Academic literature on the topic 'Ash reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ash reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ash reaction"
Liu, Zhiyong, Dong Xu, and Yunsheng Zhang. "Experimental Investigation and Quantitative Calculation of the Degree of Hydration and Products in Fly Ash-Cement Mixtures." Advances in Materials Science and Engineering 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/2437270.
Full textLu, G. Q. "Ash effect on reaction rates during high-ash char activation." Carbon 31, no. 8 (1993): 1359. http://dx.doi.org/10.1016/0008-6223(93)90100-o.
Full textGulyaev, Vitaly, Vadim Barsky, and Natalya Gurevina. "Effect of Total Ash Content and Coals Ash Composition on Coke Reactivity." Chemistry & Chemical Technology 3, no. 3 (September 15, 2009): 231–36. http://dx.doi.org/10.23939/chcht03.03.231.
Full textŤažký, Martin, and Rudolf Hela. "Synergistic Effect of High Temperature Fly Ash with Fluidized Bed Combustion Fly Ash in Cement Composites." Key Engineering Materials 722 (December 2016): 113–18. http://dx.doi.org/10.4028/www.scientific.net/kem.722.113.
Full textZhu, Xun Guo, and Kai Cao. "The Inhibition Studying of Many-Doped Mineral Admixture for Concrete Alkali Silicate Reaction." Advanced Materials Research 690-693 (May 2013): 771–75. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.771.
Full textWang, Yong Zai, Le Wang, Hong Ming Xu, and Shao Hui Luo. "Fabrication of Nano Zeolite P from Coal Fly Ash by Combining Alkaline — Fusion and Hydrothermal Reactions." Key Engineering Materials 591 (November 2013): 126–29. http://dx.doi.org/10.4028/www.scientific.net/kem.591.126.
Full textBumrongjaroen, Walairat, Richard A. Livingston, Dan A. Neumann, and Andrew J. Allen. "Characterization of fly ash reactivity in hydrating cement by neutron scattering." Journal of Materials Research 24, no. 7 (July 2009): 2435–48. http://dx.doi.org/10.1557/jmr.2009.0267.
Full textLi, Si Qiong, and Jie Chen. "Thermodynamic Analysis in Sintering Reaction of Coal Fly Ash with Alkali." Materials Science Forum 809-810 (December 2014): 895–900. http://dx.doi.org/10.4028/www.scientific.net/msf.809-810.895.
Full textLuo, Biwei, Pengfei Li, Yan Li, Jun Ji, Dongsheng He, Qifeng Tian, and Yichang Chen. "Feasibility of fly ash as fluxing agent in mid- and low-grade phosphate rock carbothermal reduction and its reaction kinetics." Green Processing and Synthesis 10, no. 1 (January 1, 2021): 157–68. http://dx.doi.org/10.1515/gps-2021-0008.
Full textGong, Yanbing, Junmin Sun, Shu-Ying Sun, Guozhi Lu, and Ting-An Zhang. "Enhanced Desilication of High Alumina Fly Ash by Combining Physical and Chemical Activation." Metals 9, no. 4 (April 4, 2019): 411. http://dx.doi.org/10.3390/met9040411.
Full textDissertations / Theses on the topic "Ash reaction"
Wang, Shuangzhen. "Biomass and Coal Fly Ash in Concrete: Strength, Durability, Microstructure, Quantitative Kinetics of Pozzolanic Reaction and Alkali Silica Reaction Investigations." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1819.pdf.
Full textBleszynski, Roland F. "Study of the effects of fly ash on alkali-silica reaction in concrete." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0024/MQ51606.pdf.
Full textShehata, Medhat H. "The effects of fly ash and silica fume on alkali-silica reaction in concrete." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58597.pdf.
Full textHeyns, M. W., and M. Mostafa Hassan. "South Africa Class F Fly Ash for roads : physical and chemical analysis." Interim : Interdisciplinary Journal, Vol 13, Issue 3: Central University of Technology Free State Bloemfontein, 2013. http://hdl.handle.net/11462/310.
Full textFly Ash is a by-product at thermal power stations, also otherwise known as residues of fine particles that rise with flue gases. An industrial by-product may be inferior to the traditional materials used construction applications, but, the lower the cost of these inferior materials make it an attractive alternative if adequate performance can be achieved. The objective of this study is to evaluate the chemical and physical effectiveness of self-cementing fly ashes derived from thermal power stations for construction applications with combined standards. Using laboratory testing specimens, suitable types of Fly Ashes namely: Kendal Dump Ash, Durapozz and Pozzfill, were tested to the required standards to evaluate the potential properties. All three Fly Ashes have been classified as a Class F Fly Ash, which requires a cementing agent for reactions to take place and for early strength gains in the early stages of the reaction processes. The Fly Ashes conformed to the combination of standards and have shown that the proper reactions will take place and will continue over period of time. The use of fly ash is accepted worldwide due to saving in cement, consuming industrial waste and making durable materials, especially due to improvement in the quality fly ash products.
Hlatywayo, Tapiwa. "Coal fly ash and acid mine drainage based heterogeneous Fe catalysts Friedel-Crafts alkylation reaction." University of Western Cape, 2020. https://hdl.handle.net/11394/7295.
Full textThe catalytic support materials used in the present study are zeolite HBEA and MCM-41. These high silica zeolites were synthesised from coal fly ash (CFA) waste via a novel approach that involved a fusion step, acid assisted silica extraction and removal of Al, Ca and Na from the silica by treatment with oxalic acid. The generated silica was converted to HBEA and MCM-41 via conventional hydrothermal treatment. The metal incorporation onto HBEA was done via two approaches namely; liquid phase ion exchange (LIE) and wet impregnation (WI) while the loading on MCM-41 was only done via WI since the material does not possess exchange sites. The metal solution precursors were AMD and Fe extracted from CFA (FeAsh) via acid leaching followed by pH regulation by concentrated NaOH. This is the first time these solutions were tested as possible metal precursors in catalyst synthesis.
2021-08-30
Kaitano, Rufaro. "Characterisation and reaction kinetics of high ash chars derived from inertinite-rich coal discards / Rufaro Kaitano." Thesis, North-West University, 2007. http://hdl.handle.net/10394/1501.
Full textThesis (Ph.D. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2007.
Sun, Zengqing [Verfasser], Anya [Akademischer Betreuer] Vollpracht, and Frank [Akademischer Betreuer] Dehn. "Reaction mechanisms of fly ash and metakaolin geopolymers and environmental compatibility / Zengqing Sun ; Anya Vollpracht, Frank Dehn." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1218788313/34.
Full textBurgers, C. L. (Colleen Lucie). "Synthesis and characterisation of sesquioxidic precipitates formed by the reaction of acid mine drainage with fly ash leachate." Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16266.
Full textENGLISH ABSTRACT: Coal mining in South Africa is estimated to produce 200 Ml of acid mine drainage (AMD) per day in the Pretoria-Witwatersrand-Vereeniging (PWV) area alone, while electricity production resulted in approximately 27 Mt of ash in 2001. A large number of collieries in South Africa are tied to power stations where these two waste streams, acid mine drainage and fly ash, have the capacity to neutralize each other and provide an opportunity for co-disposal. The aim of this study was to investigate the reactions that occur during the co-disposal of fly ash leachate (FAL) and AMD and to examine the precipitates that result from the neutralisation reactions. Potentiometric titration was employed to investigate the neutralisation of Al-Fe salt solutions, simulating acid mine drainage (AMD), with alkaline solutions of Ca or Na hydroxide as well as fresh alkaline leachate from fly ash (FAL). The effectiveness of fly ash in removing metals and other salts from acid mine water was examined by analysing the neutralised water and modelling the results thermodynamically. Precipitates, prepared from large scale synthetic AMD and FAL co-disposal at various pH levels and Fe:Al ratios, were characterised according to composition, mineralogy and surface properties. The experimental neutralisation of synthetic acid mine drainage was achieved through titrating the components of SAMD (Fe and Al salt solutions) and solutions of various Fe:Al mole ratios with different bases in air and N2, and comparing the SAMD-FAL system with these simple acids and bases. The FAL used in all experiments was produced from fresh fly ash collected at Arnot power station. The SAMD was prepared as a solution with a pH of 2.5 and containing 12.7 mmol/L Al, 10.9 mmol/L Fe and 40.8 mmol/L SO4. The characterisation of reaction solids was achieved by collecting the precipitates formed from the co-disposal of FAL and SAMD with Fe:Al ratios of 7.3, 0.8 and 2.5. From the titration experiments it was found that upscale potentiometric titrations of SAMD show buffer zones at pH values of 3.5, 4, 6 and 10 corresponding to Fe(III)precipitation, Al precipitation, Fe(II) hydrolysis and oxidation, and Al redissolution, respectively, while downscale potentiometric titrations with SAMD show buffer zones at pH values 12 – 11, 9 and 4.5, which correspond to Fe oxidation and precipitation, Al precipitation and Al re-dissolution, respectively. A high concentration of Al in the simulated AMD inhibited the crystallinity of the precipitates and resulted in a large quantity of SO4 being removed from solution, which suggests that an aluminium sulphate phase is precipitating, but it is not crystalline and cannot be identified by XRD. Titrations performed up-scale by adding FAL to AMD showed near-complete metal and substantial SO4 removal from solution. The characterisation of reaction solids by x-ray diffraction, infrared spectroscopy, thermal gravimetric and differential thermal analysis revealed that the precipitates consist of poorly crystalline, highly Al-substituted goethite and ferrihydrite with large amounts of SO4 included in the structure. Poorly crystalline bayerite appears at a high pH and high Al concentration, and calcite is present in precipitates made by adding SAMD to FAL. High surface charges of between 330 cmolc/kg positive and 550 cmolc/kg negative charge and potentially large specific surface areas between 7 and 236 m2/g suggest a strong potential for the precipitates to function as low-grade adsorbents in wastewater treatment. The similarity of these ochre precipitates to soil minerals implies that land disposal of the neutralised solids is also viable.
AFRIKAANSE OPSOMMING: Steenkool mynbou in SA produseer na benaming 200 ML suur mynwater per dag in die PWV area alleenlik, terwyl opwekking van elektrisiteit naastenby 27 Mt vliegas geproduseer het in 2001. ’n Groot aantal steenkoolmyne in SA word verbind met kragsentrales, waar hierdie twee strome afval, suur mynwater en vliegas, die kapasiteit het om mekaar te neutraliseer en die weg te baan vir gesamentlike wegdoening. Die doel van hierdie studie was om die reaksies wat plaasvind gedurende gesamentlike wegdoening van vliegas loog (VAL) en suur mynwater (SMW) te ondersoek, asook die neerslae wat mag vorm as gevolg van neutralisasie reaksies. Potensiometriese titrasies was gebruik om die neutralisering tussen Al:Fe-sout oplossings te ondersoek as nabootsing van SMW met gebruikmaking van alkaliese oplossings van Ca of Na hidroksied asook vars loog van VA. Die effektiwiteit van VA om metale en soute uit SMW te verwyder was getoets deur outleding van die geneutraliseerde water en modellering van die termodinamika. Neerslae berei uit groot-skaal sintetiese SMW en VAL en met gelyktydige storting by verskeie pH vlakke en Fe:Al verhoudings, was gekarakteriseer volgens samestelling, mineralogie en oppervlak eienskappe. Die eksperimentele neutralisering van sintetiese suur mynwater (SSMW) was gedoen deur titrering van die SSMW komponente en oplossings van verskeie Fe:Al molêre verhoudings met verskillende basisse in lug en N2, en vergelyking van SSMW-VAL sisteem met hierdie eenvoudige sure en basisse. Die VAL gebruik in alle eksperimente was geproduseer van vliegas verkry van die Arnot kragsentrale. Die SSMW was berei as ’n oplossing met ’n pH van 2.5 en bevat 12.7 mmol/L Al, 10.9 mmol/L Fe en 40.8 mmol/L SO4. Die karakterisering van vastestowwe uit die reaksie was gedoen deur die bemonstering van neerslae gevorm as gevolg van die gelyktydige wegdoening van VAL en SSMW met Al:Fe verhoudings van 7.3, 0.8 en 2.5.Die was waargeneem in die titrasie eksperimente dat hoër-skaal potensiometriese titrasie van SSMW buffersones, by pH waardes 3.5, 4, 6 en 10, ooreenstem met Fe(III) presipitasie, Al presipitasie, Fe(II) hidrolise en oksidasie, en Al her oplossing, terwyl laer skaal potensiometriese titrasie met SSMW buffer sones by pH waardes 12 - 11, 9 en 4.5 ooreenstem met Fe(III) presipitasie en oksidasie, Al presipitasie en heroplossing respektiewelik. ’n Hoë konsentrasie Al in die sintetiese SMW het kristalliniteit van die neerslae geïnhibeer en veroorsaak dat ’n hoeveelheid SO4 uit oplossing verwyder is, wat suggereer dat die AlSO4 fase neerslaan maar nie kristallyn is en gevolglik nie opgetel word met x-straal diffraksie nie. Titrasies gedoen by hoërskaal deur byvoeging van VAL tot SSMW, het feitlik volledige metaal en SO4 verwydering uit oplossing getoon. Die karakterisering deur x-straal diffraksie, infrarooispektroskopie, termies gravimetries en differentiële termiese analise, het getoon dat die presipitate bestaan uit swak kristallyne, hoë Al-gesubstitueerde goethiet en ferrihidriet met groot hoeveelhede SO4 vasgevang in die struktuur. Swak kristallyne bayeriet verskyn by hoë pH en hoë Al-konsentrasies en kalsiet is teenwoordig in neerslae gevorm deur byvoeging van SSMW tot VAL. Hoë oppervlakladings van tussen 330 cmolc/kg positief en 550 cmolc/kg negatiewe lading en ook potensieel groot spesifieke oppervlak van tussen 7 en 236 m2/g, dui op ’n sterk potensiaal vir neerslae om as laegraadse adsorbeermiddels in afvalwaterbehandeling gebruik te word. Die ooreenstemming in hierdie geelbruin neerslae met grond minerale, impliseer dat die land storting van geneutraliseerde vastestowwe ook lewensvatbaar is.
Duddy, Margaret Mary. "An investigation into the suppression of the alkali-silica reaction in concrete by the use of pulverised fuel ash." Thesis, University of Hertfordshire, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260799.
Full textMcCarthy, Fiona Materials Science & Engineering Faculty of Science UNSW. "Interfacial phenomena and dissolution of carbon from chars into liquid iron during pulverised coal injection in a blast furnace." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/20797.
Full textBooks on the topic "Ash reaction"
Bleszynski, Roland F. Study of the effects of fly ash on alkali-silica reaction in concrete. Ottawa: National Library of Canada, 1997.
Find full textOECD Nuclear Energy Agency. Working Party on Physics of Plutonium Recycling. Physics of plutonium recycling. Paris, France: Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 1995.
Find full textDooley, M. A. Rat phantom depth dose studies in electron, X-ray, gamma-ray, and reactor radiation fields. Bethesda, Md: Defense Nuclear Agency, Armed Forces Radiobiology Research Institute, 1986.
Find full textDavies, D. G. Inorganic reactions at Advanced Level: (a student guide for laboratory exercises in observation and deduction). London: Bell & Hyman, 1986.
Find full textKelly, T. V. G. 1937-, ed. Inorganic reactions at advanced level: (a student guide for laboratory exercises in observation and deduction). London: Collins Educational, 1991.
Find full textInternational Colloquium on the Dynamics of Explosions and Reactive Systems (16th 1997 University of Mining and Metallurgy). Conference proceedings: 16th International Colloquium on the Dynamics of Explosions and Reactive Systems, August 3-8, 1997, University of Mining and Metallurgy, AGH, Cracow, Poland. Kraków: Wydawn. "Akapit", 1997.
Find full textGarshin, Anatoliy. General and inorganic chemistry in diagrams, figures, tables, and chemical reactions. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1070937.
Full textSōgō Shigen Enerugī Chōsakai (Japan). Genshiryoku Anzen Hoan Bukai. Haikibutsu Anzen Shōiinkai. Uran toriatsukai shisetsu ni okeru kuriaransu seido no seibi ni tsuite. [Tokyo]: Sōgō Shigen Enerugī Chōsakai Genshiryoku Anzen Hoan Bukai Haikibutsu Anzen Shōiinkai, 2010.
Find full textIAEA Technical Meeting on Fissile Material Management Strategies for Sustainable Nuclear Energy (2005 Vienna, Austria). Fissile material management strategies for sustainable nuclear energy: Proceedings of an IAEA Technical Meeting on Fissile Material Management Strategies for Sustainable Nuclear Energy, held in Vienna, 12-15 September 2005. Vienna, Austria: International Atomic Energy Agency, 2007.
Find full textShehata, Medhat H. The effects of fly ash and silica fume on alkali silica reaction in concrete. 2001.
Find full textBook chapters on the topic "Ash reaction"
Zeidan, Mohamed, and Aly Said. "Alkali-Silica Reaction Mitigation Using Nano-silica and Fly Ash." In Nanotechnology in Construction, 459–64. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17088-6_60.
Full textPietikäinen, J., and H. Fritze. "Soil Microbial Biomass: Determination and Reaction to Burning and Ash Fertilization." In Fire in Ecosystems of Boreal Eurasia, 337–49. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8737-2_29.
Full textHuang, Jun Tong, Ming Hao Fang, Yan Gai Liu, and Zhao Hui Huang. "Preparation of β-Sialon from Fly Ash by Carbothermal Reduction-Nitridation Reaction." In High-Performance Ceramics V, 910–12. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.910.
Full textMoreira, K. M. V., F. R. C. Ribeiro, E. P. de Deus, and A. E. B. Cabral. "Fly Ash and Granulated Blast Furnace Slag to Mitigate the Alkali Silica Reaction in Concretes." In Durability of Concrete Structures, 103–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62825-3_7.
Full textLee, Kyung Hoon, Ji Whan Ahn, Hee Chan Cho, Kwang Suk You, Gi Chun Han, and Nam Il Um. "Encapsulation of Municipal Solid Waste Incineration Bottom Ash to Immobilize Cu and Pb via Carbonation Reaction." In Solid State Phenomena, 1709–12. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1709.
Full textMason, C. F. V. "With PH and AsH Groups and Acids in PH and AsH Systems." In Inorganic Reactions and Methods, 25–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch10.
Full textMason, C. F. V. "With PH and AsH Groups and Acids in PH and AsH Systems." In Inorganic Reactions and Methods, 37–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch15.
Full textMason, C. F. V. "With PH and AsH Groups and Acids in PH and AsH Systems." In Inorganic Reactions and Methods, 45–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch20.
Full textMason, C. F. V. "With PH and AsH Groups and Acids in PH and AsH Systems." In Inorganic Reactions and Methods, 14–15. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch5.
Full textDamjanovic, A., and P. G. Hudson. "Of PH and AsH Systems." In Inorganic Reactions and Methods, 55–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145159.ch25.
Full textConference papers on the topic "Ash reaction"
Hanipah, S. H., N. H. Othman, S. N. M. Hanapi, and N. Idrus. "Conversion of fly ash into zeolite: Effect of reaction temperature." In 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2011. http://dx.doi.org/10.1109/isbeia.2011.6088801.
Full textYang, Yi-Ning, and Hsiu-Po Kuo. "The Sulfation Behavior of the CFBC Bottom Ash after the Steam Hydration Reaction." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_182.
Full textKlinghoffer, Naomi, Marco J. Castaldi, and Ange Nzihou. "Beneficial Use of Ash and Char From Biomass Gasification." In 19th Annual North American Waste-to-Energy Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/nawtec19-5421.
Full textXinglei, Hu. "Experiment and Mechanism Study on the Effect of Coal Ash on the Capture of Alkali Metals in Zhundong Coal." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3570.
Full textWang, Q., T. Endo, P. Apar, L. Gui, Q. Chen, N. Mitsumura, Q. Qian, H. Niida, S. Animesh, and K. Sekiguchi. "Study on heterogeneous reaction between tar and ash from waste biomass pyrolysis and gasification." In ENERGY AND SUSTAINABILITY 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/esus130251.
Full textWatanabe, Hiroaki, Kazuyoshi Ichikawa, Maromu Otaka, and Jun Inumaru. "Numerical Simulation of Coal Ash Particle Behavior in Entrained Flow Coal Gasifier." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45744.
Full textBulewicz, E. M., K. Go´ra, and E. J. Anthony. "The Behavior of Free Lime in CFBC Ashes." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-152.
Full textPa, Faizul Che, and Abdullah Chik. "Effect of NaOH concentration and reaction time on zeolite synthesized from treated oil palm ash." In GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066855.
Full textSong, Xue, Jianjun Shi, and Zhaoyu Chen. "Fly Ash on the Waste Cathode Ray Tube Glass Mortar Alkali Aggregate Reaction Inhibition Studies." In 2015 International Conference on Architectural, Civil and Hydraulics Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icache-15.2015.39.
Full textMalino, Mariana B., Jimmy, and Boni P. Lapanporo. "The dependence of grain size of silicon from rice husk ash on metallothermic reaction time." In THE 4TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (ICTAP) 2014. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4943710.
Full textReports on the topic "Ash reaction"
Brown, P. W. Hydrothermal reaction of fly ash. Final report. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/369604.
Full textBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd, and Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Full textLager, Daniel, Lia Kouchachvili, and Xavier Daguenet. TCM measuring procedures and testing under application conditions. IEA SHC Task 58, May 2021. http://dx.doi.org/10.18777/ieashc-task58-2021-0004.
Full textBrown, P. W. Hydrothermal reactions of fly ash. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7233118.
Full textBrown, P. W. Hydrothermal reactions of fly ash. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5427457.
Full textSyvash, Kateryna. AUDIENCE FEEDBACK AS AN ELEMENT OF PARASOCIAL COMMUNICATION WITH SCREEN MEDIA-PERSONS. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11062.
Full textSukh Sidhu and Patanjali Varanasi. Fly Ash and Mercury Oxidation/Chlorination Reactions. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/1009958.
Full textBrown, P. W. Hydrothermal reactions of fly ash. Final report. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/375912.
Full textBrown, P. W. Hydrothermal reactions of fly ash. [Progress report], October 1, 1991--December 31, 1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10146550.
Full textBrown, P. W. Hydrothermal reactions of fly ash. [Quarterly] report, July 1, 1993--September 30, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10109313.
Full text