin Dirhamnoside." In Microbial Carotenoids from Bacteria and Microalgae, 61–97. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-879-5_4.
Full textButler, Thomas, and Yonatan Golan. "Astaxanthin Production from Microalgae." In Microalgae Biotechnology for Food, Health and High Value Products, 175–242. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0169-2_6.
Full textAlcaino, Jennifer, Marcelo Baeza, and Victor Cifuentes. "Astaxanthin and Related Xanthophylls." In Fungal Biology, 187–208. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1191-2_9.
Full textJohnson, Eric A., and William A. Schroeder. "Biotechnology of Astaxanthin Production inPhaffia rhodozyma." In ACS Symposium Series, 39–50. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0637.ch004.
Full textHayashi, Masahiro, Takashi Ishibashi, Daichi Kuwahara, and Kazuaki Hirasawa. "Commercial Production of Astaxanthin with Paracoccus carotinifaciens." In Advances in Experimental Medicine and Biology, 11–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7360-6_2.
Full textCheng, Qiong, and Luan Tao. "Engineering Escherichia coli for Canthaxanthin and Astaxanthin Biosynthesis." In Microbial Carotenoids from Bacteria and Microalgae, 143–58. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-879-5_7.
Full textNaito, Yuji, Kazuhiko Uchiyama, Osamu Handa, and Wataru Aoi. "Therapeutic Potential of Astaxanthin in Diabetic Kidney Disease." In Advances in Experimental Medicine and Biology, 239–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7360-6_22.
Full textFayaazuddin, Thajuddin, Palanivel Prakash, Thajuddin Shakena Fathima, and Dharumadurai Dhanasekaran. "Commercial Astaxanthin Production from Green Alga Haematococcus pluvialis." In Food Microbiology Based Entrepreneurship, 279–304. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5041-4_15.
Full textDel Río, Esperanza, F. Gabriel Acién, and Miguel G. Guerrero. "Photoautotrophic Production of Astaxanthin by the Microalga Haematococcus pluvialis." In Sustainable Biotechnology, 247–58. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3295-9_13.
Full textAhuja, Manmeet, Jayesh Varavadekar, Mansi Vora, Piyush Sethia, Harikrishna Reddy, and Vidhya Rangaswamy. "Astaxanthin: Current Advances in Metabolic Engineering of the Carotenoid." In High Value Fermentation Products, 381–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119460053.ch17.
Full textConference papers on the topic "Astaxanthin"
Krestinin, Roman, Yulia Baburina, Irina Odinokova, Linda Sotnikova, and Olga Krestinina. "ASTAXANTHIN REDUCES ISOPROTERINOL-INDUCED MITOCHONDRIAL DYSFUNCTION." In XVII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2183.sudak.ns2021-17/212-213.
Full textWANG, Jun, and Yan ZHAO. "Astaxanthin in Disease Prevention and Treatment." In 2nd International Conference on Biomedical and Biological Engineering 2017 (BBE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/bbe-17.2017.67.
Full textEsser, A., Herbert Fisch, Karl-Heinz Haas, E. Haedicke, J. Paust, Wolfgang Schrof, and Anton Ticktin. "Nonlinear optics of astaxanthin thin films." In San Diego '92, edited by David J. Williams. SPIE, 1993. http://dx.doi.org/10.1117/12.139213.
Full textKaczor, Agnieszka, Malgorzata Baranska, P. M. Champion, and L. D. Ziegler. "In Situ Measurement of Astaxanthin In Biological Material." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482545.
Full textKumar, Ajitesh, S. K. Karthick Kumar, Aditya Gupta, and Debabrata Goswami. "Spectrally resolved femtosecond photon echo spectroscopy of astaxanthin." In International Conference on Fiber Optics and Photonics, edited by Sunil K. Khijwania, Banshi D. Gupta, Bishnu P. Pal, and Anurag Sharma. SPIE, 2010. http://dx.doi.org/10.1117/12.899781.
Full textMetheny-Barlow, Linda J., Christine N. McMahan, Kristin M. Stadelman, Anne M. Sanders, and Keith D. Barlow. "Abstract 3728: Astaxanthin as an adjunct therapy for breast cancer." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3728.
Full textZhu, Chuanhe, Wei Han, Zhao Chen, and Ziqiang Han. "Statistical optimization of microwave-assisted astaxanthin extraction from Phaffia rhodozym." In 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2010. http://dx.doi.org/10.1109/bmei.2010.5639994.
Full textSamara, C., G. Papanagiotou, M. Moustaka-Gouni, and C. Chatzidoukas. "A new promising astaxanthin producer: a Greek Haematococcus pluvialis isolate." In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1759014.
Full textGuo, Xuewu, Xianyu Li, and Dongguang Xiao. "Optimization of Culture Conditions for Production of Astaxanthin by Phaffia rhodozyma." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516101.
Full textKubo, H., K. Asai, K. Iwasaki, T. Kawai, M. Nishimura, N. Maruyama, H. Kadotani, et al. "Astaxanthin Suppresses Cigarette Smoke-Induced Emphysema Through Nrf2 Activation in Mice." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4066.
Full textReports on the topic "Astaxanthin"
Gantt, Elisabeth, Avigad Vonshak, Sammy Boussiba, Zvi Cohen, and Amos Richmond. Carotenoid-Rich Algal Biomass for Aquaculture: Astaxanthin Production by Haematococcus Pluvialis. United States Department of Agriculture, August 1996. http://dx.doi.org/10.32747/1996.7613036.bard.
Full textde Boer, Lex, Jelle van den Bos, Wim Graman, Sander Hazewinkel, Silke Hemming, Gerwien Kerkhof, Cees van der Lans, et al. Astaxanthine 2.0 : hoogwaardige inhoudsstoffen uit algen in kassen. Bleiswijk: Wageningen Plant Research, Business unit Glastuinbouw, 2018. http://dx.doi.org/10.18174/455264.
Full text