Academic literature on the topic 'Associative rings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Associative rings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Associative rings"
Beidar, K. I., V. N. Latyshev, V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev. "Associative rings." Journal of Soviet Mathematics 38, no. 3 (August 1987): 1855–929. http://dx.doi.org/10.1007/bf01093433.
Full textFeigelstock, Shalom. "E-Associative Rings." Canadian Mathematical Bulletin 36, no. 2 (June 1, 1993): 147–53. http://dx.doi.org/10.4153/cmb-1993-022-4.
Full textBelov, A. Ya. "On rings asymptotically close to associative rings." Siberian Advances in Mathematics 17, no. 4 (December 2007): 227–67. http://dx.doi.org/10.3103/s1055134407040013.
Full textBalaba, I. N., A. L. Kanunnikov, and A. V. Mikhalev. "Quotient rings of graded associative rings. I." Journal of Mathematical Sciences 186, no. 4 (September 23, 2012): 531–77. http://dx.doi.org/10.1007/s10958-012-1005-y.
Full textWaliyanti, Ida Kurnia, Indah Emilia Wijayanti, and M. Farchani Rosyid. "On Non-Associative Rings." Mathematics and Statistics 9, no. 2 (March 2021): 172–78. http://dx.doi.org/10.13189/ms.2021.090212.
Full textKirichenko, V. V. "Quivers of Associative Rings." Journal of Mathematical Sciences 131, no. 6 (December 2005): 6032–51. http://dx.doi.org/10.1007/s10958-005-0459-6.
Full textGarcía, J., and L. Marín. "WATTS THEOREMS FOR ASSOCIATIVE RINGS." Communications in Algebra 29, no. 12 (January 1, 2001): 5799–834. http://dx.doi.org/10.1081/agb-100107960.
Full textGarcía, J., and L. Marín. "MORITA THEORY FOR ASSOCIATIVE RINGS." Communications in Algebra 29, no. 12 (January 1, 2001): 5835–56. http://dx.doi.org/10.1081/agb-100107961.
Full textAshraf, Mohd, and Murtaza A. Quadri. "On commutativity of associative rings." Bulletin of the Australian Mathematical Society 38, no. 2 (October 1988): 267–71. http://dx.doi.org/10.1017/s0004972700027544.
Full textZlydnev, D. V. "Associative rings with large center." Journal of Mathematical Sciences 191, no. 5 (May 17, 2013): 691–93. http://dx.doi.org/10.1007/s10958-013-1352-3.
Full textDissertations / Theses on the topic "Associative rings"
Badawi, Ayman R. "π-regular Rings." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279388/.
Full textMontgomery, Martin. "Dimension of certain cleft binomial rings /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1188874501&sid=7&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaf 77). Also available for download via the World Wide Web; free to University of Oregon users.
Kriel, Marelize. "Endomorphism rings of hyperelliptic Jacobians." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1077.
Full textRivera, Roberto Rafael. "On properties of completely flexible loops." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/28841.
Full textLi, Yunchang, and 李云昌. "Degree estimate and preserving problems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206360.
Full textGreen, Ellen Yvonne. "Characterizing the strong two-generators of certain Noetherian domains." CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1539.
Full textChin, Melanie Soo, and m. chin@cqu edu au. "Towards a Reinterpretation of the Radical Theory of Associative Rings Using Base Radical and Base Semisimple Class Constructions." Central Queensland University. Computer Science, 2004. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20050411.102928.
Full textFerreira, Mauricio de Araujo 1982. "Funções valorização e anéis de valorização de Dubrovin em álgebras simples." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306563.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T04:54:44Z (GMT). No. of bitstreams: 1 Ferreira_MauriciodeAraujo_D.pdf: 1468385 bytes, checksum: 5379cb7621a86850c4016ed524805e3f (MD5) Previous issue date: 2011
Resumo: Nesta tese estudamos a relação entre duas teorias de valorização não-comutativas: anéis de valorização de Dubrovin e gauges. Os anéis de valorização de Dubrovin foram introduzidos em 1982, como uma generalização para anéis artinianos simples dos anéis de valorização invariantes em álgebras de divisão. Gauges são funções como valorizações, que podem ser definidas não só em álgebra de divisão, mas mais geralmente em álgebras simples e até mesmo semi-simples, de dimensão finita sobre corpos valorizados. Gauges foram introduzidas muito mais recentemente em 2010 por Tignol e Wadsworth. Assim como em valorizações de corpos, podemos definir um anel associado a uma gauge, que chamamos de anel da gauge. Propriedades aritméticas do anel da gauge são estudadas. Mostramos que o anel de uma gauge é sempre uma ordem semi-local integral sobre seu centro. Também descrevemos o anel da gauge com relação a composição de gauges e extensão de escalares. Introduzimos o conceito de gauge minimal em álgebras centrais simples, que são gauges cuja parte de grau zero da álgebra graduada associada tem o menor número possível de componentes simples. Mostramos que o anel de uma gauge minimal coincide com a interseção de uma família de anéis de valorização de Dubrovin, satisfazendo uma propriedade adicional, que foi introduzida por Gräter em 1992, e que é chamada de propriedade da interseção. Reciprocamente, se for dada uma família de anéis de valorização de Dubrovin, satisfazendo a propriedade da interseção, então existe uma gauge minimal associada, assumindo-se que a valorização de centro tem posto finito. O passo fundamental nesse sentido foi obtermos um teorema de existência de gauges minimais em álgebras centrais simples sobre corpos com uma valorização de posto finito. Além disso, generalizamos para álgebras simples, não necessariamente centrais, um resultado de Tignol e Wadsworth que relaciona gauges com certas funções valorização introduzidas por Morandi em 1989 e que estão associadas aos anéis de valorização de Dubrovin integrais sobre o centro. Como consequência desse último resultado, obtivemos um teorema de existência de gauges em álgebras semi-simples de dimensão finita sobre um corpo com uma valorização de posto 1
Abstract: In this thesis work we study the connection between two theories of noncommutative valuation: Dubrovin valuation rings and gauges. Dubrovin valuation rings were introduced in 1982 as a generalization of invariant valuation rings to Artinian simple rings. Gauges are valuation-like maps that can be defined not only on division algebras, but more generally, on finite-dimensional semisimple algebras over valued fields. Gauges were introduced much more recently in 2010 by Tignol and Wadsworth. Just as for valuations on fields, we can define a ring associated to a gauge, which we call gauge ring. Arithmetic properties of the gauge ring are studied. We show that the gauge ring is always a semi-local order integral over its center. We also describe the gauge ring with respect to composition of gauges and scalar extension. We introduce the concept of minimal gauge on central simple algebras, which are gauges that the degree zero part of the associated graded ring has the least number of simple components. We show that the ring of a minimal gauge is an intersection of a family of Dubrovin valuation rings having the intersection property. The intersection property was introduced by Gräter in 1992. We also proved that if we start with a family of Dubrovin valuation rings having the intersection property, then there exist a minimal gauge associated, assuming that the valuation of the center has finite rank. In this direction, our main result is an existence theorem of minimal gauges on central simple algebra over a field with a finite rank valuation. We also generalize for simple algebras, non-necessarily central, a result of Tignol and Wadsworth which relate gauges with certain value functions introduced by Morandi in 1989. This value functions are associated to Dubrovin valuation rings integral over its center. As a consequence of this last result, we obtain an existence theorem of gauges on finite dimensional semisimple algebras over a field with a rank one valuation
Doutorado
Matematica
Doutor em Matemática
Laubacher, Jacob C. "Secondary Hochschild and Cyclic (Co)homologies." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.
Full textWagner, David R. "Schur Rings Over Projective Special Linear Groups." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6089.
Full textBooks on the topic "Associative rings"
Tuganbaev, Askar A. Rings close to regular. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textSehgal, Sudarshan K. Units in integral group rings. Burnt Mill, Harlow, Essex, England: Longman Scientific & Technical, 1993.
Find full textFree rings and their relations. 2nd ed. London: Academic Press, 1985.
Find full textBergman, George M. Cogroups and co-rings in categories of associative rings. Providence, R.I: American Mathematical Society, 1996.
Find full textNearrings: Geneses and applications. Oxford: New York, 1992.
Find full textKharchenko, V. K. Automorphisms and Derivations of Associative Rings. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3604-4.
Full textKharchenko, V. K. Automorphisms and derivations of associative rings. Dordrecht: Kluwer Academic Publishers, 1991.
Find full textLam, T. Y. A first course in noncommutative rings. 2nd ed. New York: Springer, 2001.
Find full text1938-, Jain S. K., López-Permouth S. R. 1957-, and Midwest Non-commutative Ring Theory Conference (1989 : Ohio University), eds. Non-commutative ring theory: Proceedings of a conference held in Athens, Ohio, Sept. 29-30, 1989. Berlin: Springer-Verlag, 1990.
Find full text1943-, Ōshiro Kiyoichi, ed. Classical artinian rings and related topics. New Jersey: World Scientific, 2009.
Find full textBook chapters on the topic "Associative rings"
Bahturin, Yuri. "Associative Rings." In Basic Structures of Modern Algebra, 157–98. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0839-5_4.
Full textEl Badry, Mohammed, Mostafa Alaoui Abdallaoui, and Abdelfattah Haily. "Primary Group Rings." In Associative and Non-Associative Algebras and Applications, 179–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35256-1_10.
Full textAmitsur, S. A. "Associative Rings With Identities." In Some Aspects of Ring Theory, 1–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11036-8_1.
Full textOystaeyen, F. "Some Problems on Associative Rings." In Perspectives in Ring Theory, 339–57. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_30.
Full textFaith, Carl. "Polynomial rings over Vamosian and Kerr rings, valuation rings and Prüfer rings." In Rings and Things and a Fine Array of Twentieth Century Associative Algebra, 177–91. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/065/09.
Full textShirshov, A. I. "On the Representation of Lie Rings in Associative Rings." In Selected Works of A.I. Shirshov, 15–17. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-7643-8858-4_2.
Full textKleinfeld, Erwin, and Harry F. Smith. "A Generalization of Novikov Rings." In Non-Associative Algebra and Its Applications, 219–22. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0990-1_36.
Full textKharchenko, V. K. "Chapter 1. Structure of Rings." In Automorphisms and Derivations of Associative Rings, 1–95. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3604-4_1.
Full textFaith, Carl. "Isomorphic polynomial rings and matrix rings." In Rings and Things and a Fine Array of Twentieth Century Associative Algebra, 193–95. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/065/10.
Full textKharchenko, V. K. "The Galois Theory of Prime Rings." In Automorphisms and Derivations of Associative Rings, 141–200. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3604-4_3.
Full textConference papers on the topic "Associative rings"
Cicalò, Serena, and Willem de Graaf. "Non-associative gröbner bases, finitely-presented lie rings and the engel condition." In the 2007 international symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1277548.1277563.
Full textChen, F., and R. V. Schiller. "Vertical Structure and the Circulation Impact of the North Brazil Current Rings Off Guyana." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35342-ms.
Full textKwan and Lee. "Temporal associative memories using cascade and ring architectures." In International Joint Conference on Neural Networks. IEEE, 1989. http://dx.doi.org/10.1109/ijcnn.1989.118305.
Full textHealey, Peter. "Heteroassociative memory finite-state-machine processors." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.fb1.
Full textKirnos, Vasilii, Aleksander Vagachev, and Oleg Morozov. "Micro-machined Vibrating Ring Gyroscope Testing." In 2020 26th Conference of Open Innovations Association (FRUCT). IEEE, 2020. http://dx.doi.org/10.23919/fruct48808.2020.9087387.
Full textSchokker, Andrea. "Dynamic instability association with interactive buckling of ring stiffened composite shells." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-15.
Full textKrólikowski, Wiesław, Bo Su Chen, and Mark Cronin-Golomb. "Observation of Periodic Instabilities in Externally Driven Ring Phase Conjugator." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/pmed.1990.e4.
Full textМ Ю, Трейстер М. Ю. "Late archaic gold finger ring from phanagoria." In Hypanis. Труды отдела классической археологии ИА РАН. Crossref, 2023. http://dx.doi.org/10.25681/iaras.2020.978-5-94375-324-4.233-240.
Full textLavrenko, P., N. P. Yevlampieva, O. Okatova, N. Pogodina, and Michael Olbrich. "Internally orienting association of free and linked two-ring mesogens in solution." In Liquid Crystals, edited by Marzena Tykarska, Roman S. Dabrowski, and Jerzy Zielinski. SPIE, 1998. http://dx.doi.org/10.1117/12.301294.
Full textStewart, Kelley C., John J. Charonko, Takahiro Ohara, William C. Little, and Pavlos P. Vlachos. "Left Ventricular Vortex Ring Dynamics and Their Association to Early Diastolic Filling." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53398.
Full textReports on the topic "Associative rings"
Laferriere, Paul A., Charles J. Wetterrer, and Mark A. Kramer. A Photorefractive Ring Resonator Optical Associative Memory. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada302693.
Full textEpel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.
Full textGrumet, R., J. Burger, Y. Tadmor, A. Gur, C. Barry, A. Schäffer, and M. Petreikov. Cucumis fruit surface biology: Genetic analysis of fruit exocarp features in melon (C. melo) and cucumber (C. sativus). Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134155.bard.
Full text