Academic literature on the topic 'Assembly of cytochrom c oxidase'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Assembly of cytochrom c oxidase.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Assembly of cytochrom c oxidase"

1

Taanman, J. W., and S. L. Williams. "Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency?" Biochemical Society Transactions 29, no. 4 (August 1, 2001): 446–51. http://dx.doi.org/10.1042/bst0290446.

Full text
Abstract:
Cytochrome c oxidase is an intricate metalloprotein that transfers electrons from cytochrome c to oxygen in the last step of the mitochondrial respiratory chain. It uses the free energy of this reaction to sustain a transmembrane electrochemical gradient of protons. Site-directed mutagenesis studies of bacterial terminal oxidases and the recent availability of refined crystal structures of the enzyme are rapidly expanding the understanding of the coupling mechanism between electron transfer and proton translocation. In contrast, relatively little is known about the assembly pathway of cytochrome c oxidase. Studies in yeast have indicated that assembly is dependent on numerous proteins in addition to the structural subunits and prosthetic groups. Human homologues of a number of these assembly factors have been identified and some are now known to be involved in disease. To dissect the assembly pathway of cytochrome c oxidase, we are characterizing tissues and cell cultures derived from patients with genetically defined cytochrome c oxidase deficiency, using biochemical, biophysical and immunological techniques. These studies have allowed us to identify some of the steps of the assembly process.
APA, Harvard, Vancouver, ISO, and other styles
2

Feissner, Robert E., Caroline S. Beckett, Jennifer A. Loughman, and Robert G. Kranz. "Mutations in Cytochrome Assembly and Periplasmic Redox Pathways in Bordetella pertussis." Journal of Bacteriology 187, no. 12 (June 15, 2005): 3941–49. http://dx.doi.org/10.1128/jb.187.12.3941-3949.2005.

Full text
Abstract:
ABSTRACT Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB− mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Bengtsson, Jenny, Claes von Wachenfeldt, Lena Winstedt, Per Nygaard, and Lars Hederstedt. "CtaG is required for formation of active cytochrome c oxidase in Bacillus subtilis." Microbiology 150, no. 2 (February 1, 2004): 415–25. http://dx.doi.org/10.1099/mic.0.26691-0.

Full text
Abstract:
The Gram-positive bacterium Bacillus subtilis contains two respiratory oxidases of the haem-copper superfamily: cytochrome aa 3, which is a quinol oxidase, and cytochrome caa 3, which is a cytochrome c oxidase. Cytochrome c oxidase uniquely contains a di-copper centre, CuA. B. subtilis CtaG is a membrane protein encoded by the same gene cluster as that which encodes the subunits of cytochrome c oxidase. The role of B. subtilis CtaG and orthologous proteins present in many other Gram-positive bacteria has remained unexplored. The sequence of CtaG is unrelated to that of CtaG/Cox11p of proteobacteria and eukaryotic cells. This study shows that B. subtilis CtaG is essential for the formation of active cytochrome caa 3 but is not required for assembly of the core subunits I and II with haem in the membrane and it has no role in the synthesis of active cytochrome aa 3. B. subtilis YpmQ, a homologue to Sco1p of eukaryotic cells, is also a membrane-bound cytochrome c oxidase-specific assembly factor. Properties of CtaG- and YpmQ-deficient mutants were compared. Cells lacking YpmQ showed a low cytochrome c oxidase activity and this defect was suppressed by the supplementation of the growth medium with copper ions. It has previously been proposed that YpmQ/Sco1p is involved in synthesis of the CuA centre. The results of this study are consistent with this proposal but the exact role of YpmQ in assembly of cytochrome c oxidase remains to be elucidated.
APA, Harvard, Vancouver, ISO, and other styles
4

Bareth, Bettina, Miroslav Nikolov, Isotta Lorenzi, Markus Hildenbeutel, David U. Mick, Christin Helbig, Henning Urlaub, Martin Ott, Peter Rehling, and Sven Dennerlein. "Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1." Molecular Biology of the Cell 27, no. 10 (May 15, 2016): 1570–80. http://dx.doi.org/10.1091/mbc.e15-12-0811.

Full text
Abstract:
The mitochondrial cytochrome c oxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle in which translation of COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we isolate a cytochrome c oxidase assembly intermediate in preparatory scale from coa1Δ mutant cells, using Mss51 as bait. We demonstrate that at this stage of assembly, the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we define the protein composition of the assembly intermediate and unexpectedly identify the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochrome c oxidase assembly by stabilizing newly synthesized Cox1.
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, Shane A., and Gavin P. McStay. "Functions of Cytochrome c Oxidase Assembly Factors." International Journal of Molecular Sciences 21, no. 19 (September 30, 2020): 7254. http://dx.doi.org/10.3390/ijms21197254.

Full text
Abstract:
Cytochrome c oxidase is the terminal complex of eukaryotic oxidative phosphorylation in mitochondria. This process couples the reduction of electron carriers during metabolism to the reduction of molecular oxygen to water and translocation of protons from the internal mitochondrial matrix to the inter-membrane space. The electrochemical gradient formed is used to generate chemical energy in the form of adenosine triphosphate to power vital cellular processes. Cytochrome c oxidase and most oxidative phosphorylation complexes are the product of the nuclear and mitochondrial genomes. This poses a series of topological and temporal steps that must be completed to ensure efficient assembly of the functional enzyme. Many assembly factors have evolved to perform these steps for insertion of protein into the inner mitochondrial membrane, maturation of the polypeptide, incorporation of co-factors and prosthetic groups and to regulate this process. Much of the information about each of these assembly factors has been gleaned from use of the single cell eukaryote Saccharomyces cerevisiae and also mutations responsible for human disease. This review will focus on the assembly factors of cytochrome c oxidase to highlight some of the outstanding questions in the assembly of this vital enzyme complex.
APA, Harvard, Vancouver, ISO, and other styles
6

Capaldi, Roderick A. "Structure and assembly of cytochrome c oxidase." Archives of Biochemistry and Biophysics 280, no. 2 (August 1990): 252–62. http://dx.doi.org/10.1016/0003-9861(90)90327-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kulawiak, B., N. Gebert, C. Schütze, A. Schulze-Specking, N. Wiedemann, and N. Pfanner. "Pet117 — Assembly factor of cytochrome c oxidase." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817 (October 2012): S109. http://dx.doi.org/10.1016/j.bbabio.2012.06.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barrientos, Antoni. "Redox Regulation of Cytochrome C Oxidase Assembly." Biophysical Journal 112, no. 3 (February 2017): 4a. http://dx.doi.org/10.1016/j.bpj.2016.11.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forsha, D., C. Church, P. Wazny, and R. O. Poyton. "Structure and function of Pet100p, a molecular chaperone required for the assembly of cytochrome c oxidase in Saccharomyces cerevisiae." Biochemical Society Transactions 29, no. 4 (August 1, 2001): 436–41. http://dx.doi.org/10.1042/bst0290436.

Full text
Abstract:
The assembly of cytochrome c oxidase in the inner mitochondrial membranes of eukaryotic cells requires the protein products of a large number of nuclear genes. In yeast, some of these act globally and affect the assembly of several respiratory-chain protein complexes, whereas others act in a cytochrome c oxidase-specific fashion. Many of these yeast proteins have human counterparts, which when mutated lead to energy-related diseases. One of these proteins, Pet100p, is a novel molecular chaperone that functions to incorporate a subcomplex containing cytochrome c oxidase subunits VII, VIIa and VIII into holo-(cytochrome c oxidase). Here we report the topological disposition of Pet100p in the inner mitochondrial membrane and show that its C-terminal domain is essential for its function as a cytochrome c oxidase-specific ‘assembly facilitator’.
APA, Harvard, Vancouver, ISO, and other styles
10

Perez-Martinez, Xochitl, Christine A. Butler, Miguel Shingu-Vazquez, and Thomas D. Fox. "Dual Functions of Mss51 Couple Synthesis of Cox1 to Assembly of Cytochrome c Oxidase in Saccharomyces cerevisiae Mitochondria." Molecular Biology of the Cell 20, no. 20 (October 15, 2009): 4371–80. http://dx.doi.org/10.1091/mbc.e09-06-0522.

Full text
Abstract:
Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5′-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Assembly of cytochrom c oxidase"

1

Paret, Claudia. "Assembly of cytochrome c oxidase: the role of hSco1p and hSco2p." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1008679017468-62905.

Full text
Abstract:
COX deficiency in human presents a plethora of phenotypes which is not surprising given the complexity of the enzyme structure and the multiple factors and many steps required for its assembly. A functional COX requires three mitochondrially encoded subunits (Cox1p, Cox2p and Cox3p), at least 10 nuclearly encoded subunits, some of which are tissue specific, and a yet unknown number of assembly factors. Mutations in four of these factors, hSco1p, hSco2p, hCox10p and hSurf1p, have been associated with lethal COX deficiency in patients. Sco proteins, conserved from prokaryotes to eukaryotes, are probably involved in the insertion of copper in COX. The role of hSco1p and hSco2p in this process was investigated in this work. Moreover the importance of some hSco mutations found in patients was analysed. Both in vitro and in vivo analyses show that the hSco proteins are localised in the mitochondria. Both proteins are per se unable to substitute for ySco1p. However, a chimeric construct consisting of the N-terminal portion, the TM and a part of the C-terminal portion of ySco1p and the remaining C-terminal part derived from hSco1p was able to complement a ysco1 null mutant strain. This construct was used to define the role of a point mutation (P174L) found in the hSCO1 gene of infants suffering from ketoacidotic coma. These mutation was shown to affect the COX activity and the levels of Cox1p and Cox2p. The fact that copper was able to suppress this mutation, strongly outlined the importance of Sco proteins in the copper insertion in COX. The C-terminal portions of recombinant hSco1p and hSco2p were purified from E. coli by affinity chromatography. The purified proteins were subjected to atomic emission and absorption analyses and were shown to specifically bind copper. A stoichiometry of 1:1 for hSco2p and of 0,6:1 for hSco1p was determined. To identify the Aa residues involved in copper binding, in vitro mutagenesis was performed. hSco1p and hSco2p, lacking the cysteines of the predicted metal binding site CxxxC, show a dramatic decrease in the ability to bind copper. A model for the structure of the metal binding site in hSco proteins is proposed. hSco proteins could bind copper with trigonal coordination, involving the two cysteines of the CxxxC motif and a conserved histidine. The purified recombinant proteins were also used in an enzymatic assay to test their ability to reduce disulfide bridges, similar to thioredoxin-like proteins involved in the assembly of bacterial COX. Both hSco proteins were not able to act as thioredoxins suggesting a role for the hSco proteins as copper chaperones. To define the pathway of the copper transfer to COX, hSco proteins were tested for their ability to interact with hCox17p, a mitochondrial copper chaperone, and with Cox2p, which contains two copper ions. An interaction between hSco1p and Cox2p was detected. Both hSco proteins were shown to homomerise and to form heterodimers one with each other. Two mutations found in hSCO2 patients suffering from hypertrophic cardiomyopathy, (E140K and S225F) were shown not to affect the copper binding properties, the intracellular localisation and the ability to form homomers. In accordance to these data, a model is proposed in which hSco2p dimers transfer copper to hSco1p dimers. hSco1p dimers interact with COX and insert copper in the binuclear centre of Cox2p.
APA, Harvard, Vancouver, ISO, and other styles
2

Pawlik, Grzegorz. "Assembly and maturation of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAF070.

Full text
Abstract:
Dans cette thèse, le processus d'assemblage ainsi que la maturation du cytochrome c oxydase de type cbb3 (cbb3-Cox) ont été étudiés dans la proteobactérie phototrophique pourpe non soufrée Rhodobacter capsulatus. R. capsulatus contient une chaîne de transfert d'électrons très ramifiée et represente un modèle d’organisme très utilisé dans l'étude des processus respiratoires et photosynthétiques.Les cbb3-Coxs spécifiques des bactéries représentent la deuxième catégorie la plus abondante des cytochromes c oxydases après le type Cox-aa3, mais n'ont jusqu'à présent pas été étudiées en détail. Récemment, la première structure cristalline cbb3-Cox de P. stutzeri a été obtenue, fournissant ainsi une avancée majeure invitant à des etudes plus détaillées sur le mécanisme catalytique et le processus d'assemblage. Les études sur les procédés d'assemblage et de maturation sont d'une très grande importance en raison du fait que de nombreux agents pathogènes humains tels que Helicobacter pylori, Neisseria meningitidis ou Campylobacter jejuni utilisent ce type de Cox, ce qui par conséquent pourrait amener a développer une interessante cible thérapeutique.Cbb3-Cox dans R. capsulatus est encodé par le gène opéron ccoNOQP codant quatre protéines membranaires constitutives de cbb3-Cox. CcoP et CcoO sont des cytochromes de type c, contenant des motifs périplasmiques fixés à l’hème. CcoN est la sous-unité centrale catalytique contenant deux molécules d’hèmes de type b et un ion cuivre. L’étude de la distribution de l’ion Cu à la sous-unité CcoN et l'assemblage des quatre sous-unités dans le complexe actif cbb3-Cox complexe sont les thèmes principaux de ce travail.Ici, le rôle du facteur d'assemblage putatif CcoH, sa structure et son interaction avec cbb3-Cox ont été étudiés en détail. CcoH est une petite protéine membranaire codé dans le groupe de gènes ccoGHIS situé à proximité des gènes codant cbb3-Cox. L'analyse in vivo de la formation de cbb3-Cox dans une souche ne contenant pas le facteur CcoH a montré une absence totale de cbb3-Cox. De même, la stabilité du facteur CcoH a été considérablement altérée dans une souche avec deletion du gene ccoNOQP. La dépendance mutuelle des deux protéines suggère leur interaction directe, ce qui a été confirmé par la photoréticulation directe de CcoH à la sous-unité CcoN, l’immunodétection de CcoH dans les cbb3-Cox complexes sur gels Blue Native, la co-purification par marquage CcoH-cbb3-Cox et le marquage radioactive in vitro des complexes cbb3-Cox avec CcoH.[...]
In this thesis, the assembly and maturation process of the cbb3-type cytochrome c oxidase (cbb3-Cox) was studied in the purple-non-sulphur phototrophic α-proteobacterium Rhodobacter capsulatus. R. capsulatus contains a highly branched electron-transfer chain and is a well studied model organism for investigating respiratory and photosynthetic processes.The bacteria-specific cbb3-Coxs represent the second most abundant class of cytochrome c oxidases after the aa3-type Cox, but have so far not been investigated in much detail. Recently, the first crystal structure of cbb3-Cox from P. stutzeri was obtained, providing a major breakthrough and inviting detailed studies on the catalytic mechanism and the assembly process. Studies on the assembly and maturation processes are of wide significance due to the fact that many human pathogens like Helicobacter pylori, Neisseria meningitides or Campylobacter jejuni use this type of Cox and it therefore might develop into an attractive drug-target. cbb3-Cox in R. capsulatus is encoded by the ccoNOQP gene operon which codes for four membrane proteins constituting cbb3-Cox. CcoP and CcoO are c-type cytochromes, containing periplasmic heme-binding motifs. CcoN is the central catalytic subunit which contains two b-type hemes and a copper ion. Investigating the delivery of Cu to the CcoN subunit and the assembly of all four subunits into the active cbb3-Cox complex were the main topics of this work. Here the role of the putative assembly factor CcoH, its structure and interaction with cbb3-Cox was investigated in detail. CcoH is a small membrane protein encoded in the ccoGHIS gene cluster located adjacent to the genes coding for cbb3-Cox. In vivo analysis of cbb3-Cox formation in a strain lacking ccoH showed the total absence of cbb3-Cox. Likewise, the stability of CcoH was drastically impaired in a ccoNOQP deletion strain. The mutual dependency of both proteins suggested their direct interaction, which was confirmed by site-directed photocrosslinking of CcoH to the CcoN subunit, by immunodetection of CcoH in cbb3-Cox complexes on Blue Native gels, by CcoH-cbb3-Cox co-purification and by in vitro labelling of cbb3-Cox complexes with radioactively labelled CcoH.[...]
APA, Harvard, Vancouver, ISO, and other styles
3

Horn, Darryl M. "Characterization of Two CX9C Containing Mitochondrial Proteins Necessary for Cytochrome c Oxidase Assembly." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/375.

Full text
Abstract:
Copper is an essential cofactor of two mitochondrial enzymes: cytochrome c oxidase (COX) and the mitochondrial localized fraction of Cu-Zn superoxide dismutase (Sod1p). Copper incorporation into these enzymes is facilitated by a growing number of metallochaperone proteins. Here we describe two novel copper chaperones of COX, Cmc1 and Cmc2. In Saccharomyces cerevisiae, both Cmc1 and Cmc2 localize to the mitochondrial inner membrane facing the intermembrane space. Cmc1 and Cmc2 are essential for full expression of COX and cellular respiration, contain a twin Cx9C domain, and are conserved from yeast to humans. Additionally, the presence or absence of these proteins not only determines full assembly of functional COX but also affects metallation of Sod1 suggesting these proteins might play a role on co-modulation of copper transfer to COX and Sod1. CMC1 overexpression does not rescue the respiratory defect of cmc2 mutants or vise versa. However, Cmc2 physically interacts with Cmc1 and the absence of Cmc2 induces a 5-fold increase in Cmc1 accumulation in the mitochondrial membranes. We conclude that Cmc1 and Cmc2 have cooperative but non-overlapping functions in cytochrome c oxidase biogenesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Lode, Anja. "Assemblierung der Cytochrom c Oxidase: Molekulare und biochemische Charakterisierung des mitochondrialen Sco1p aus Saccharomyces cerevisiae und homologer Proteine." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2001. http://nbn-resolving.de/urn:nbn:de:swb:14-1002722328812-10604.

Full text
Abstract:
Diese Arbeit beschäftigt sich mit dem mitochondrialen Sco1-Protein der Hefe Saccharomyces cerevisiae sowie mit weiteren Vertretern der Sco-Proteinfamilie. Sco1p ist essenziell für die Assemblierung der Cytochrom c Oxidase (COX), dem terminalen Komplex der Atmungskette. Aufgrund von genetischen Daten wurde angenommen, dass es an der Insertion von Cu-Ionen in den COX-Komplex beteiligt ist. Dabei existieren zwei unterschiedliche Vorstellungen über seine Wirkweise: Einerseits könnte Sco1p als Cu-Chaperon selbst Cu-Ionen binden und anschließend auf die Cu-tragenden COX-Untereinheiten Cox1p und/oder Cox2p übertragen. Andererseits könnte es als Disulfidreduktase die in die Cu-Bindung involvierten Cysteinreste von Cox2p reduzieren und somit die Voraussetzung für eine Cu-Anheftung an Cox2p schaffen. In beiden Fällen wird den unter den Sco-Proteinen konservierten Aminosäuren Cystein(148), Cystein(152) und Histidin(239) eine Schlüsselrolle zugedacht. Es wurde gezeigt, dass diese Aminosäuren tatsächlich essenziell für die Funktion von Sco1p sind. Die Daten dieser Arbeit sprechen dafür, dass Sco1p als Cu-Chaperon fungiert: Sco1p zeigt keine Aktivität als Disulfidreduktase. Außerdem interagiert Sco1p mit Cox17p - dem Protein, das Cu-Ionen in die Mitochondrien importiert - und geht mit Cox2p eine Wechselwirkung ein. Im Rahmen der Interaktionsanalysen wurde weiterhin gezeigt, dass Sco1p homomere Komplexe ausbildet. Ein weiterer Schwerpunkt dieser Arbeit lag in Untersuchungen zum homologen Sco2p aus Saccharomyces cerevisiae, das im Gegensatz zu Sco1p nicht essenziell für eine funkionsfähige COX ist. Trotz seiner großen Ähnlichkeit ist Sco2p nicht in der Lage, die Funktion von Sco1p zu erfüllen. Im Rahmen dieser Arbeit konnt aber demonstriert werden, dass Sco2p zumindest teilweise Sco1p ersetzen kann. Somit kann für beide Proteine angenommen werden, dass sie überlappende Funktionen besitzen. Übereinstimmend wurde nachgewiesen, dass Sco2p - wie Sco1p - in der Lage ist, mit Cox17p und mit Cox2p zu interagieren und außerdem heteromere Komplexe mit Sco1p formiert. Es wurde ein Modell zur Wirkweise von Sco1p und Sco2p entwickelt.
APA, Harvard, Vancouver, ISO, and other styles
5

Bareth, Bettina [Verfasser], Peter [Akademischer Betreuer] Rehling, and Stefan [Akademischer Betreuer] Jakobs. "Analysis of early steps in Assembly of Cytochrome c Oxidase / Bettina Bareth. Gutachter: Peter Rehling ; Stefan Jakobs. Betreuer: Peter Rehling." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1064148387/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Römpler, Katharina Maria [Verfasser], Peter [Akademischer Betreuer] [Gutachter] Rehling, and Heike [Gutachter] Krebber. "Dynamic changes in cytochrome c oxidase assembly and organization / Katharina Maria Römpler. Betreuer: Peter Rehling. Gutachter: Peter Rehling ; Heike Krebber." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/1112325387/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dronov, Roman. "Multi-component protein films by layer-by-layer : assembly and electron transfer." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1728/.

Full text
Abstract:
Electron transfer phenomena in proteins represent one of the most common types of biochemical reactions. They play a central role in energy conversion pathways in living cells, and are crucial components in respiration and photosynthesis. These complex biochemical reaction cascades consist of a series of proteins and protein complexes that couple a charge transfer to different forms of chemical energy. The efficiency and sophisticated optimisation of signal transfer in these natural redox chains has inspired engineering of artificial architectures mimicking essential properties of their natural analogues. Implementation of direct electron transfer (DET) in protein assemblies was a breakthrough in bioelectronics, providing a simple and efficient way for coupling biological recognition events to a signal transducer. DET avoids the use of redox mediators, reducing potential interferences and side reactions, as well as being more compatible with in vivo conditions. However, only a few haem proteins, including the redox protein cytochrome c (cyt.c), and blue copper enzymes show efficient DET on different kinds of electrodes. Previous investigations with cyt.c have mainly focused on heterogeneous electron transfer of monolayers of this protein on gold. An important advance was the fabrication of cyt.c multilayers by electrostatic layer-by-layer self-assembly. The ease of fabrication, the stability, and the controllable permeability of polyelectrolyte multilayers have made them particularly attractive for electroanalytical applications. With cyt.c and sulfonated polyaniline it was for the first time possible that fully electro-active multilayers of the redox protein could be prepared. This approach was extended to design an analytical signal chain based on multilayers of cyt.c and xanthine oxidase (XOD). The system does not need an external mediator but relies on an in situ generation of a mediating radical and thus allows a signal transfer from hypoxanthine via the substrate converting enzyme and cyt.c to the electrode. Another kind of a signal chain is based on assembling proteins in complexes on electrodes in such a way that a direct protein-protein electron transfer becomes feasible. This design does not need a redox mediator in analogy to natural protein communication. For this purpose, cyt.c and the enzyme bilirubin oxidase (BOD, EC 1.3.3.5) are co-immobilized in a self-assembled polyelectrolyte multilayer on gold electrodes. Although these two proteins are not natural reaction partners, the protein architecture facilitates an electron transfer from the electrode via multiple protein layers to molecular oxygen resulting in a significant catalytic reduction current. Finally, we describe a novel strategy for multi-protein layer-by-layer self-assembly combining cyt.c with an enzyme sulfite oxidase (SOx) without use of any additional polymer. Electrostatic interactions between these two proteins with rather separated pI values during the assembly process from a low ionic strength buffer were found sufficient for the layer-by-layer deposition of the both biomolecules. It is anticipated that the concepts described in this work will stimulate further progress in multilayer design of even more complex biomimetic signal cascades taking advantage of direct communication between proteins.
Elektronentransferphänomene in Proteinen stellen den häufigsten Typ biochemischer Reaktionen dar. Sie spielen eine zentrale Rolle bei der Energieumwandlung in der Zelle und sind entscheidende Komponenten in der Atmung und Photosynthese. Diese komplexen Kaskaden biochemischer Reaktionen setzen sich aus einer Reihe von Proteinen und Proteinkomplexen zusammen, die den Energietransfer an verschiedene Formen chemischer Energie koppeln. Die große Effektivität und Selektivität des Signaltransfers in diesen natürlichen Redoxketten war Vorbild für die Entwicklung künstlicher Architekturen, die die wesentlichen Eigenschaften ihrer natürlichen Analoga nachahmen. Die Implementierung des direkten Elektronentransfers (DET) von Proteinen mit Elektroden war ein Durchbruch im Bereich der Bioelektronik. Sie lieferte einen einfachen und effizienten Weg für das Koppeln biologischer Erkennungsereignisse an einen Signalumwandler. Durch den DET können Redoxmediatoren vermieden und damit potentielle Grenzflächen und Nebenreaktionen reduziert werden. Ebenso wird damit die Kompatibilität für in vivo Bedingungen erhöht. Jedoch zeigen nur einige Hämproteine wie das Redoxprotein Cytochrom c (Cyt c) und blaue Kupferproteine einen effizienten DET auf verschiedenen Elektrodentypen. Bisherige Untersuchungen mit Cyt c konzentrierten sich hauptsächlich auf den heterogenen Elektronentransfer von Monoschichten dieses Proteins auf Gold. Ein wichtiger Fortschritt war die Herstellung von Cyt c Multischichten durch die elektrostatische Layer-by-Layer-Technik. Die einfache Herstellung, die Stabilität sowie die kontrollierbaren Permeationseigenschaften von Polyelektrolyt-Multischichten machte sie besonders attraktiv für elektroanalytische Anwendungen. So gelang es auch zum ersten Mal vollständig elektroaktive Multischichten aus Cyt c und Polyanilinsulfonsäure zu präparieren. Dieser Ansatz wurde hier erweitert, um eine analytische Signalkette auf der Basis von Multischichten aus Cyt c und Xanthinoxidase zu entwerfen. Das System bedarf keinen externen Mediator, es hängt jedoch von der in situ Generierung eines vermittelnden Radikals ab und erlaubt daher einen Signaltransfer von Hypoxanthin über ein substratumwandelndes Enzym und Cyt c zur Elektrode. Eine andere Art von Signalketten basiert auf der Assemblierung von Proteinen in Komplexen auf Elektroden in solcher Art und Weise, daß ein direkter Protein-Protein-Elektronentransfer möglich wird. Dieser Ansatz benötigt keinen Redoxmediator in Analogie zu Beispielen aus dem biologischen Signaltransfer. Zu diesem Zweck werden Cyt c und das Enzym Bilirubinoxidase mit einem selbst-assemblierenden Polyelektrolyten auf einer Goldelektrode koimmobilisiert. Obwohl diese zwei Proteine keine natürlichen Reaktionspartner sind, unterstützt die Protein-Architektur einen Elektronentransfer von der Elektrode über mehrere Proteinschichten zu molekularem Sauerstoff und ergibt einen signifikanten katalytischen Reduktionsstrom. Schließlich wird eine neue Strategie beschrieben für eine Selbstassemblierung von Proteinen ohne zusätzlichen Polyelektrolyten - am Beispiel der Kombination von Cyt c mit Sulfitoxidase. Es stellte sich heraus, daß die elektrostatische Wechselwirkung zwischen diesen zwei Proteinen mit ziemlich weit voneinander entfernt liegenden pI-Werten während des Assemblierungsprozesses durch einen Puffer mit geringer Ionenstärke ausreicht um die beiden Biomoleküle nach dem Layer-by-Layer-Prinzip auf einer Elektrode abzuscheiden. Es wird erwartet, daß das entwickelte Konzept von Multiprotein-Assemblaten auf Elektroden weitere Fortschritte bei dem Entwurf von Multischichten und sogar noch komplexeren biomimetischen Signalkaskaden anregen wird und dabei der Vorteil der direkten Kommunikation zwischen Proteinen genutzt wird.
APA, Harvard, Vancouver, ISO, and other styles
8

Kallus, Beate. "CAMP-abhängige Phosphorylierung der Cytochrom-c-Oxidase in Rattenhepatozyten." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964354403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Than, Manuel E. "Röntgenstrukturanalyse der Ba3-Cytochrom-c-Oxidase aus Thermus thermophilus und ihres Substrates Cytochrom-c552." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=959982051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Landaverry, Yakira Rodríguez. "Histidine-tyrosine side chain bonding : (1) Synthesis of cytochrome c oxidase active site model systems. (2) Synthetic methodology for the synthesis of the core histidine-tyrosine depeptide assembly of the natural products aciculitins A-C. Progress towards the total synthesis of psymberin: synthesis of the pyran core /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2007. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Assembly of cytochrom c oxidase"

1

Fontanesi, Flavia, and Antoni Barrientos. "Mitochondrial Cytochrome c Oxidase Assembly in Health and Human Diseases." In Mitochondrial Disorders Caused by Nuclear Genes, 239–59. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3722-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takahashi, Yoshinori, Koichiro Kako, Hidenori Arai, Akio Takehara, and Eisuke Munekata. "Effect of Deficiency of Cytochrome C Oxidase Assembly Peptide Cox17p on Mitochondrial Functions and Respiratory-Chain in Mice." In Peptides: The Wave of the Future, 795–96. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maurer, I., S. Zierz, and H. J. Möller. "Cytochrom C Oxidase Mangel bei Alzheimer’scher Erkrankung." In Aktuelle Perspektiven der Biologischen Psychiatrie, 94–96. Vienna: Springer Vienna, 1996. http://dx.doi.org/10.1007/978-3-7091-6889-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Benninger, C., U. Lichter-Konecki, H. P. Schmitt, and H. Reichmann. "Isolierter Cytochrom-C-Oxidase-Mangel im Gehirn." In Aktuelle Neuropädiatrie 1989, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-93411-7_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vondráčková, Alžběta, Kateřina Veselá, Jiří Zeman, and Markéta Tesařová. "High-Resolution Melting Analysis for Identifying Sequence Variations in Nuclear Genes for Assembly Factors and Structural Subunits of Cytochrome C Oxidase." In Methods in Molecular Biology, 351–67. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2257-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iyer, Sweta, Rachel T. Uren, and Ruth M. Kluck. "Probing BAK and BAX Activation and Pore Assembly with Cytochrome c Release, Limited Proteolysis, and Oxidant-Induced Linkage." In Methods in Molecular Biology, 201–16. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8861-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

CAPALDI, RODERICK A., SHINZABURO TAKAMIYA, YU-ZHONG ZHANG, DIEGO GONZALEZ-HALPHEN, and WAYNE YANAMURA. "Structure of Cytochrome-c Oxidase." In Current Topics in Bioenergetics - Structure, Biogenesis, and Assembly of Energy Transducing Enzyme Systems, 91–112. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-12-152515-6.50008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KADENBACH, BERNHARD, LUCIA KUHN-NENTWIG, and URSULA BÜGE. "Evolution of a Regulatory Enzyme: Cytochrome-c Oxidase (Complex IV)." In Current Topics in Bioenergetics - Structure, Biogenesis, and Assembly of Energy Transducing Enzyme Systems, 113–61. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-12-152515-6.50009-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taber, Douglass F. "Organocatalyzed C–C Ring Construction: The Mihovilovic Synthesis of Piperenol B." In Organic Synthesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190646165.003.0072.

Full text
Abstract:
M. Kevin Brown of Indiana University prepared (J. Am. Chem. Soc. 2015, 137, 3482) the cyclobutane 3 by the organocatalyzed addition of 2 to the alkene 1. Karl Anker Jørgensen of Aarhus University assembled (J. Am. Chem. Soc. 2015, 137, 1685) the complex cyclobutane 7 by the addition of 5 to the acceptor 4, followed by conden­sation with the phosphorane 6. Zhi Li of the National University of Singapore balanced (ACS Catal. 2015, 5, 51) three enzymes to effect enantioselective opening of the epoxide 8 followed by air oxidation to 9. Gang Zhao of the Shanghai Institute of Organic Chemistry and Zhong Li of the East China University of Science and Technology added (Org. Lett. 2015, 17, 688) 10 to 11 to give 12 in high ee. Akkattu T. Biju of the National Chemical Laboratory combined (Chem. Commun. 2015, 51, 9559) 13 with 14 to give the β-lactone 15. Paul Ha-Yeon Cheong of Oregon State University and Karl A. Scheidt of Northwestern University reported (Chem. Commun. 2015, 51, 2690) related results. Dieter Enders of RWTH Aachen University constructed (Chem. Eur. J. 2015, 21, 1004) the complex cyclopentane 20 by the controlled com­bination of 16, 17, and 18, followed by addition of the phosphorane 19. Derek R. Boyd and Paul J. Stevenson of Queen’s University Belfast showed (J. Org. Chem. 2015, 80, 3429) that the product from the microbial oxidation of 21 could be protected as the acetonide 22. Ignacio Carrera of the Universidad de la República described (Org. Lett. 2015, 17, 684) the related oxidation of benzyl azide (not illustrated). Manfred T. Reetz of the Max-Planck-Institut für Kohlenforschung and the Philipps-Universität Marburg found (Angew. Chem. Int. Ed. 2014, 53, 8659) that cytochrome P450 could oxidize the cyclohexane 23 to the cyclohexanol 24. F. Dean Toste of the University of California, Berkeley aminated (J. Am. Chem. Soc. 2015, 137, 3205) the ketone 25 with 26 to give 27. Benjamin List, also of the Max-Planck-Institut für Kohlenforschung, reported (Synlett 2015, 26, 1413) a parallel investigation. Philip Kraft of Givaudan Schweiz AG and Professor List added (Angew. Chem. Int. Ed. 2015, 54, 1960) 28 to 29 to give 30 in high ee.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Assembly of cytochrom c oxidase"

1

Uludag, K., H. Obrig, R. Wenzel, M. Kohl, and A. Villringer. "Cytochrom-c-oxidase measured in near-infrared spectroscopy -real signal or an artifact?" In Biomedical Topical Meeting. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/bio.2002.mc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography