Journal articles on the topic 'Assessment and management of benthic marine ecosystems'

To see the other types of publications on this topic, follow the link: Assessment and management of benthic marine ecosystems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Assessment and management of benthic marine ecosystems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Marcelli, Marco, Sergio Scanu, Francesco Manfredi Frattarelli, Emanuele Mancini, and Filippo Maria Carli. "A Benthic Zonation System as a Fundamental Tool for Natural Capital Assessment in a Marine Environment: A Case Study in the Northern Tyrrhenian Sea, Italy." Sustainability 10, no. 10 (October 19, 2018): 3786. http://dx.doi.org/10.3390/su10103786.

Full text
Abstract:
Coastal marine areas are characterized by the highest values of ecosystem services and by multiple uses that are often in conflict with each other. Natural capital analysis is claimed to be a valid tool to support space planning. In the context of the Marine Strategy Framework Directive (MSFD) of the European Union (EU), the EU Joint Research Centre (JRC) Scientific and Policy Report 2014 defines the monitoring of specific descriptors and their possible use, based on an ecosystem-services approach. Mediterranean marine ecosystems are characterized by high biodiversity and the presence of relevant benthic biocenosis that can be used as a tool to support coastal planning, conservation, and monitoring programs. In this study, we considered the Mediterranean benthic biocenosis, as classified by Pérès and Picard, as a working tool and propose a basic spatial unit for the assessment of marine ecosystem services. Focusing on a high-resolution local-scale analysis, this work presents an accurate identification of the different biocenoses for the coastal area of Civitavecchia in the Northern Tyrrhenian Sea, Italy, and ecosystem services, as well as a benefits assessment, of the Posidonia oceanica meadows.
APA, Harvard, Vancouver, ISO, and other styles
2

SALOMIDI, M., S. KATSANEVAKIS, A. BORJA, U. BRAECKMAN, D. DAMALAS, I. GALPARSORO, R. MIFSUD, et al. "Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management." Mediterranean Marine Science 13, no. 1 (February 28, 2012): 49. http://dx.doi.org/10.12681/mms.23.

Full text
Abstract:
The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources.
APA, Harvard, Vancouver, ISO, and other styles
3

Duarte, Sofia, Barbara Leite, Maria Feio, Filipe Costa, and Ana Filipe. "Integration of DNA-Based Approaches in Aquatic Ecological Assessment Using Benthic Macroinvertebrates." Water 13, no. 3 (January 29, 2021): 331. http://dx.doi.org/10.3390/w13030331.

Full text
Abstract:
Benthic macroinvertebrates are among the most used biological quality elements for assessing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and marine). Current morphology-based assessments have several limitations that may be circumvented by using DNA-based approaches. Here, we present a comprehensive review of 90 publications on the use of DNA metabarcoding of benthic macroinvertebrates in aquatic ecosystems bioassessments. Metabarcoding of bulk macrozoobenthos has been preferentially used in fresh waters, whereas in marine waters, environmental DNA (eDNA) from sediment and bulk communities from deployed artificial structures has been favored. DNA extraction has been done predominantly through commercial kits, and cytochrome c oxidase subunit I (COI) has been, by far, the most used marker, occasionally combined with others, namely, the 18S rRNA gene. Current limitations include the lack of standardized protocols and broad-coverage primers, the incompleteness of reference libraries, and the inability to reliably extrapolate abundance data. In addition, morphology versus DNA benchmarking of ecological status and biotic indexes are required to allow general worldwide implementation and higher end-user confidence. The increased sensitivity, high throughput, and faster execution of DNA metabarcoding can provide much higher spatial and temporal data resolution on aquatic ecological status, thereby being more responsive to immediate management needs.
APA, Harvard, Vancouver, ISO, and other styles
4

Demestre, Montserrat, Paolo Sartor, Alfredo Garcia-de-Vinuesa, Mario Sbrana, Francesc Maynou, and Andrea Massaro. "Ecological importance of survival of unwanted invertebrates discarded in different NW Mediterranean trawl fisheries." Scientia Marina 82, S1 (December 20, 2018): 189. http://dx.doi.org/10.3989/scimar.04784.28a.

Full text
Abstract:
There is currently very little information on the survival of discards of unwanted and unregulated catches of invertebrates after the stresses caused by capture. A great number of the unregulated invertebrate species form the basis of essential fish habitats for important fisheries resources such as hake, red mullet and cuttlefish. Thus, data on their survival after discarding may help to interpret the role of these species within the benthic ecosystems. Furthermore, descriptor 6 of the Marine Strategy Framework Directive (EU Directive 2008/56/E) foresees maintaining sea floor integrity at a level that ensures that the structure and functions of the ecosystems are safeguarded, and Article 7(d) of the Common Fisheries Policy (EU Reg. 1380/2013) foresees the implementation of management measures for fishing with low impact on the marine ecosystem and fishery resources. Survival measurements by direct recovery of tagged discarded species are not effective in bottom trawl fisheries, for which alternative studies such as semi-quantitative measures obtained on board prior to discarding can be considered as appropriate for mortality estimation. The present work assessed the survival of unwanted species using a semi-quantitative assessment on the deck of trawlers and at the laboratory for a period of 96 hours in two Mediterranean areas (the Catalan coast and the Ligurian and Northern Tyrrhenian seas). A high number of discarded invertebrates showed a high percentage of survival (>70%) in both assessments. The results can be used to provide information that can help to achieve higher survival levels of discarded specimens and enhance the productivity of fishing grounds by increasing the health of benthic ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
5

Lejeune, Benjamin, Dorothée Kopp, Sonia Mehault, and Maud Aline Mouchet. "Assessing the diet and trophic level of marine fauna in a fishing ground subject to discarding activity using stable isotopes." PLOS ONE 17, no. 6 (June 7, 2022): e0268758. http://dx.doi.org/10.1371/journal.pone.0268758.

Full text
Abstract:
Discarding practices have become a source of concern for the perennation of marine resources, prompting efforts of discard reduction around the globe. However, little is known about the fate of discards in marine environments. Discarding may provide food for various marine consumers, potentially affecting food web structure and stability. Yet, quantifying reliance upon discards is difficult because identity and frequency of discards may change according to multiple factors, and most previously used diet assessment techniques do not allow to assume consistency of feeding strategies over time. One currently untested hypothesis is that significant contribution of discards over time should reflect in increased trophic level (TL) of marine fauna, particularly in low TL consumers. Here, we explored this hypothesis by modeling the TL and assimilated diet of consumers living in fishing grounds subject to important discarding activity using stable isotope analysis. We found indications that benthic invertebrates and Chondrichthyes may depict a higher than expected TL, while other fish tend to depict similar to lower TL compared to global averages from the literature. Based on prior knowledge of discard consumption in the same area, stable isotope mixing models congruently revealed that discards may represent substantial portions of the assimilated diet of most benthic invertebrate macrofauna, cephalopods and Chondrichthyes. We highlight limitations and challenges of currently used diet assessment techniques to study discard consumption and stress that understanding their reintegration in marine food webs is crucial in the context of an ecosystem approach to fisheries management and to better understand the functioning of marine ecosystems subject to fishing.
APA, Harvard, Vancouver, ISO, and other styles
6

Turissa, Pragunanti, Nababan Bisman, Siregar Vincentius, Kushardono Dony, and Madduppa Hawis. "Evaluation Methods of Change Detection of Seagrass Beds in the Waters of Pajenekang and Gusung Selayar." Trends in Sciences 18, no. 23 (November 15, 2021): 677. http://dx.doi.org/10.48048/tis.2021.677.

Full text
Abstract:
Knowledge about coastal and small island ecosystems is increasing for the monitoring of marine resources based on remote sensing. Remote sensing data provides up-to-date information with various resolutions when detecting changes in ecosystems. Studies have defined a shift in marine resources but were limited only to pixel or object classification in changes of seagrass area. In the present study, two classification method analysis approaches were compared to obtain optimum results in detecting changes in seagrass extent. It aimed to determine the dynamics of a seagrass ecosystem by comparing two classification methods in the waters of Gusung Island and Pajenekang, South Sulawesi, these methods being pixel-based and object-based classification methods. This research used SPOT-7 satellite imagery with 6 m2 of spatial resolution. Accuracy assessment using the confusion matrix showed optimum accuracy in object-based classification with an accuracy value of 87 %. Meanwhile, pixel-based classification showed an accuracy value of 78 % around Gusung Island. Pajenekang Island had accuracy values of 69 % with object-based classification and 65 % with pixel-based classification. A comparison of both classification methods revealed statistically high accuracy in mapping the benthic habitats of seagrass ecosystems. The results of the classifications showed a decline in the area of seagrass populations around Gusung Island from 2016 - 2018 and around Pajenekang Island from 2013 - 2017, with a change rate of 11.8 % around the island of Gusung and 7.6 % around the island of Pajenekang. This can explain the reason for the temporal method of object-based research classification having the best potential to process data changes in areas of seagrass in South Sulawesi waters and remote sensing information for the mapping of coastal area ecosystems. HIGHLIGHTS Information on coastal ecosystems globally with remote sensing data is currently very easy to access, but information related to ecosystem management and seagrass ecology in certain areas is still limited Analysis of seagrass benthic changes in shallow water requires data processing methods with high accuracy The OBIA (Object Based Image Analysis) method is one of the analytical methods that can provide optimal results in observing changes in seagrass ecosystems in the waters of South Sulawesi, Indonesia GRAPHICAL ABSTRACT
APA, Harvard, Vancouver, ISO, and other styles
7

Paganelli, Daniela, Paola La Valle, Marina Pulcini, Raffaele Proietti, Luisa Nicoletti, Barbara La Porta, Loretta Lattanzi, Alfredo Pazzini, Monica Targusi, and Massimo Gabellini. "Towards an evaluation of physical loss pressure in the Italian seas for the implementation of the marine strategy framework directive." Journal of the Marine Biological Association of the United Kingdom 98, no. 1 (June 13, 2017): 61–69. http://dx.doi.org/10.1017/s0025315417000911.

Full text
Abstract:
All over the world marine waters are under increasing pressure from human activities affecting marine ecosystems. Several EU Directives require assessment of the condition of marine environments; in particular the Marine Strategy Framework Directive (MSFD) applies an ecosystem approach to the management of human activities. In this context, the mapping of pressures in a standardized and comparable way is a critical step to assess the spatial pattern, the temporal change and the ecological impacts of human pressures. Within the MSFD, one of the stressors directly affecting the seafloor is the Physical Loss (PL) pressure, representing the permanent or long-term alteration of marine habitats. The main purpose of this study was to propose a method to estimate the spatial extent of PL pressure in the framework of the Initial Assessment phase of the MSFD. Furthermore, considering that human activities PL-related cause the loss of benthic habitats, and that the Mediterranean sea is characterized by sensitive and protected habitats such as the biogenic substrates sensu MSFD, the distribution of PL pressure was overlaid with the distribution of the seabed habitats to estimate the loss of biogenic substrates. This study represents a useful tool for establishing the baseline condition for PL pressure, to compare future conditions and to evaluate different management scenarios. Moreover, it allows identification of the areas where pressure tends to accumulate as ‘hot spots’ on which to focus in future impact analyses and the areas where few stressors are present.
APA, Harvard, Vancouver, ISO, and other styles
8

Pauli, Nora-Charlotte, Jana S. Petermann, Christian Lott, and Miriam Weber. "Macrofouling communities and the degradation of plastic bags in the sea: an in situ experiment." Royal Society Open Science 4, no. 10 (October 2017): 170549. http://dx.doi.org/10.1098/rsos.170549.

Full text
Abstract:
The increasing amount of plastic littered into the sea may provide a new substratum for benthic organisms. These marine fouling communities on plastic have not received much scientific attention. We present, to our knowledge, the first comprehensive analysis of their macroscopic community composition, their primary production and the polymer degradation comparing conventional polyethylene (PE) and a biodegradable starch-based plastic blend in coastal benthic and pelagic habitats in the Mediterranean Sea. The biomass of the fouling layer increased significantly over time and all samples became heavy enough to sink to the seafloor. The fouling communities, consisting of 21 families, were distinct between habitats, but not between polymer types. Positive primary production was measured in the pelagic, but not in the benthic habitat, suggesting that large accumulations of floating plastic could pose a source of oxygen for local ecosystems, as well as a carbon sink. Contrary to PE, the biodegradable plastic showed a significant loss of tensile strength and disintegrated over time in both habitats. These results indicate that in the marine environment, biodegradable polymers may disintegrate at higher rates than conventional polymers. This should be considered for the development of new materials, environmental risk assessment and waste management strategies.
APA, Harvard, Vancouver, ISO, and other styles
9

Conversi, Alessandra, Vasilis Dakos, Anna Gårdmark, Scott Ling, Carl Folke, Peter J. Mumby, Charles Greene, et al. "A holistic view of marine regime shifts." Philosophical Transactions of the Royal Society B: Biological Sciences 370, no. 1659 (January 5, 2015): 20130279. http://dx.doi.org/10.1098/rstb.2013.0279.

Full text
Abstract:
Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.
APA, Harvard, Vancouver, ISO, and other styles
10

Schill, Steven R., Valerie Pietsch McNulty, F. Joseph Pollock, Fritjof Lüthje, Jiwei Li, David E. Knapp, Joe D. Kington, et al. "Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning." Remote Sensing 13, no. 21 (October 21, 2021): 4215. http://dx.doi.org/10.3390/rs13214215.

Full text
Abstract:
High-resolution benthic habitat data fill an important knowledge gap for many areas of the world and are essential for strategic marine conservation planning and implementing effective resource management. Many countries lack the resources and capacity to create these products, which has hindered the development of accurate ecological baselines for assessing protection needs for coastal and marine habitats and monitoring change to guide adaptive management actions. The PlanetScope (PS) Dove Classic SmallSat constellation delivers high-resolution imagery (4 m) and near-daily global coverage that facilitates the compilation of a cloud-free and optimal water column image composite of the Caribbean’s nearshore environment. These data were used to develop a first-of-its-kind regional thirteen-class benthic habitat map to 30 m water depth using an object-based image analysis (OBIA) approach. A total of 203,676 km2 of shallow benthic habitat across the Insular Caribbean was mapped, representing 5% coral reef, 43% seagrass, 15% hardbottom, and 37% other habitats. Results from a combined major class accuracy assessment yielded an overall accuracy of 80% with a standard error of less than 1% yielding a confidence interval of 78–82%. Of the total area mapped, 15% of these habitats (31,311.7 km2) are within a marine protected or managed area. This information provides a baseline of ecological data for developing and executing more strategic conservation actions, including implementing more effective marine spatial plans, prioritizing and improving marine protected area design, monitoring condition and change for post-storm damage assessments, and providing more accurate habitat data for ecosystem service models.
APA, Harvard, Vancouver, ISO, and other styles
11

Gilman, Eric, Mariska Weijerman, and Petri Suuronen. "Ecological data from observer programmes underpin ecosystem-based fisheries management." ICES Journal of Marine Science 74, no. 6 (March 31, 2017): 1481–95. http://dx.doi.org/10.1093/icesjms/fsx032.

Full text
Abstract:
Abstract Data required from fisheries monitoring programmes substantially expand as management authorities transition to implement elements of ecosystem-based fisheries management (EBFM). EBFM extends conventional approaches of managing single fishery effects on individual stocks of target species by taking into account the effects, within a defined ecosystem, of local to regional fisheries on biodiversity, from genotypes to ecological communities. This includes accounting for fishery effects on evolutionary processes, associated and dependent species, habitats, trophic food web processes, and functionally linked systems. Despite seemingly insurmountable constraints, through examples, we demonstrate how data routinely collected in most observer programmes and how minor and inexpensive expansions of observer data fields and collection protocols supply ecological data underpinning EBFM. Observer data enable monitoring bycatch, including catch and mortality of endangered, threatened and protected species, and assessing the performance of bycatch management measures. They provide a subset of inputs for ecological risk assessments, including productivity–susceptibility analyses and multispecies and ecosystem models. Observer data are used to monitor fishery effects on habitat and to identify and protect benthic vulnerable marine ecosystems. They enable estimating collateral sources of fishing mortality. Data from observer programmes facilitate monitoring ecosystem pressure and state indicators. The examples demonstrate how even rudimentary fisheries management systems can meet the ecological data requirements of elements of EBFM.
APA, Harvard, Vancouver, ISO, and other styles
12

MAMO, BRIONY L. "Benthic Foraminifera from the Capricorn Group, Great Barrier Reef, Australia." Zootaxa 4215, no. 1 (December 23, 2016): 1. http://dx.doi.org/10.11646/zootaxa.4215.1.1.

Full text
Abstract:
Effective reef management and monitoring has become increasingly important as anthropogenic processes impact upon natural ecosystems. One locality that is under direct threat due to human activities is the Australian Great Barrier Reef (GBR). Marine foraminifera represent an abundant and readily applicable tool that can be used in reef studies to investigate a variety of ecological parameters and assist in understanding reef dynamics and influence management protocols. The first step is to establish a baseline knowledge of taxonomic composition within the region to facilitate comparative studies and monitor how assemblages change in order to maximise effective management. A detailed taxonomic assessment is provided of 133 species of benthic foraminifera in 76 genera from Heron Island, One Tree Island, Wistari and Sykes Reefs, which form the core of the Capricorn Group (CG) at the southern end of the GBR. Of these 133 species, 46% belong to the order Miliolida, 34% to Rotaliida, 7% to Textulariida, 5% to Lagenida, 3% to Lituolida, 3% to Spirillinida, 1% to Loftusiida and 1% to Robertinida. Samples were collected from a variety of shallow shelf reef environments including reef flat, lagoonal and channel environments. Seventy species, representing the most abundant forms, are formally described with detailed distribution data for the remaining 63 species supplied.
APA, Harvard, Vancouver, ISO, and other styles
13

Birch, Gavin F., and Marco A. Olmos. "Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies." ICES Journal of Marine Science 65, no. 8 (September 15, 2008): 1407–13. http://dx.doi.org/10.1093/icesjms/fsn139.

Full text
Abstract:
AbstractBirch, G. F., and Olmos, M. A. 2008. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. – ICES Journal of Marine Science, 65: 1407–1413. Currently, many institutions are conducting or planning large, regional-scale ecosystem assessments of estuarine health. A full, integrated assessment of these environments requires a large suite of biological, physical, and chemical indicators, including sedimentary chemistry, ecotoxicology, benthic community structure, and bioaccumulation. This commitment is beyond the capacity of most organizations, and a simpler approach is required to accommodate limited financial resources. A case is made for the use of sedimentary heavy metals as an easy and inexpensive indicator. The advantages are that sediments identify the “pristine” condition and give baseline information against which future management strategies may be benchmarked, and that they differentiate solely human-induced change from natural variation. Sediment indicators in depositional environments are also less dynamic than those associated with water and biota. Our objective is to demonstrate that sediment-bound heavy metals data provide the spatial extent and magnitude of chemical change, as well as the risk of biological stress attributable to contamination in estuarine ecosystems. An assessment of this scheme involving seven New South Wales (Australia) estuaries suggests that sedimentary heavy-metal indicators used in a weight-of-evidence approach, with data collected during the recent Australian National Land and Water Resources Audit, enhances estuarine condition assessment.
APA, Harvard, Vancouver, ISO, and other styles
14

Gaichas, S. K., J. S. Link, and J. A. Hare. "A risk-based approach to evaluating northeast US fish community vulnerability to climate change." ICES Journal of Marine Science 71, no. 8 (April 8, 2014): 2323–42. http://dx.doi.org/10.1093/icesjms/fsu048.

Full text
Abstract:
Abstract Risk assessment methods are used worldwide to evaluate threats posed by fisheries and other impacts on living marine resources, and to prioritize management of these threats. We derive a simplified risk analysis for aggregate fish communities as a preliminary tool to identify priorities for further detailed assessment. Because some of the largest observed rates of sea surface temperature increase are on the northeast US continental shelf, we focused on climate change-driven risks to marine communities in this region. We evaluated climate vulnerability for six communities across two ecosystems: both commercial and non-commercial demersal fish, pelagic fish, and benthic invertebrates in the Gulf of Maine (GOM) and Mid-Atlantic bight (MAB). We first evaluated the probability that anticipated climate changes (e.g. warming water, decreased salinity, increased acidity, altered boundary currents) would occur in these regions, and rated the potential severity of change over the next 10 years. Then, we evaluated the sensitivity of each biological community in each region using 12 attributes (e.g. habitat and prey specificity, temperature and acidity sensitivity, larval dispersal, adult mobility, population productivity, etc.). Exposure to the key climate risks was related to community sensitivity in each region for an overall assessment of climate vulnerability. Climate risks from increased surface water temperature, sea level rise, and earlier spring were rated moderate to high in both regions, with additional moderate to high risks in the GOM from increased bottom temperature, stratification, and river inputs. Benthic invertebrates were rated most sensitive, with demersals intermediate and pelagics lowest. Two MAB communities were rated more sensitive than corresponding GOM communities, but greater short-term climate risks in the GOM indicated increased exposure for GOM communities. Overall, this simple analysis may help prioritize short-term regional climate risk management action, thus addressing key conditions related to fishery fluctuations beyond fishing itself.
APA, Harvard, Vancouver, ISO, and other styles
15

Eddy, Tyler D., Marta Coll, Elizabeth A. Fulton, and Heike K. Lotze. "Trade-offs between invertebrate fisheries catches and ecosystem impacts in coastal New Zealand." ICES Journal of Marine Science 72, no. 5 (February 10, 2015): 1380–88. http://dx.doi.org/10.1093/icesjms/fsv009.

Full text
Abstract:
Abstract Invertebrate catches are increasing globally following the depletion of many finfish stocks, yet stock assessments and management plans for invertebrates are limited, as is an understanding of the ecosystem effects of these fisheries. Using an ecosystem modelling approach, we explored the trade-offs between invertebrate catches and their impacts on the associated ecosystem on the south coast of Wellington, New Zealand. We simulated exploitation of lobster (Jasus edwardsii), abalone (Haliotis australis, H. iris), and sea urchin (Evechinus chloroticus) over a range of depletion levels—from no depletion to local extinction—to estimate changes in target catches and associated effects on other species groups, trophic levels, and benthic and pelagic components. Exploitation of lobster showed the strongest ecosystem effects, followed by abalone and urchin. In all three fisheries, the current exploitation rate exceeds that which produces maximum sustainable yield, with considerable ecosystem effects. Interestingly, a reduced exploitation rate is predicted to increase target catches (and catch-per-unit-effort), thereby strongly reducing ecosystem effects, a win–win situation. Our results suggest that invertebrate exploitation clearly influences ecosystem structure and function, yet the direction and magnitude of responses depend on the target group and exploitation rate. An ecosystem-based fisheries management approach that includes the role of invertebrates would improve the conservation and management of invertebrate resources and marine ecosystems on broader scales.
APA, Harvard, Vancouver, ISO, and other styles
16

Baeva, Yu I., and N. A. Chernykh. "ASSESSMENT OF THE ENVIRONMENTAL STATE OF THE BLACK SEA COASTAL WATERS BY BIOINDICATION METHODS." Water and Ecology 25, no. 3 (2020): 22–31. http://dx.doi.org/10.23968/2305-3488.2020.25.3.22-31.

Full text
Abstract:
Introduction. Using bioindication methods, the authors assessed the environmental state of water at the place where the Hadzhiyska River flows into the Black Sea (Slanchev Bryag / Sunny Beach resort, Bulgaria). Methods. The studies were carried out in the summer seasons of 2017–2019 during sea water “blooming”. The quality of river water was assessed by the state of the community of zoobenthic organisms using the Trent biotic index originally developed by Woodiwiss and the Mayer index, and the state of the coastal marine ecosystem was assessed by the species composition of the Black Sea macroalgae. Results. The waters at the mouth of the Hadzhiyska River can be classified as “polluted” and represent the main local source of biogenic elements entering the coastal sea waters. In the marine macrophytobenthos, representatives of green, brown and red algae were identified, including two species listed in the Red Book of the Black Sea — Cystoseira barbata and Zostera marina. The authors noted a displacement of native species — representatives of Cystoseira and Zostera genera — due to an increase in the number of associated algae from Ceramium, Cladophora and Ulva genera, which confirms organic pollution and eutrophication in coastal waters. The taxonomic structure of the macrophytes allows for the conclusion that the environmental state of the marine ecosystem in the area is satisfactory. The authors also provide a rationale for the use of benthic organisms in the express diagnostics of water environment quality in resort areas.
APA, Harvard, Vancouver, ISO, and other styles
17

Glover, Adrian G., and Craig R. Smith. "The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025." Environmental Conservation 30, no. 3 (September 2003): 219–41. http://dx.doi.org/10.1017/s0376892903000225.

Full text
Abstract:
The goal of this paper is to review current impacts of human activities on the deep-sea floor ecosystem, and to predict anthropogenic changes to this ecosystem by the year 2025. The deep-sea floor ecosystem is one of the largest on the planet, covering roughly 60% of the Earth's solid surface. Despite this vast size, our knowledge of the deep sea is poor relative to other marine ecosystems, and future human threats are difficult to predict. Low productivity, low physical energy, low biological rates, and the vastness of the soft-sediment deep sea create an unusual suite of conservation challenges relative to shallow water. The numerous, but widely spaced, island habitats of the deep ocean (for example seamounts, hydrothermal vents and submarine canyons) differ from typical deep-sea soft sediments in substrate type (hard) and levels of productivity (often high); these habitats will respond differently to anthropogenic impacts and climate change. The principal human threats to the deep sea are the disposal of wastes (structures, radioactive wastes, munitions and carbon dioxide), deep-sea fishing, oil and gas extraction, marine mineral extraction, and climate change. Current international regulations prohibit deep-sea dumping of structures, radioactive waste and munitions. Future disposal activities that could be significant by 2025 include deep-sea carbon-dioxide sequestration, sewage-sludge emplacement and dredge-spoil disposal. As fish stocks dwindle in the upper ocean, deep-sea fisheries are increasingly targeted. Most (perhaps all) of these deep-sea fisheries are not sustainable in the long term given current management practices; deep-sea fish are long-lived, slow growing and very slow to recruit in the face of sustained fishing pressure. Oil and gas exploitation has begun, and will continue, in deep water, creating significant localized impacts resulting mainly from accumulation of contaminated drill cuttings. Marine mineral extraction, in particular manganese nodule mining, represents one of the most significant conservation challenges in the deep sea. The vast spatial scales planned for nodule mining dwarf other potential direct human impacts. Nodule-mining disturbance will likely affect tens to hundreds of thousands of square kilometres with ecosystem recovery requiring many decades to millions of years (for nodule regrowth). Limited knowledge of the taxonomy, species structure, biogeography and basic natural history of deep-sea animals prevents accurate assessment of the risk of species extinctions from large-scale mining. While there are close linkages between benthic, pelagic and climatic processes, it is difficult to predict the impact of climate change on deep-sea benthic ecosystems; it is certain, however, that changes in primary production in surface waters will alter the standing stocks in the food-limited, deep-sea benthic. Long time-series studies from the abyssal North Pacific and North Atlantic suggest that even seemingly stable deep-sea ecosystems may exhibit change in key ecological parameters on decadal time scales. The causes of these decadal changes remain enigmatic. Compared to the rest of the planet, the bulk of the deep sea will probably remain relatively unimpacted by human activities and climate change in the year 2025. However, increased pressure on terrestrial resources will certainly lead to an expansion of direct human activities in the deep sea, and to direct and indirect environmental impacts. Because so little is known about this remote environment, the deep-sea ecosystem may well be substantially modified before its natural state is fully understood.
APA, Harvard, Vancouver, ISO, and other styles
18

Rebai, Nourhene, Nawfel Mosbahi, Jean-Claude Dauvin, and Lassad Neifar. "Ecological Risk Assessment of Heavy Metals and Environmental Quality of Tunisian Harbours." Journal of Marine Science and Engineering 10, no. 11 (November 2, 2022): 1625. http://dx.doi.org/10.3390/jmse10111625.

Full text
Abstract:
Harbours are one of the most disturbed coastal ecosystems due to intensive anthropogenic pressures. This study aimed for the first time to compare anthropogenic impacts in three harbours from the central coast of Tunisia (Mediterranean Sea) employing analysis of heavy metal contamination and ecological quality status (EcoQS). Sampling was carried out in spring 2019 in the fishing harbour of Teboulba, the marina of Monastir, and the commercial harbour of Sousse. The high levels of concentration in heavy metals and organic matter were closely related to the fine-grained fraction of the sediment in the fishing and commercial harbours. A total of 94 macrobenthic species, including five nonindigenous species, were identified belonging to six zoological groups. Multivariate analyses highlighted a strong influence of the harbour activity on the diversity of macrozoobenthic communities. Three benthic assemblages were identified according to their environmental characteristics such as sediment type, organic matter content, and heavy metal contamination. Benthic and biotic indices (H′, J′, AMBI, and BO2A) showed that the EcoQS varied from poor (commercial harbour) to good (marina), and was significantly influenced by harbour activity, organic matter, and heavy metal contamination of the sediment. The present work could be considered as providing important baseline data for the implementation of national environmental policies and management plans in the future.
APA, Harvard, Vancouver, ISO, and other styles
19

Singh, Ashneel Ajay, Anish Maharaj, and Priyatma Singh. "Benthic Resource Baseline Mapping of Cakaunisasi and Yarawa Reef Ecosystem in the Ba Region of Fiji." Water 13, no. 4 (February 11, 2021): 468. http://dx.doi.org/10.3390/w13040468.

Full text
Abstract:
Coastal habitats form a critical source of livelihood for a large number of inhabitants in Fiji. The absence of historical and baseline information creates a significant challenge in effectively designing suitable management plans. This study aimed at developing reliable benthic cover maps of village intertidal resource harvest areas (Cakaunisasi and Yarawa reefs) and anthropogenic perceptions of Votua Village in the Ba region of Fiji for better resource management planning and monitoring. Images captured by the WorldView2 satellite were used as a base for mapping out the resources. Data logging on-site, Global Positioning System (GPS) recordings, local interviews and high-resolution video capturing were utilised for ground-truthing techniques. Six classes of benthic cover were identified, which included algae, coral, sand and gravel, buried reef, coral rubble and seagrass. Accuracy assessment and supervised classification were done using ground reference points. There was an existing marine protected area (MPA) on the Yarawa reef, which did not seem to be working as well as anticipated by observing the habitat maps of the two reefs. Baseline maps constructed here and possibly ecosystem maps can allow for monitoring of the existing MPA as well as the formation of a new and more informed MPA. The maps generated in this study serve as baseline information about resource distribution on Cakaunisasi and Yarawa reefs to inform management decisions.
APA, Harvard, Vancouver, ISO, and other styles
20

Nadtochy, Victor A., Nickolay V. Kolpakov, and Ilya A. Korneichuk. "Distribution of macrozoobenthic taxa - potential indicators of vulnerable marine ecosystems in the western part of Bering Sea. 1. Anadyr Bay area." Izvestiya TINRO 189, no. 2 (June 30, 2017): 156–70. http://dx.doi.org/10.26428/1606-9919-2017-189-156-170.

Full text
Abstract:
Following recent tendencies in fisheries policy to ensure both sustainability of ecosystems and conservation of economically sustainable fisheries, protection of vulnerable resources with low direct economic value comes to the focus of fisheries management on ecosystem principles. One of the problems of modern fishing is a negative impact of bottom trawling because of destruction of benthic organisms vulnerable to mechanical impacts. This by-effect of fishing could affect negatively on functioning of bottom biocenoses, reproduction of exploited species, and decrease generally productivity of vulnerable marine ecosystems (VME). Potential VME indicators are determined for the area of the Anadyr Bay in the Bering Sea on the base of results of 4 benthic surveys using bottom sampler (1985, 2005) and bottom trawl (2008, 2012), as the most common species in some macrozoobenthic groups of epifauna. They are Gersemia rubiformis for soft corals, Myxilla incrustans , Halichondria panicea , Semisuberites cribrosa for sponges, Halocynthia aurantium , Boltenia ovifera for sea squirts, Cystisella saccata , Flustra foliacea for bryozoans, Chirona evermanni for barnacles, and Gorgonocephalus eucnemis for brittle stars. Their distribution is mapped. According to their life history and feeding habits, these species-indicators are divided onto two groups: immobile sestonophages (alcyonarians, sponges, ascidians, bryozoans, cirripedians) and mobile filtrators (brittle stars). The first group prevails on hard and mixed grounds mainly along southwestern and northeastern coasts of the Anadyr Bay at the depths of 80-90 m (sponges and bryozoans - to 250 m in the Navarin Canyon) with relatively warm water, active hydrodynamics and high biological productivity. The second group represented by G. eucnemis dominates on soft sediments in the central part of the Anadyr Bay with the depths of 50-270 m occupied by the cold water pool. Quantitative distribution of brittle star, on the one hand, and barnacles with sea squirts, on the other hand, is alternative to each other. On the contrary, barnacles, sponges and sea squirts have similar distribution of the biomass, being complementary species. Distribution patterns of all species-indicators are stable for many decades. However, biomass of some these species has changed in the southern Anadyr Bay between the similar surveys conducted in the 2008 and 2012: the mean biomass of barnacle Ch. evermanni and sea squirt H. aurantium had decreased in 6.5 and 3.7 times, respectively, whereas the mean biomass of sponges, brittle star G. eucnemis and sea squirt B. ovifera did not change. Bottom trawl fishery is not active in the northwestern Bering Sea, moreover, the habitats of immobile sestonophages with hard grounds are avoided by bottom trawlers being dangerous for fishing gears, so the observed decreasing of two species abundance is presumably caused by natural reasons or is a random error of the mosaic-distributed stocks assessment with insufficiently dense sampling grid.
APA, Harvard, Vancouver, ISO, and other styles
21

Semprucci, F., C. Sbrocca, M. Rocchi, and M. Balsamo. "Temporal changes of the meiofaunal assemblage as a tool for the assessment of the ecological quality status." Journal of the Marine Biological Association of the United Kingdom 95, no. 2 (September 9, 2014): 247–54. http://dx.doi.org/10.1017/s0025315414001271.

Full text
Abstract:
The Adriatic Sea, being a semi-closed and shallow basin, is more sensitive to anthropogenic impact than other areas of the Mediterranean Sea. Given the crucial role of meiofauna in the marine ecosystems, temporal series of data on this benthic assemblage are fundamental to give new insights into the health status of this basin. A data set (decade 2002–2012) on the meiofauna of two river mouths (Foglia and Metauro) close to a Natural Park (Monte San Bartolo, Central Adriatic Sea) has been analysed and related to several environmental parameters. In particular, changes in the meiofaunal structure, abundance and diversity have been investigated in order to evaluate possible variations of ecological quality status (EQS), in accordance with the Water Framework Directive. The structure of the meiofaunal assemblage appeared significantly different in the period studied, with a higher abundance of annelids in 2002 and an increase of nematodes in the following sampling campaigns. Among the faunal parameters, the Shannon and Pielou indices suggested a decline of the EQS over time, likely mainly due to the negative effect of chlorophyll-a peaks, which may highlight the influence of eutrophication phenomena and an enhancement of the organic matter supply. The lowering of the EQS of the study area suggests the need to intensify management and conservation efforts in the coastal systems, and supports the use of the meiofaunal assemblage as a useful bioindicator.
APA, Harvard, Vancouver, ISO, and other styles
22

Ortiz, Marco, Miguel Avendaño, Leonardo Campos, and Fernando Berrios. "Spatial and mass balanced trophic models of La Rinconada Marine Reserve (SE Pacific coast), a protected benthic ecosystem: Management strategy assessment." Ecological Modelling 220, no. 23 (December 2009): 3413–23. http://dx.doi.org/10.1016/j.ecolmodel.2009.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Deinhart, Mari, Matthew S. Mills, and Tom Schils. "Community assessment of crustose calcifying red algae as coral recruitment substrates." PLOS ONE 17, no. 7 (July 22, 2022): e0271438. http://dx.doi.org/10.1371/journal.pone.0271438.

Full text
Abstract:
Successful recruitment of invertebrate larvae to reef substrates is essential to the health of tropical coral reef ecosystems and to their capacity to recover from disturbances. Crustose calcifying red algae (CCRA) are a species rich group of seaweeds that have been identified as important recruitment substrates for scleractinian corals. Most studies on the settlement preference of coral larvae on CCRA use morphological species identifications that can lead to unreliable species identification and do not allow for examining species-specific interactions between coral larvae and CCRA. Accurate identifications of CCRA species is important for coral reef restoration and management to assess CCRA community composition and to detect CCRA species that are favored as coral recruitment substrates. In this study, DNA sequence analysis, was used to identify CCRA species to (1) investigate the species richness and community composition of CCRA on experimental coral recruitment tiles and (2) assess if the coral Acropora surculosa preferred any of these CCRA species as recruitment substrates. The CCRA community assemblages on the coral recruitment tiles was species-rich, comprising 27 distinct CCRA species of the orders Corallinales and Peyssonneliales which constitute new species records for Guam. Lithophylloideae sp. 1 (Corallinales) was the CCRA species that was significantly favored by coral larvae as a recruitment substrate. Lithophylloideae sp. 1 showed to hold a valuable ecological role for coral larval recruitment preference. Lithophylloideae sp. 1 had the highest benthic cover on the recruitment tiles and contained most A. surculosa recruits. DNA barcoding revealed a high taxonomic diversity of CCRA species on a microhabitat scale and provided detailed insight into the species-specific ecological interactions between CCRA and corals. With a steady decline in coral cover, detailed information on species interactions that drive reef recovery is valuable for the planning of marine management actions and restoration efforts.
APA, Harvard, Vancouver, ISO, and other styles
24

Summers, Gerard, Aaron Lim, and Andrew J. Wheeler. "A Characterisation of Benthic Currents from Seabed Bathymetry: An Object-Based Image Analysis of Cold-Water Coral Mounds." Remote Sensing 14, no. 19 (September 21, 2022): 4731. http://dx.doi.org/10.3390/rs14194731.

Full text
Abstract:
Seabed sedimentary bedforms (SSBs) are strong indicators of current flow (direction and velocity) and can be mapped in high resolution using multibeam echosounders. Many approaches have been designed to automate the classification of such SSBs imaged in multibeam echosounder data. However, these classification systems only apply a geomorphological contextualisation to the data without making direct assertions on the velocities of benthic currents that form these SSBs. Here, we apply an object-based image analysis (OBIA) workflow to derive a geomorphological classification of SSBs in the Moira Mounds area of the Belgica Mound Province, NE Atlantic through k-means clustering. Cold-water coral reefs as sessile filter-feeders benefit from strong currents are often found in close association with sediment wave fields. This OBIA provided the framework to derive SSB wavelength and wave height, these SSB attributes were used as predictor variables for a multiple linear regression to estimate current velocities. Results show a bimodal distribution of current flow directions and current speed. Furthermore, a 5 k-means classification of the SSB geomorphology exhibited an imprinting of current flow consistency which altered throughout the study site due to the interaction of regional, local, and micro scale topographic steering forces. This study is proof-of-concept for an assessment tool applied to vulnerable marine ecosystems but has wider applications for applied seabed appraisals and can inform management and monitoring practice across a variety of spatial and temporal scales. Deriving spatial patterns of hydrodynamic processes from widely available multibeam echosounder maps is pertinent to many avenues of research including scour predictions for offshore structures such as wind turbines, sediment transport modelling, benthic fisheries, e.g., scallops, cable route and pipeline risk assessment and habitat mapping.
APA, Harvard, Vancouver, ISO, and other styles
25

Meksumpun, Charumas, and Shettapong Meksumpun. "Integration of aquatic ecology and biological oceanographic knowledge for development of area-based eutrophication assessment criteria leading to water resource remediation and utilization management: a case study in Tha Chin, the most eutrophic river of Thailand." Water Science and Technology 58, no. 12 (December 1, 2008): 2303–11. http://dx.doi.org/10.2166/wst.2008.929.

Full text
Abstract:
This research was carried out in Tha Chin Watershed in the central part of Thailand with attempts to apply multidisciplinary knowledge for understanding ecosystem structure and response to anthropogenic pollution and natural impacts leading to a proposal for an appropriate zonation management approach for sustainable utilization of the area. Water quality status of the Tha Chin River and Estuary had been determined by analyzing ecological, hydrological, and coastal oceanographic information from recent field surveys (during March 2006 to November 2007) together with secondary data on irrigation, land utilization, and socio-economic status.Results indicated that the Tha Chin River and Estuary was eutrophic all year round. Almost 100% of the brackish to marine areas reflected strongly hypertrophic water condition during both dry and high-loading periods. High NH4+ and PO43− loads from surrounding agricultural land use, agro-industry, and community continuously flew into the aquatic environment. Deteriorated ecosystem was clearly observed by dramatically low DO levels (ca 1 mg/l) in riverine to coastal areas and Noctiluca and Ceratium red tide outbreaks occurred around tidal front closed to the estuary. Accordingly, fishery resources were significantly decreased. Some riverine benthic habitats became dominated by deposit-feeding worms e.g. Lumbriculus, Branchiura, and Tubifex, while estuarine benthic habitats reflected succession of polychaetes and small bivalves. Results on analysis on integrated ecosystem responses indicated that changing functions were significantly influenced by particulates and nutrients dynamics in the system.Based on the overall results, the Tha Chin River and Estuary should be divided into 4 zones (I: Upper freshwater zone; II: Middle freshwater zone; III Lower freshwater zone; and IV: Lowest brackish to marine zone) for further management schemes on water remediation. In this study, the importance of habitat morphology and water flow regimes was recognized. Moreover, nearshore extensive shrimp culture ponds, irrigation canals, and surrounding mangrove habitats belonging to local households seemed to act as effective natural water treatment system that can yet provide food resources in turns. These remediation-production integrated functions should be deserved depth considerations for water quality development of the Tha Chin areas.
APA, Harvard, Vancouver, ISO, and other styles
26

Nasukha, Afifah, Reagan Septory, Gigih Setia Wibawa, and Karl-Heinz Runte. "ORGANIC ENRICHMENT OF SEDIMENTS: A CASE STUDY AT MARICULTURE SITE, PEGAMETAN BAY BALI, INDONESIA." Indonesian Aquaculture Journal 14, no. 2 (December 13, 2019): 55. http://dx.doi.org/10.15578/iaj.14.2.2019.55-62.

Full text
Abstract:
Mariculture industry has been developed progressively in Indonesia, where its impact on the surrounding aquatic environment is inevitable. The particulate wastes produced such as excess food and feces will be discharged from a marine farm and dispersed into the surrounding areas. This process could lead to organic enrichment of the receiving seabed sediment and gradually degrade water quality and disturb local benthic community as well as the aquatic ecosystem of the area. This study focused on determining the level of organic enrichment of sediment underneath four currently-active farms in Pegametan Bay, North Bali, Indonesia. The results showed that high accumulation of organic matters was evident in all sampling farms indicated by a significantly high particulate organic matter (POM) between 75.20 ± 2.57 and 92.97 ± 0.59%, and low redox values between -217.41 ± 2.74 and -343.57 ± 1.48 mV. A visual-based assessment also determined that the sediment had a silt and muddy texture with deep grey to black colorization with noticeable strong H2S odor. In this case, further investigations and monitoring efforts are needed in the near future to ensure the best management programs for sustainable farming and ecosystem both fish farmers and environmental regulators such as local government.
APA, Harvard, Vancouver, ISO, and other styles
27

Cholewiak, Danielle, Annamaria I. DeAngelis, Debra Palka, Peter J. Corkeron, and Sofie M. Van Parijs. "Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders." Royal Society Open Science 4, no. 12 (December 2017): 170940. http://dx.doi.org/10.1098/rsos.170940.

Full text
Abstract:
The use of commercial echosounders for scientific and industrial purposes is steadily increasing. In addition to traditional navigational and fisheries uses, commercial sonars are used extensively for oceanographic research, benthic habitat mapping, geophysical exploration, and ecosystem studies. Little is known about the effects of these acoustic sources on marine animals, though several studies have already demonstrated behavioural responses of cetaceans to shipboard echosounders. Some species of cetaceans are known to be particularly sensitive to acoustic disturbance, including beaked whales. In 2011 and 2013, we conducted cetacean assessment surveys in the western North Atlantic in which a suite of Simrad EK60 echosounders was used to characterize the distribution of prey along survey tracklines. Echosounders were alternated daily between active and passive mode, to determine whether their use affected visual and acoustic detection rates of beaked whales. A total of 256 groups of beaked whales were sighted, and 118 definitive acoustic detections were recorded. Regression analyses using generalized linear models (GLM) found that sea state and region were primary factors in determining visual sighting rates, while echosounder state was the primary driver for acoustic detections, with significantly fewer detections (only 3%) occurring when echosounders were active. These results indicate that beaked whales both detect and change their behaviour in response to commercial echosounders. The mechanism of this response is unknown, but could indicate interruption of foraging activity or vessel avoidance, with potential implications for management and mitigation of anthropogenic impacts.
APA, Harvard, Vancouver, ISO, and other styles
28

Komar, D., M. Dolenec, T. Dolenec, P. Vrhovnik, S. Lojen, G. Kniewald, S. S. Matešić, Ž. Lambaša Belak, and M. Orlando-Bonaca. "Benthic organisms as ecological indicators for the status assessment of coastal ecosystems." Journal of the Marine Biological Association of the United Kingdom 98, no. 8 (August 24, 2017): 1907–17. http://dx.doi.org/10.1017/s0025315417001527.

Full text
Abstract:
The presence of potentially toxic elements (PTE) was determined in different tissues of five selected marine organisms. The As, Cd, Cu, Mn, Mo, Ni, Pb and Zn concentrations were measured in the seagrass Cymodocea nodosa, the green alga Cladophora echinus, the red alga Gelidiella lubrica, the marine topshell Phorcus turbinatus and the littoral crab Carcinus aestuarii, as well as in seawater from Makirina Bay. The levels of As, Cd, Cu, Mn and Zn in the biota were found to exceed those in previously analysed sediments, indicating the bioaccumulation of these PTE. The biota-sediment accumulation factor (BSAF) and concentration factor (CF) varied among different organisms. As regards the five selected species, C. nodosa, C. echinus and G. lubrica proved to be the strongest accumulators of Mn, while P. turbinatus and C. aestuarii showed a high capacity to accumulate As, Cd, Cu and Zn. These species can be considered as good ecological indicators in the assessment of PTE pollution in marine littoral environments.
APA, Harvard, Vancouver, ISO, and other styles
29

Bissoli, Lorena B., and Angelo F. Bernardino. "Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil." PeerJ 6 (February 28, 2018): e4441. http://dx.doi.org/10.7717/peerj.4441.

Full text
Abstract:
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.
APA, Harvard, Vancouver, ISO, and other styles
30

Collie, Jeremy S., Dian J. Gifford, and John H. Steele. "End-to-end foodweb control of fish production on Georges Bank." ICES Journal of Marine Science 66, no. 10 (June 25, 2009): 2223–32. http://dx.doi.org/10.1093/icesjms/fsp180.

Full text
Abstract:
Abstract Collie, J. S., Gifford, D. J., and Steele, J. H. 2009. End-to-end foodweb control of fish production on Georges Bank. – ICES Journal of Marine Science, 66: 2223–2232. The ecosystem approach to management requires the productivity of individual fish stocks to be considered in the context of the entire ecosystem. We derive an annual end-to-end budget for the Georges Bank ecosystem, based on data from the GLOBEC programme and fisheries surveys for the years 1993–2002. Scenarios based on this budget describe the consequences of various alterations in the Georges Bank trophic web: reduced nutrient input, increased benthic production, removal of carnivorous plankton, and changes in species dominance within fish guilds. Potential yields of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) are compared with historical catches and estimates of maximum sustainable yield (MSY) from recent stock assessments. The MSYs of cod and haddock can be met if the fish community is restructured to make them the dominant species in their respective diet-defined guilds. A return to the balance of fish species present in the early 20th century would depend on an increase in the fraction of primary production going to the benthos rather than to plankton. Estimates of energy flux through the Georges Bank trophic web indicate that rebuilding the principal groundfish species to their MSY levels requires restructuring of the fish community and repartitioning of energy within the foodweb.
APA, Harvard, Vancouver, ISO, and other styles
31

PINNEGAR, J. K., N. V. C. POLUNIN, P. FRANCOUR, F. BADALAMENTI, R. CHEMELLO, M. L. HARMELIN-VIVIEN, B. HEREU, et al. "Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management." Environmental Conservation 27, no. 2 (June 2000): 179–200. http://dx.doi.org/10.1017/s0376892900000205.

Full text
Abstract:
An important principle of environmental science is that changes in single components of systems are likely to have consequences elsewhere in the same systems. In the sea, food web data are one of the few foundations for predicting such indirect effects, whether of fishery exploitation or following recovery in marine protected areas (MPAs). We review the available literature on one type of indirect interaction in benthic marine ecosystems, namely trophic cascades, which involve three or more trophic levels connected by predation. Because many indirect effects have been revealed through fishery exploitation, in some cases we include humans as trophic levels. Our purpose is to establish how widespread cascades might be, and infer how likely they are to affect the properties of communities following the implementation of MPAs or intensive resource exploitation. We review 39 documented cascades (eight of which include humans as a trophic level) from 21 locations around the world; all but two of the cascades are from shallow systems underlain by hard substrata (kelp forests, rocky subtidal, coral reefs and rocky intertidal). We argue that these systems are well represented because they are accessible and also amenable to the type of work that is necessary. Nineteen examples come from the central-eastern and north-eastern Pacific, while no well-substantiated benthic cascades have been reported from the NE, CE or SW Atlantic, the Southern Oceans, E Indian Ocean or NW Pacific. The absence of examples from those zones is probably due to lack of study. Sea urchins are very prominent in the subtidal examples, and gastropods, especially limpets, in the intertidal examples; we suggest that this may reflect their predation by fewer specialist predators than is the case with fishes, but also their conspicuousness to investigators. The variation in ecological resolution amongst studies, and in intensity of study amongst systems and regions, indicates that more cascades will likely be identified in due course. Broadening the concept of cascades to include pathogenic interactions would immediately increase the number of examples. The existing evidence is that cascade effects are to be expected when hard-substratum systems are subject to artisanal resource exploitation, but that the particular problems of macroalgal overgrowth on Caribbean reefs and the expansion of coralline barrens in the Mediterranean rocky-sublittoral will not be readily reversed in MPAs, probably because factors other than predation-based cascades have contributed to them in the first place. More cascade effects are likely to be found in the soft-substratum systems that are crucial to so many large-scale fisheries, when opportunities such as those of MPAs and fishing gradients become available for study of such systems, and the search is widened to less conspicuous focal organisms such as polychaetes and crustaceans.
APA, Harvard, Vancouver, ISO, and other styles
32

Pusceddu, Antonio, Silvia Bianchelli, Cristina Gambi, and Roberto Danovaro. "Assessment of benthic trophic status of marine coastal ecosystems: Significance of meiofaunal rare taxa." Estuarine, Coastal and Shelf Science 93, no. 4 (July 2011): 420–30. http://dx.doi.org/10.1016/j.ecss.2011.05.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mazzuco, Ana Carolina de A., Patricia Sarcinelli Stelzer, and Angelo F. Bernardino. "Substrate rugosity and temperature matters: patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic." PeerJ 8 (March 20, 2020): e8289. http://dx.doi.org/10.7717/peerj.8289.

Full text
Abstract:
Modeling and forecasting ocean ecosystems in a changing world will require advances in observational efforts to monitor marine biodiversity. One of the observational challenges in coastal reef ecosystems is to quantify benthic and climate interactions which are key to community dynamics across habitats. Habitat complexity (i.e., substrate rugosity) on intertidal reefs can be an important variable explaining benthic diversity and taxa composition, but the association between substrate and seasonal variability is poorly understood on lateritic reefs in the South Atlantic. We asked if benthic assemblages on intertidal reefs with distinct substrate rugosity would follow similar seasonal patterns of succession following meteo-oceanographic variability in a tropical coastal area of Brazil. We combined an innovative 3D imaging for measuring substrate rugosity with satellite monitoring to monitor spatio-temporal patterns of benthic assemblages. The dataset included monthly in situ surveys of substrate cover and taxon diversity and richness, temporal variability in meteo-oceanographic conditions, and reef structural complexity from four sites on the Eastern Marine Ecoregion of Brazil. Additionally, correlation coefficients between temperature and both benthic diversity and community composition from one year of monitoring were used to project biodiversity trends under future warming scenarios. Our results revealed that benthic diversity and composition on intertidal reefs are strongly regulated by surface rugosity and sea surface temperatures, which control the dominance of macroalgae or corals. Intertidal reef biodiversity was positively correlated with reef rugosity which supports previous assertions of higher regional intertidal diversity on lateritic reefs that offer increased substrate complexity. Predicted warming temperatures in the Eastern Marine Ecoregion of Brazil will likely lead to a dominance of macroalgae taxa over the lateritic reefs and lower overall benthic diversity. Our findings indicate that rugosity is not only a useful tool for biodiversity mapping in reef intertidal ecosystems but also that spatial differences in rugosity would lead to very distinct biogeographic and temporal patterns. This study offers a unique baseline of benthic biodiversity on coastal marine habitats that is complementary to worldwide efforts to improve monitoring and management of coastal reefs.
APA, Harvard, Vancouver, ISO, and other styles
34

Gress, Erika, Maria J. Arroyo-Gerez, Georgina Wright, and Dominic A. Andradi-Brown. "Assessing mesophotic coral ecosystems inside and outside a Caribbean marine protected area." Royal Society Open Science 5, no. 10 (October 2018): 180835. http://dx.doi.org/10.1098/rsos.180835.

Full text
Abstract:
Widespread shallow coral reef loss has led to calls for more holistic approaches to coral reef management, requiring inclusion of ecosystems interacting with shallow coral reefs in management plans. Yet, almost all current reef management is biased towards shallow reefs, and overlooks that coral reefs extend beyond shallow waters to mesophotic coral ecosystems (MCEs; 30–150 m). We present the first detailed quantitative characterization of MCEs off Cozumel, Mexico, on the northern Mesoamerican Reef in the Mexican Caribbean, and provide insights into their general state. We documented MCE biodiversity, and assessed whether MCEs adjacent to a major town and port, where coastal development has caused shallow reef damage, have similar benthic and fish communities to MCEs within a National Park. Our results show that overall MCE communities are similar regardless of protection, though some taxa-specific differences exist in benthic communities between sites within the MPA and areas outside. Regardless of protection and location, and in contrast to shallow reefs, all observed Cozumel MCEs were continuous reefs with the main structural habitat complexity provided by calcareous macroalgae, sponges, gorgonians and black corals. Hard corals were present on MCEs, although at low abundance. We found that 42.5% of fish species recorded on Cozumel could be found on both shallow reefs and MCEs, including 39.6% of commercially valuable fish species. These results suggest that MCEs could play an important role in supporting fish populations. However, regardless of protection and depth, we found few large-body fishes (greater than 500 mm), which were nearly absent at all studied sites. Cozumel MCEs contain diverse benthic and fish assemblages, including commercially valuable fisheries species and ecosystem engineers, such as black corals. Because of their inherent biodiversity and identified threats, MCEs should be incorporated into shallow-reef-focused Cozumel National Park management plan.
APA, Harvard, Vancouver, ISO, and other styles
35

McLaverty, C., GE Dinesen, H. Gislason, ME Brooks, and OR Eigaard. "Biological traits of benthic macrofauna show sizebased differences in response to bottom trawling intensity." Marine Ecology Progress Series 671 (August 5, 2021): 1–19. http://dx.doi.org/10.3354/meps13790.

Full text
Abstract:
Bottom trawling results in widespread impacts to the structure and composition of benthic communities. Although an ecosystem approach to fisheries management aims to conserve marine biodiversity and ecosystem function, there remains a lack of empirical evidence regarding the effects of trawling on benthic functional properties. Here, we examined the sensitivity of benthic macrofauna communities to trawling using their biological traits, and compared trait responses across size-categories and survey types. We collected 84 benthic soft-sediment samples by Van Veen grab (0.1 m2) in the Kattegat in 2016, and complemented with 827 Haps cores (0.0143 m2) gathered over a long-term monitoring programme between 2006 and 2013. By analysing trait response in 3 size categories (small: 1-4 mm fraction; large: ≥4 mm fraction; full community: all individuals combined), we demonstrate a size-dependent effect of trawling on benthic trait composition, where the traits of large-bodied fauna (≥4 mm) were more sensitive. Specifically, larger sessile, deep-living, suspension-feeding, tube-dwelling, subsurface deposit-feeding, burrow-dwelling, and long-lived (≥10 yr) individuals were among the most affected. Our results based on large fauna were largely in agreement with trait responses observed in the multi-year monitoring data, suggesting that trait data gathered from a targeted one-time sampling event can convey information on both acute (short-term) and chronic (long-term) trawling impacts. Given that most trawling impact assessments do not consider size-based effects, we outline how size-separating the community can be used to improve the detectability of trawling impacts, and provide new insights into the functional impacts of fishing on the seabed.
APA, Harvard, Vancouver, ISO, and other styles
36

Reiss, Henning, Silvana Birchenough, Angel Borja, Lene Buhl-Mortensen, Johan Craeymeersch, Jennifer Dannheim, Alexander Darr, et al. "Benthos distribution modelling and its relevance for marine ecosystem management." ICES Journal of Marine Science 72, no. 2 (June 19, 2014): 297–315. http://dx.doi.org/10.1093/icesjms/fsu107.

Full text
Abstract:
Abstract Marine benthic ecosystems are difficult to monitor and assess, which is in contrast to modern ecosystem-based management requiring detailed information at all important ecological and anthropogenic impact levels. Ecosystem management needs to ensure a sustainable exploitation of marine resources as well as the protection of sensitive habitats, taking account of potential multiple-use conflicts and impacts over large spatial scales. The urgent need for large-scale spatial data on benthic species and communities resulted in an increasing application of distribution modelling (DM). The use of DM techniques enables to employ full spatial coverage data of environmental variables to predict benthic spatial distribution patterns. Especially, statistical DMs have opened new possibilities for ecosystem management applications, since they are straightforward and the outputs are easy to interpret and communicate. Mechanistic modelling techniques, targeting the fundamental niche of species, and Bayesian belief networks are the most promising to further improve DM performance in the marine realm. There are many actual and potential management applications of DMs in the marine benthic environment, these are (i) early warning systems for species invasion and pest control, (ii) to assess distribution probabilities of species to be protected, (iii) uses in monitoring design and spatial management frameworks (e.g. MPA designations), and (iv) establishing long-term ecosystem management measures (accounting for future climate-driven changes in the ecosystem). It is important to acknowledge also the limitations associated with DM applications in a marine management context as well as considering new areas for future DM developments. The knowledge of explanatory variables, for example, setting the basis for DM, will continue to be further developed: this includes both the abiotic (natural and anthropogenic) and the more pressing biotic (e.g. species interactions) aspects of the ecosystem. While the response variables on the other hand are often focused on species presence and some work undertaken on species abundances, it is equally important to consider, e.g. biological traits or benthic ecosystem functions in DM applications. Tools such as DMs are suitable to forecast the possible effects of climate change on benthic species distribution patterns and hence could help to steer present-day ecosystem management.
APA, Harvard, Vancouver, ISO, and other styles
37

Facca, Chiara. "Ecological Status Assessment of Transitional Waters." Water 12, no. 11 (November 12, 2020): 3159. http://dx.doi.org/10.3390/w12113159.

Full text
Abstract:
Transitional Waters are worldwide high valuable ecosystems that have undergone significant anthropogenic impacts. The ecological assessment is therefore of fundamental importance to protect, manage and restore these ecosystems. Numerous approaches can be used to understand the effects of human pressures, and, in case, the effectiveness of recovery plans. Eutrophication, climate change and morphological loss impacts can be assessed by means of aquatic vegetation, benthic fauna, and nekton. Moreover, before planning new infrastructures or interventions, predictive approaches and statistical analyses can provide indispensable tools for management policies.
APA, Harvard, Vancouver, ISO, and other styles
38

Sherman, Kenneth. "Sustaining the world's large marine ecosystems." ICES Journal of Marine Science 72, no. 9 (September 15, 2015): 2521–31. http://dx.doi.org/10.1093/icesjms/fsv136.

Full text
Abstract:
Abstract In this essay, I review nearly six decades of a career in marine science and fisheries considering scientific contributions, successes, failures, and changes in my field of practice. My body of work has been in plankton research to support fisheries assessments, and in ecosystems programme development and implementation. I describe my early studies on Pacific plankton oceanography in relation to fisheries assessment, and subsequent studies of plankton oceanography and fisheries in relation to coastal ocean fisheries and management. Early in my career, realizing that applications of my published results and those of other fisheries ecologists were generally not included in fish stock assessments, I participated in a national planning group that introduced a system for marine resources monitoring, assessment, and prediction (MARMAP) that included primary productivity, ichthyoplankton, zooplankton, and oceanographic assessments as important components for large-scale fisheries ecology assessment. I joined with European colleagues in ICES to advance fisheries ecology studies in fish stock assessments in the 1970s and 1980s. In 1983, I conceived with Professor Lewis Alexander of the University of Rhode Island a system for assessing and managing marine resources within the spatial domain of ecologically delineated large marine ecosystems (LMEs). On behalf of the National Oceanic and Atmospheric Administration, and in partnership with developing countries, international financial organizations, UN agencies, and NGOs, I am currently contributing scientific and technical advice to a global network of assessment and management projects in 22 LMEs with 110 developing countries and $3.1 billion in financial support. The participating countries are applying a modular framework of natural science and social science indicators for assessing the changing states of LMEs. I conclude the essay with a retrospective viewpoint on my career and changes over half a century of practicing the application of marine science in relation to sustaining the goods and services of the ocean Commons.
APA, Harvard, Vancouver, ISO, and other styles
39

Pinna, Maurizio, Benedetta Saccomanno, Gabriele Marini, Francesco Zangaro, Akbota Kabayeva, Mina Khalaj, Laura Shaimardan, Simona D’Attis, Eftychia Tzafesta, and Valeria Specchia. "Testing the Influence of Incomplete DNA Barcode Libraries on Ecological Status Assessment of Mediterranean Transitional Waters." Biology 10, no. 11 (October 25, 2021): 1092. http://dx.doi.org/10.3390/biology10111092.

Full text
Abstract:
The ecological assessment of European aquatic ecosystems is regulated under the framework directives on strategy for water and marine environments. Benthic macroinvertebrates are the most used biological quality element for ecological assessment of rivers, coastal-marines, and transitional waters. The morphological identification of benthic macroinvertebrates is the current tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives. The main current limits of DNA-based applications include the incompleteness of species recorded in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and ecological assessment in transitional waters of the southeast Mediterranean, taking into account the availability of commonly sequenced and deposited genomic regions for listed species. The ecological quality status assigned through the potential application of both approaches to the analysed transitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work highlights the importance to expand the barcode databases and to analyse, at the regional level, the gaps in the DNA barcodes.
APA, Harvard, Vancouver, ISO, and other styles
40

Reif, Molly K., Brandon S. Krumwiede, Steven E. Brown, Ethan J. Theuerkauf, and Joseph H. Harwood. "Nearshore Benthic Mapping in the Great Lakes: A Multi-Agency Data Integration Approach in Southwest Lake Michigan." Remote Sensing 13, no. 15 (August 1, 2021): 3026. http://dx.doi.org/10.3390/rs13153026.

Full text
Abstract:
The Laurentian Great Lakes comprise the largest assemblage of inland waterbodies in North America, with vast geographic, environmentally complex nearshore benthic substrate and associated habitat. The Great Lakes Water Quality Agreement, originally signed in 1972, aims to help restore and protect the basin, and ecosystem monitoring is a primary objective to support adaptive management, environmental policy, and decision making. Yet, monitoring ecosystem trends remains challenging, potentially hindering progress in lake management and restoration. Consistent, high-resolution maps of nearshore substrate and associated habitat are fundamental to support management needs, and the nexus of high-quality remotely sensed data with improvements to analytical methods are increasing opportunities for large-scale nearshore benthic mapping at project-relevant spatial resolutions. This study attempts to advance the integration of high-fidelity data (airborne imagery and lidar, satellite imagery, in situ observations, etc.) and machine learning to identify and classify nearshore benthic substrate and associated habitat using a case study in southwest Lake Michigan along Illinois Beach State Park, Illinois, USA. Data inputs and analytical methods were evaluated to better understand their implications with respect to the Coastal and Marine Ecological Classification Standard (CMECS) classification hierarchy, resulting in an approach that could be easily applied to other shallow coastal environments. Classification of substrate and biotic components were iteratively classified in two Tiers in which classes with increasing specificity were identified using different combinations of airborne and satellite data inputs. Classification accuracy assessments revealed that for the Tier 1 substrate component (3 classes), average overall accuracy was 90.10 ± 0.60% for 24 airborne data combinations and 89.77 ± 1.02% for 12 satellite data combinations, whereas the Tier 1 biotic component (2 classes) average overall accuracy was 93.58 ± 0.91% for 24 airborne data combinations and 92.67 ± 0.71% for 11 satellite data combinations. The Tier 2 result for the substrate component (2 classes) was 93.28% for 2 airborne data combinations and 95.25% for the biotic component (2 classes). The study builds on foundational efforts to move towards a more integrated data approach, whereby data strengths and limitations for mapping nearshore benthic substrate and associated habitat, expressed through classification accuracy, were evaluated within the context of the CMECS classification hierarchy, and has direct applicability to critical monitoring needs in the Great Lakes.
APA, Harvard, Vancouver, ISO, and other styles
41

Dreujou, Elliot, Christopher McKindsey, Cindy Grant, Lisa Tréau de Coeli, Richard St-Louis, and Philippe Archambault. "Biodiversity and Habitat Assessment of Coastal Benthic Communities in a Sub-Arctic Industrial Harbor Area." Water 12, no. 9 (August 28, 2020): 2424. http://dx.doi.org/10.3390/w12092424.

Full text
Abstract:
Coastal ecosystems face increasing anthropogenic pressures worldwide and their management requires a solid assessment and understanding of the cumulative impacts from human activities. This study evaluates the spatial variation of benthic macrofaunal communities, sediments, and heavy metals in the sub-Arctic coastal ecosystems around Sept-Îles (Québec, Canada)—a major port area in the Gulf of St. Lawrence. Physical sediment properties varied in the studied area, with a general sandy-silty profile except for specific locations in Baie des Sept Îles where higher organic matter and heavy metal concentrations were detected. Macrofaunal assemblages were evaluated for two taxa size classes (organisms > 0.5 mm and > 1 mm) and linked to habitat parameters using regression models. Communities of smaller organisms showed signs of perturbation for one assemblage close to industrial activities at Baie des Sept Îles, with an increased number of tolerant and opportunistic species, contrasting to neighboring regions whose compositions were similar to other ecosystems in the Gulf of St. Lawrence. This study enhances the understanding of sub-Arctic benthic communities and will contribute to monitoring programs for industrial harbor ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
42

Link, Jason S., Jon K. T. Brodziak, Steve F. Edwards, William J. Overholtz, David Mountain, Jack W. Jossi, Tim D. Smith, and Michael J. Fogarty. "Marine ecosystem assessment in a fisheries management context." Canadian Journal of Fisheries and Aquatic Sciences 59, no. 9 (September 1, 2002): 1429–40. http://dx.doi.org/10.1139/f02-115.

Full text
Abstract:
We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.
APA, Harvard, Vancouver, ISO, and other styles
43

Ramesh, Chatragadda, and Raju Mohanraju. "Seagrass Ecosystems of Andaman and Nicobar Islands: Status and Future Perspective." Environmental and Earth Sciences Research Journal 7, no. 4 (December 31, 2020): 169–74. http://dx.doi.org/10.18280/eesrj.070407.

Full text
Abstract:
Seagrasses are unique marine flowering plants that play an important ecological role by yielding primary production and carbon sequestration to the marine environment. Seagrass ecosystems are rich in organic matter, supporting the growth of bio-medically important epi and endophytic microorganisms and harbor rich marine biodiversity. They are an essential food source for endangered Andaman state animal Dugongs. Seagrasses are very sensitive to water quality changes, and therefore they serve as ecological bio-indicators for environmental changes. The benthic components in and around the seagrass beds support a significant food chain for other Micro and organisms apart from fishery resources. The epiphytic bacterial communities of the leaf blades support the sustenance against the diseases. Recent reports have shown that the loss of seagrass beds in tropical and temperate regions emphasizes the depletion of these resources, and proper management of seagrass is urgent. The decline of seagrass will impact primary production, biodiversity, and adjacent ecosystems, such as reefs. Therefore, restoring the seagrass meadows could be possible with effective implementing management programs, including seagrass meadows in marine protected areas, restoration projects, seagrass transplantation, implementation of legislative rules, monitoring coastal water quality and human activities in the coastal zone. Lacunas on the seagrass ecosystem management in Andaman & Nicobar Islands are addressed.
APA, Harvard, Vancouver, ISO, and other styles
44

Chang, N. N., J. C. Shiao, G. C. Gong, S. J. Kao, and C. H. Hsieh. "Contributions of riverborne inorganic and organic matters to the benthic food web in the East China Sea as inferred from stable isotope ratios." Biogeosciences Discussions 10, no. 1 (January 24, 2013): 1051–81. http://dx.doi.org/10.5194/bgd-10-1051-2013.

Full text
Abstract:
Abstract. Coastal areas adjoining rivers are nourished by both the riverborne nutrients and organic matters. Annually, the East China Sea (ECS) receives large quantities of particulate organic carbon transported from the Changjiang (Yangtze River), as well as nutrients, which have brought about high primary production in the ECS. This study evaluated the respective contributions of terrigenous organic matters (allochthonous food source) and nutrient-induced marine production (autochthonous food source) to the ECS benthic ecosystem by analyzing the stable isotope compositions for zooplankton, benthic crustacea and demersal fish. Zooplankton exhibited consistently higher δ13C values (−21.31‰ ~ −19.22‰) in the inner shelf than in the outer shelf. The δ13C signals of fish (−19.64‰ ~ −13.46‰) and crustacea (−18.87‰ ~ −15.00‰) showed strong reliance on the marine production across the ECS continental shelf, regardless of distance from the shore. Moreover, the benthic crustacea and fish exhibited significantly higher δ13C values in the highly productive inshore sites and the δ13C values decreased seawards, implying a higher intrusion of atmospheric CO2 and lower photosynthetic fractionation due to algal blooming in the inner shelf. The δ13C values of fish also showed significant positive correlations with the concentration of surface chlorophyll a and nitrogen. Riverborne nutrients closely linked marine benthic consumers to the terrestrial watershed and tightly coupled the pelagic and benthic ecosystems in the ECS. The stable isotope compositions of benthic consumers can act as an indicator for pelagic trophic status. The future research combining analyses of stable isotope and community structure may improve assessment on the balance between contribution and risk of phytoplankton blooms.
APA, Harvard, Vancouver, ISO, and other styles
45

Solan, Martin, Elena M. Bennett, Peter J. Mumby, Julian Leyland, and Jasmin A. Godbold. "Benthic-based contributions to climate change mitigation and adaptation." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1794 (January 27, 2020): 20190107. http://dx.doi.org/10.1098/rstb.2019.0107.

Full text
Abstract:
Innovative solutions to improve the condition and resilience of ecosystems are needed to address societal challenges and pave the way towards a climate-resilient future. Nature-based solutions offer the potential to protect, sustainably manage and restore natural or modified ecosystems while providing multiple other benefits for health, the economy, society and the environment. However, the implementation of nature-based solutions stems from a discourse that is almost exclusively derived from a terrestrial and urban context and assumes that risk reduction is resolved locally. We argue that this position ignores the importance of complex ecological interactions across a range of temporal and spatial scales and misses the substantive contribution from marine ecosystems, which are notably absent from most climate mitigation and adaptation strategies that extend beyond coastal disaster management. Here, we consider the potential of sediment-dwelling fauna and flora to inform and support nature-based solutions, and how the ecology of benthic environments can enhance adaptation plans. We illustrate our thesis with examples of practice that are generating, or have the potential to deliver, transformative change and discuss where further innovation might be applied. Finally, we take a reflective look at the realized and potential capacity of benthic-based solutions to contribute to adaptation plans and offer our perspectives on the suitability and shortcomings of past achievements and the prospective rewards from sensible prioritization of future research. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions'.
APA, Harvard, Vancouver, ISO, and other styles
46

Murawski, Steven A., John H. Steele, Phillip Taylor, Michael J. Fogarty, Michael P. Sissenwine, Michael Ford, and Cynthia Suchman. "Why compare marine ecosystems?" ICES Journal of Marine Science 67, no. 1 (August 30, 2009): 1–9. http://dx.doi.org/10.1093/icesjms/fsp221.

Full text
Abstract:
Abstract Murawski, S. A., Steele, J. H., Taylor, P., Fogarty, M. J., Sissenwine, M. P., Ford, M., and Suchman, C. 2010. Why compare marine ecosystems? – ICES Journal of Marine Science, 67: 1–9. Effective marine ecosystem-based management (EBM) requires understanding the key processes and relationships controlling the aspects of biodiversity, productivity, and resilience to perturbations. Unfortunately, the scales, complexity, and non-linear dynamics that characterize marine ecosystems often confound managing for these properties. Nevertheless, scientifically derived decision-support tools (DSTs) are needed to account for impacts resulting from a variety of simultaneous human activities. Three possible methodologies for revealing mechanisms necessary to develop DSTs for EBM are: (i) controlled experimentation, (ii) iterative programmes of observation and modelling (“learning by doing”), and (iii) comparative ecosystem analysis. We have seen that controlled experiments are limited in capturing the complexity necessary to develop models of marine ecosystem dynamics with sufficient realism at appropriate scales. Iterative programmes of observation, model building, and assessment are useful for specific ecosystem issues but rarely lead to generally transferable products. Comparative ecosystem analyses may be the most effective, building on the first two by inferring ecosystem processes based on comparisons and contrasts of ecosystem response to human-induced factors. We propose a hierarchical system of ecosystem comparisons to include within-ecosystem comparisons (utilizing temporal and spatial changes in relation to human activities), within-ecosystem-type comparisons (e.g. coral reefs, temperate continental shelves, upwelling areas), and cross-ecosystem-type comparisons (e.g. coral reefs vs. boreal, terrestrial vs. marine ecosystems). Such a hierarchical comparative approach should lead to better understanding of the processes controlling biodiversity, productivity, and the resilience of marine ecosystems. In turn, better understanding of these processes will lead to the development of increasingly general laws, hypotheses, functional forms, governing equations, and broad interpretations of ecosystem responses to human activities, ultimately improving DSTs in support of EBM.
APA, Harvard, Vancouver, ISO, and other styles
47

Veneroni, Benedetta, and Paul G. Fernandes. "Fishers’ knowledge detects ecological decay in the Mediterranean Sea." Ambio 50, no. 6 (January 16, 2021): 1159–71. http://dx.doi.org/10.1007/s13280-020-01452-3.

Full text
Abstract:
AbstractThe Northern Adriatic Sea (NAS) is one of the most overexploited marine ecosystems in Europe. Given the gaps in scientific knowledge regarding the NAS, this study sought Fishers’ Ecological Knowledge (FEK) to determine NAS’ historical baselines for conservation. By interviewing 53 fishers in three ports of northern Italy, estimates of the catch rates of four commercial demersal species were generated over a 60-year period, and perceptions of target and non-target species’ diversity and benthic diversity were analysed in three groups of fishers (i.e. novices, experienced and veterans). Results showed a significant decline in perceived abundance of sole (Solea solea), common cuttlefish (Sepia officinalis) and mantis shrimp (Squilla mantis), and evidence was found of a Shifting Baseline Syndrome (SBS) among novices. Given FEK’s ability to complement scientific knowledge, fishers’ participation in marine management policies and intergenerational communication should be enhanced, to improve the status of marine ecosystems and hinder SBS.
APA, Harvard, Vancouver, ISO, and other styles
48

Buhl-Mortensen, Lene, Francis Neat, Mariano Koen-Alonso, Carsten Hvingel, and Børge Holte. "Fishing impacts on benthic ecosystems: an introduction to the 2014 ICES symposium special issue." ICES Journal of Marine Science 73, suppl_1 (December 13, 2015): i1—i4. http://dx.doi.org/10.1093/icesjms/fsv237.

Full text
Abstract:
Abstract Understanding the impacts of fishing on the seabed is a basic requirement for ecosystem-based marine management. It is only recently that we have begun understanding how fisheries-driven perturbations affect ecosystem function, biodiversity, productivity, and resilience. Technical solutions aimed at minimizing seabed impacts are starting to appear, but their efficacy remains to be demonstrated. In 2014, ICES held a symposium on the effects of fishing on benthic fauna, habitat, and ecosystem function, in Tromsø, Norway. The main goals of the symposium were to summarize current understanding of the physical and biological effects of fishing activities on benthic ecosystems, and to review the diversity of technical measures currently available to mitigate these effects. Here, we briefly describe the background to the scientific symposium and highlight the main contributions.
APA, Harvard, Vancouver, ISO, and other styles
49

Abaza, Valeria, Camelia Dumitrache, and Adrian Filimon. "The Status of the Sedimentary Benthic Broad Habitats and their Associated Communities in the Romanian Marine Area in 2020." Cercetări Marine - Recherches Marines 51, no. 1 (January 12, 2021): 64–79. http://dx.doi.org/10.55268/cm.2021.51.64.

Full text
Abstract:
"The management of marine areas are guided by environmental policies, such as European Union’s Marine Strategy Framework Directive (MSFD), Water Framework Directive (WFD) and Habitats Directive, all requiring periodic assessment and reporting. In 2020, the macrozoobenthos was monitored on the entire Black Sea Romanian shelf at depths ranging between 10 and 100 m. Out of the 43 sampling points of the marine monitoring network, 56 samples were collected in 22 selected stations distributed among broad sedimentary habitat types in Romanian waters in three marine reporting units (variable salinity waters, coastal waters and marine waters). Six types of sedimentary habitats were identified in the above-mentioned marine reporting units according to Marine Strategy Framework Directive (MSFD). Marine Strategy Framework Directive (MSFD) clearly specifies that assessment must take into consideration benthic broad habitat types, including their associated biological communities. To assess the ecological status according to the MSFD of macrozoobenthos from the Romanian shore, M-AMBI*(n) index was used. Following the assessment, the ecological status of the macrozoobenthic communities was determined as good in all three marine reporting units. The data collected in 2020 will contribute to the six-year assessment of the benthic broad habitats and establishment of thresholds for different sub-types. Key-Words: Black Sea, macrozoobenthos, benthic habitat types, M-AMBI *(n) index, environmental status "
APA, Harvard, Vancouver, ISO, and other styles
50

Bakirman, T., M. U. Gumusay, and I. Tuney. "MAPPING OF THE SEAGRASS COVER ALONG THE MEDITERRANEAN COAST OF TURKEY USING LANDSAT 8 OLI IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 (June 24, 2016): 1103–5. http://dx.doi.org/10.5194/isprs-archives-xli-b8-1103-2016.

Full text
Abstract:
Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5–10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography