Academic literature on the topic 'Arsenic cycle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arsenic cycle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Arsenic cycle"
Miyashita, Shin-ichi, Shoko Fujiwara, Mikio Tsuzuki, and Toshikazu Kaise. "Cyanobacteria produce arsenosugars." Environmental Chemistry 9, no. 5 (2012): 474. http://dx.doi.org/10.1071/en12061.
Full textHANAOKA, Ken'ichi. "Arsenic Cycle in Marine Ecosystmes." Kagaku To Seibutsu 37, no. 10 (1999): 653–59. http://dx.doi.org/10.1271/kagakutoseibutsu1962.37.653.
Full textBorges Freitas, S. C., D. van Halem, M. M. Rahman, J. Q. J. C. Verberk, A. B. M. Badruzzaman, and W. G. J. van der Meer. "Hand-pump subsurface arsenic removal: the effect of groundwater conditions and intermittent operation." Water Supply 14, no. 1 (September 12, 2013): 119–26. http://dx.doi.org/10.2166/ws.2013.180.
Full textSaunders, Jaclyn K., Clara A. Fuchsman, Cedar McKay, and Gabrielle Rocap. "Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones." Proceedings of the National Academy of Sciences 116, no. 20 (April 29, 2019): 9925–30. http://dx.doi.org/10.1073/pnas.1818349116.
Full textNadar, S. Venkadesh, Masafumi Yoshinaga, Palani Kandavelu, Banumathi Sankaran, and Barry P. Rosen. "Crystallization and preliminary X-ray crystallographic studies of the ArsI C–As lyase fromThermomonospora curvata." Acta Crystallographica Section F Structural Biology Communications 70, no. 6 (May 10, 2014): 761–64. http://dx.doi.org/10.1107/s2053230x14008814.
Full textRhine, E. Danielle, Elizabeth Garcia-Dominguez, Craig D. Phelps, and L. Y. Young. "Environmental Microbes Can Speciate and Cycle Arsenic." Environmental Science & Technology 39, no. 24 (December 2005): 9569–73. http://dx.doi.org/10.1021/es051047t.
Full textHan, Yong Hwan, Sung Zoo Kim, Suhn Hee Kim, and Woo Hyun Park. "Arsenic trioxide inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and caspase-independent apoptosis." American Journal of Physiology-Renal Physiology 293, no. 2 (August 2007): F511—F520. http://dx.doi.org/10.1152/ajprenal.00385.2006.
Full textDey, Arindam, Sandip Chattopadhyay, Suryashis Jana, Mukul Kumar Giri, Shamima Khatun, Moumita Dash, Hasina Perveen, and Moulima Maity. "Restoration of uterine redox-balance by methanolic extract of Camellia sinensis in arsenicated rats." Acta Biologica Szegediensis 62, no. 1 (August 23, 2018): 7–15. http://dx.doi.org/10.14232/abs.2018.1.7-15.
Full textRyan, P. C., F. J. Huertas, L. N. Pincus, and W. Painter. "ARSENIC-BEARING SERPENTINE-GROUP MINERALS: MINERAL SYNTHESIS WITH INSIGHTS FOR THE ARSENIC CYCLE." Clays and Clay Minerals 67, no. 6 (December 2019): 488–506. http://dx.doi.org/10.1007/s42860-019-00040-1.
Full textOremland, Ronald S., John F. Stolz, and James T. Hollibaugh. "The microbial arsenic cycle in Mono Lake, California." FEMS Microbiology Ecology 48, no. 1 (April 2004): 15–27. http://dx.doi.org/10.1016/j.femsec.2003.12.016.
Full textDissertations / Theses on the topic "Arsenic cycle"
Benkherouf, M. (Moaadh). "Life cycle assessment of arsenic removal methods." Master's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201812043210.
Full textJuomaveden sisältämä arseeni on ollut merkittävä ongelma jo pitkään, sillä arseenipitoisuus ylittää usein sille asetun raja-arvon 10 μg/l. Arseenipitoisen juomaveden käyttö aiheuttaa muun muassa syöpä- ja verenkiertoelimistön sairauksia sekä iho-ongelmia. Juomaveden arseenipitoisuuden vähentämiseksi on kehitetty useita menetelmiä, joista tavallisimpia ovat adsorptio, kalvoerotus, koagulaatio ja flokkaus, hapetus ja ioninvaihto. Yleisin adsorptiomateriaali on aktiivihiili, joka on valmistettu kivihiilestä, mutta nykyisin maatalousjätteestä valmistetut adsorbentit ovat kiinnostuksen kohteena, sillä ne ovat ympäristöystävällisempiä ja niiden avulla voidaan saavuttaa korkea haitta-aineiden poistoprosentti. Tällaisia materiaaleja ovat muun muassa kaakaopavun kuoret ja punamombinin siemenet. Tutkimuksissa on saavutettu kaakaopavun kuorista valmistetun adsorbentin avulla 80 %:n poistuma arseenille ja punamombinin siemenet ovat poistaneet vedestä arseenin lähes kokonaan. Nanosuodatuksessa kalvot ovat tutkimusten mukaan poistaneet arseenista 90 %. Tässä tutkimuksessa suoritettiin SimaPro-ohjelmiston avulla elinkaariarviointi kahdelle vedenkäsittelymenetelmälle: adsorptiolle, jossa käytettiin punamombinin siemenistä valmistettua adsorbenttia, sekä nanosuodatukselle, jossa käytettiin spiraalikalvoja. Menetelmiä verrattiin niiden ympäristövaikutusten perusteella parhaan vaihtoehdon löytämiseksi. Tulosten perusteella nanosuodatuksen ympäristövaikutukset kaikissa vaikutusluokissa olivat merkittävästi alhaisemmat
McCaffery, Kevin A. "Isolation and Characterization of a Microorganism from Groundwater that Reduces Arsenate." Fogler Library, University of Maine, 2002. http://www.library.umaine.edu/theses/pdf/McCafferyKA2002.pdf.
Full textRodríguez-Freire, Lucía. "The Role of Microorganisms in the Biogeochemical Cycle of Arsenic in the Environment." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333167.
Full textIgboamalu, Tony E. "Kinetic studies of Cr(VI) reduction in an indigenous mixed culture of bacteria in the presence of As(III)." Diss., University of Pretoria, 2014. http://hdl.handle.net/2263/46240.
Full textDissertation (MEng)--University of Pretoria, 2014.
tm2015
Chemical Engineering
MEng
Unrestricted
Eppili, Venkatesh. "Electrospinning of Polymeric Solutions Using Opuntia ficus-indica Mucilage and Iron Oxide for Nanofiber Membranes for Treating Arsenic Contaminated Water." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6232.
Full textMuppaneni, Rasudha. "Investigation of Opuntia ficus-indica Mucilage Nanofiber Membrane Filtration for Water Systems." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5541.
Full textKirby, Jason K., and n/a. "Trace metal and metalloid accumulation, distribution, and, speciation in Lake Macquarie, N.S.W., Australia." University of Canberra. Resource, Environmental & Heritage Sciences, 2005. http://erl.canberra.edu.au./public/adt-AUC20051129.124508.
Full textParsons, Christopher. "Distribution et mobilité de l'arsenic dans les sols : effets de cycles redox successifs." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00637484.
Full textFernandez, Rojo Lidia. "Vers un traitement passif des drainages miniers acides (DMA) riches en arsenic par oxydation biologique du fer et de l'arsenic." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT153.
Full textAcid mine drainage (AMD) are produced by sulfuric tailings from mining of metal ores. They are characterized by high contents of toxic elements like arsenic. One efficient and economical solution for the treatment of As in these tailings could be the use of a passive method based on iron and arsenic bacterial oxidation, and the subsequent precipitation of these elements in a stable form. In this context, the objective of this PhD thesis was to better understand the environmental and operational factors controlling the efficiency of As removal processes. A continuous-flow pilot approach was implemented in order to better reproduce the real treatment conditions. This study was first performed in a bench-scale bioreactor with controlled conditions (temperature, light, flow, residence time and water height). Then, it was performed in a field-scale bioreactor installed in situ, reproducing a passive treatment in real conditions. These devices were fed with As-rich AMD waters from the ancient mine of Carnoulès (Gard, France). Water and bioprecipitate properties were monitored in both devices, specially the redox speciation of iron and arsenic. This monitoring was held for different environmental and operational conditions. Iron and arsenic speciation in liquid and solid phases was measured by different analytical techniques such as HPLC-ICP-MS, EXAFS and XANES. Mineral identification was made by XRD analysis, while microbiological characterization was made by ARISA, high-throughput sequencing of 16S rRNA gene, and aioA gene quantification. Results from the lab-scale experiments evidenced the effects of the different operational parameters (water height, hydraulic retention time and the presence/absence of a floating film) on the treatment performance, as well as on the microbiology and mineralogy of the produced bioprecipitates. The field device was used to test the treatment performance under fluctuating environmental conditions (variability of the physico-chemistry of the feed water and of the temperature) and to gain new knowledge about the evolution of the bioprecipitates during six months of treatment. All the knowledge acquired in this PhD thesis could serve as a basis for the design of an arsenic removal stage in DMA treatment processes
Thouin, Hugues. "Transfert de polluants inorganiques dans un technosol de brûlage d’armes organo-arséniées soumis à un apport de matière organique et à des cycles de saturation/désaturation : expérimentation en mésocosme." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2069/document.
Full textThe thermal destruction of chemical munitions from World War I, on the site of “Place-à-Gaz”, induced intense local top soil contamination by arsenic and heavy metals. The heat treatment mineralized As from organoarsenic warfare agents, resulting in a singular mineral assemblage, composed of Zn, Cu and Fe arsenates and of an amorphous phase rich in Fe, As, Zn, Cu and Pb. The amorphous material was the principal carrier of As and metals in the central part of the site. The site undergoes environmental changes which may alter the stability of inorganic contaminants. To assess the impact of water saturation episodes and input of bioavailable organic matter on the biogeochemical cycles of metal(loid)s, a mesocosm study was conducted. Results showed that amorphous phase was instable in saturated conditions, and released contaminants in soil water. As previously observed on site, the most mobile contaminants were Zn and As. The addition of organic matter induced the immobilization of As by trapping of As V onto hydrous ferric oxides in the saturated soil. Microbial characterizations including counting, bacterial community structure, respiration, and determination of As IIIoxidizing activities were performed. Results showed that microorganisms actively contribute to the metabolisms of C and As.The addition of organic matter induced the increase of As III-oxidizing and As V-reducing microorganisms concentrations and modified the bacterial diversity. However, a negative effect of organic matter on the activity of As III oxidation was observed resulting in higher As III concentration in soil water. This study showed that the natural deposition of forest organic litter on the site, induced antagonist effects on the transfer of inorganic pollutants did not immobilize all the Zn and As and even contributed to As III transport to the surrounding environment. These results provide more information about the environmental impact of the Great War and more generally about the processes driving the behavior of metals/metalloids on polluted sites
Books on the topic "Arsenic cycle"
The metabolism of arsenite. Boca Raton, FL: CRC Press, 2012.
Find full textCai, Yong, and Olin C. Braids. Biogeochemistry of Environmentally Important Trace Elements (Acs Symposium Series). An American Chemical Society Publication, 2002.
Find full text1961-, Cai Yong, Braids O. C, and American Chemical Society Meeting, eds. Biogeochemistry of environmentally important trace elements. Washington, D.C: American Chemical Society, 2002.
Find full textSmith, Benjamin T. Mexican Press and Civil Society, 1940-1976. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469638089.001.0001.
Full textBook chapters on the topic "Arsenic cycle"
Chatterjee, Soumya, Roxana Moogoui, and Dharmendra K. Gupta. "Arsenic: Source, Occurrence, Cycle, and Detection." In Arsenic Contamination in the Environment, 13–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54356-7_2.
Full textDhuldhaj, Umesh Praveen, Ishwar Chandra Yadav, Surendra Singh, and Naveen Kumar Sharma. "Microbial Interactions in the Arsenic Cycle: Adoptive Strategies and Applications in Environmental Management." In Reviews of Environmental Contamination and Toxicology Volume 224, 1–38. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5882-1_1.
Full text"The global arsenic cycle revisited." In Arsenic, 3–26. CRC Press, 2011. http://dx.doi.org/10.1201/b10772-3.
Full text"Transfer and transformation of arsenic in food chain cycle." In Arsenic in Geosphere and Human Diseases; Arsenic 2010, 196–205. CRC Press, 2010. http://dx.doi.org/10.1201/b10548-13.
Full textRensing, C., and B. P. Rosen. "Heavy Metals Cycle (Arsenic, Mercury, Selenium, others)." In Encyclopedia of Microbiology, 205–19. Elsevier, 2009. http://dx.doi.org/10.1016/b978-012373944-5.00053-5.
Full textBergmann, M., and W. Goessler. "Arsenobetaine a possible methyl donor in the one carbon cycle?" In Arsenic in the Environment - Proceedings, 301–2. CRC Press, 2016. http://dx.doi.org/10.1201/b20466-146.
Full text"II.2 Recent advances in arsenic toxicology / biochemistry and food web transfer Pathways of arsenic biotransformations: The arsenic methylation cycle." In Understanding the Geological and Medical Interface of Arsenic - As 2012, 235–38. CRC Press, 2012. http://dx.doi.org/10.1201/b12522-78.
Full textWang, D., B. Li, L. Lin, and G. F. Sun. "Effects of folate on arsenic methylation pattern and methionine cycle in sub chronic arsenic-exposed mice." In Environmental Arsenic in a Changing World, 361–62. CRC Press, 2019. http://dx.doi.org/10.1201/9781351046633-142.
Full textRoy, Dibakar, Dasari Sreekanth, Deepak Pawar, Himanshu Mahawar, and Kamal K. Barman. "Phytoremediation of Arsenic Contaminated Water Using Aquatic, Semi-Aquatic and Submerged Weeds." In Biodegradation [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98961.
Full textAndala, Dickson Mubera, Erick Mobegi, Mildred Nawiri, and Geoffrey Otieno. "Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation." In Advances in Environmental Engineering and Green Technologies, 242–71. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1871-7.ch013.
Full textConference papers on the topic "Arsenic cycle"
Simingalam, Sina, Priyalal Wijewarnasuriya, and Mulpuri V. Rao. "Thermal cycle annealing and its application to arsenic-ion implanted HgCdTe." In 2014 20th International Conference on Ion Implantation Technology (IIT). IEEE, 2014. http://dx.doi.org/10.1109/iit.2014.6940053.
Full textKumar, Sanjay, Clement Yedjou, and Paul B. Tchounwou. "Abstract 2291: Arsenic trioxide induces cell cycle arrest, apoptosis and MAPKinase signaling cascade in acute promyelocytic leukemia cells." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2291.
Full textMarval, Paula L. Miliani de, Sun Hye Kim, and Marcelo L. Rodriguez-Puebla. "Abstract 3186: Transplacental arsenic exposure modifies the number of hair follicle keratinocytes stem cells and alters their cell-cycle control." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3186.
Full textKumar, Sanjay, and Paul B. Tchounwou. "Abstract 3811: Arsenic trioxide induces cell cycle arrest, apoptosis through interaction of DAXX and degradation of MDM2 in acute leukemia cells." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3811.
Full textLee, Won Sup, Jeong Won Yun, Min Jeong Kim, Arulkumar Nagappan, Jing Nan Lu, Seong-Hwan Chang, Jae-Hoon Jeong, GonSup Kim, Jin-Myung Jung, and Soon Chan Hong. "Abstract 2107: Tetra-arsenic hexoxide induces G2/M cell cycle arrest, apoptosis, and autophagy via p38 MAPK- and AKT-mediated pathways in SW620 human colon cancer cells." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2107.
Full textBansal, Iqbal K. "Hydrophobic Silicon-Direct Bonding for Fabrication of RF Microwave Devices." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41161.
Full textBaughn, Terry V., and Shea Chen. "Low Cycle Fatigue in RF Microwave Module Housings." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35263.
Full textLayne, Abbie W., Mary Anne Alvin, Evan Granite, Henry W. Pennline, Ranjani V. Siriwardane, Dale Keairns, and Richard Newby. "Overview of Contaminant Removal From Coal-Derived Syngas." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42165.
Full textPakzadeh, Behrang, Jay Wos, and Jay Renew. "Flue Gas Desulfurization Wastewater Treatment for Coal-Fired Power Industry." In ASME 2014 Power Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/power2014-32278.
Full textVadhwana, N. M., and W. Chen. "Effect of Loading History on Hydrogen Content in Pipeline Steels." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27298.
Full text