Academic literature on the topic 'Array of antennas'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Array of antennas.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Array of antennas":

1

Obiadi Ifeanyi F., Udofia Kufre M., and Udofia Kingsley M. "Comparative Analysis of Microstrip Antenna Arrays with Diverse Feeding Techniques." Journal of Engineering Research and Reports 26, no. 1 (January 9, 2024): 18–38. http://dx.doi.org/10.9734/jerr/2024/v26i11060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A robust antenna design and analysis to fit the growing technology trend and give engineers and technicians options is crucial. This is especially true considering the recent rise in wireless smart devices. This paper compares microstrip antenna arrays fed in different ways. This work designed, simulated, and analyzed six antennas: two single-band rectangular microstrip antennas (RMSAs) with quarter wave (QWT) feed and the other with inset feed, one series-fed 1 x 4 RMSA array, two cooperate-fed (1 x 2 and 1 x 4) and a 2 x 2 cooperate-series-fed RMSA array at 2.4 GHz. Simulations showed that single-band antennas achieved 65.3 MHz and 68.3 MHz (2.72% and 2.85%) fractional bandwidths at 2.4 GHz. Series-fed and cooperative-fed 1 x 4 arrays, respectively, achieved bandwidths of 152.07 MHz and 44.33 MHz (6.34 % and 1.85 %) fractional bandwidth. The 1 x 2 cooperate-fed and 2 x 2 cooperate-series-fed array antennas had bandwidths of 33.06 MHz and 50.41 MHz (for 1.38% and 2.26%), respectively. A comparison of antenna gains revealed that the study's goals were met as a result of the realized antenna gain of the 2 x 2 cooperate-series-fed antenna which exceeded all other compared antenna gain. The 1 x 4 RMSA array with series feeding had a significantly higher bandwidth than its studied contemporaries. The achieved antenna's bandwidth qualifies it for application small ISM-band WLAN devices; for less portable devices, 2× 2 hybrid-fed array antenna is a suitable candidate for application.
2

Kim, Ilkyu, and Eunhee Kim. "Quad-Band Uniformly Spaced Array Antenna Using Diverse Patch and Fractal Antennas." Applied Sciences 13, no. 6 (March 14, 2023): 3675. http://dx.doi.org/10.3390/app13063675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Multi-band antennas have received significant interest because they can support multiple wireless communication services with a single antenna. However, an array antenna consisting of these element antennas can suffer from non-periodic arrangement due to the irregular sizes of the elements. In this paper, various shapes of patch antennas with fractal antennas are used to ensure the periodic arrangement of the array antenna, and antenna array incorporated with a feed network is proposed. Four different antenna arrays operating at 2.45/3.7/4.3/5.0 GHz are aggregated in an antenna with interleaved disposition of the different element antennas. It is observed that mutual couplings between two elements are sufficiently low, at less than −23 dB. Peak antenna gain ranging from 11.1 dBi to 14.4 dBi at the four different bands is obtained.
3

Andropov, A., and S. Kuzmin. "Radiation Pattern Synthesis Method of Antenna Arrays with an Arbitrary Arrangement of Radiating Elements." Proceedings of Telecommunication Universities 8, no. 2 (June 30, 2022): 15–28. http://dx.doi.org/10.31854/1813-324x-2022-8-2-15-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
As a result of the analysis of methods for synthesizing radiation patterns, in order to find the required amplitude-phase distribution in antenna arrays with an arbitrary arrangement of radiating elements, a technique based on the method of partial radiation patterns is proposed. The results of implementing the technique for a lowprofile combined ring concentric antenna array, a five-element antenna array based on asymmetric wave channel antennas, and a conformal antenna array consisting of arbitrarily located PIFA antennas are presented. The calculated amplitude-phase distributions and radiation patterns are given. The technique makes it possible to evaluate the potential capabilities of antennas, with adaptation taking into account the mutual coupling.
4

Ramya, M., V. Parthipan, and M. Yogadeepan. "Certain Investigations on Edge Fed Microstrip Patch Array Antenna for WiMAX Applications." Asian Journal of Electrical Sciences 4, no. 1 (May 5, 2015): 1–7. http://dx.doi.org/10.51983/ajes-2015.4.1.1937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recently, a new wireless technology, i.e., Worldwide interoperability for Microwave Access (WiMAX), has been demonstrated to have its strong potential to provide a very high speed of broadband services. By simultaneously using multiple antennas at transmitter and receiver sites, these systems exploit the spatial dimension of the propagation channel. The development of such antennas includes the design of array antenna, optimizing the array antenna parameters and thereby increasing its performance. This paper mainly focuses on design of single microstrip patch antennae and linear array configurations by optimizing the various antenna parameters such as directivity, gain, Mutual coupling and beamwidth etc., Microstrip array antennae designed and simulated using IE3D for WiMAX application operating at 2.4GHz and the same configurations are also optimized and analyzed. In this analysis, upon comparing the parameters such as gain, directivity, return loss and 3-dB beamwidth quantitatively it is proposed that the linear array promises very narrow beamwidth with optimized gain.
5

Said, Maizatul Alice Meor, Mohamad Harris Misran, Mohd Azlishah bin Othman, Redzuan Abdul Manap, Abd Shukur bin Jaafar, Shadia Suhaimi, and Nurmala Irdawaty Hassan. "Innovation Design of High Gain Array Antenna for 5G Communication." International Journal of Emerging Technology and Advanced Engineering 13, no. 7 (July 16, 2023): 11–20. http://dx.doi.org/10.46338/ijetae0723_02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The fifth-generation (5G) wireless communication system requires high gain antennas to support the growing demand for high-speed data transmission and low-latency connectivity. High gain antennas are crucial for enhancing the signal strength and extending the coverage area of 5G networks. By using multiple antenna elements, an array can achieve higher gain and directivity compared to a single element antenna. This improvement in gain enables better signal reception and transmission, leading to increased communication range, higher data rates, and improved reliability. In this paper, we discuss the design and implementation of antenna arrays for improving antenna gain in 5G communication systems at 3.5 GHz.The design of the array antenna incorporates single, dual, quad, and octal element structures to enhance the antenna's gain. The proposed antenna has been examined, and the results indicate that it has a return loss of -37.4 dB at the resonant frequency of 3.5 GHz, an antenna gain of 7.22 dB, and a bandwidth of 286.5 MHz. The use of a single, dual, quad, and octal element array configuration is anticipated to improve the gain performance of the antenna, making it a promising option for 5G communication systems.
6

Hussain, Sajjad, Shi-Wei Qu, Abu Bakar Sharif, Hassan Sani Abubakar, Xiao-Hua Wang, Muhammad Ali Imran, and Qammer H. Abbasi. "Current Sheet Antenna Array and 5G: Challenges, Recent Trends, Developments, and Future Directions." Sensors 22, no. 9 (April 26, 2022): 3329. http://dx.doi.org/10.3390/s22093329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Designing an ultra-wideband array antenna for fifth generation (5G) is challenging for the antenna designing community because of the highly fragmented electromagnetic spectrum. To overcome bandwidth limitations, several millimeter-wave bands for 5G and beyond applications are considered; as a result, many antenna arrays have been proposed during the past decades. This paper aims to explore recent developments and techniques regarding a specific type of phased array antenna used in 5G applications, called current sheet array (CSA). CSA consists of capacitively coupled elements placed over a ground plane, with mutual coupling intentionally introduced in a controlled manner between the elements. CSA concept evolved and led to the realization of new array antennas with multiple octaves of bandwidth. In this review article, we provide a comprehensive overview of the existing works in this line of research. We analyze and discuss various aspects of the proposed array antennas with the wideband and wide-scan operation. Additionally, we discuss the significance of the phased array antenna in 5G communication. Moreover, we describe the current research challenges and future directions for CSA-based phased array antennas.
7

Zhou, Hao, Jiren Li, and Kun Wei. "A Novel Unit Classification Method for Fast and Accurate Calculation of Radiation Patterns." Electronics 12, no. 16 (August 19, 2023): 3512. http://dx.doi.org/10.3390/electronics12163512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper proposes a novel unit classification technique to enhance the accuracy of the conventional pattern multiplication method by taking the mutual coupling effect and edge effect into consideration. The proposed technique classifies antenna elements into different groups based on their positions in arrays, specifically corner, edge, and inner groups. By simulating the radiation patterns of antenna elements with different boundary conditions, the pattern multiplication method is then used to calculate the radiation pattern of the antenna array based on the simulated results. Several numerical examples, including a square array, a hexagonal array, and a phased array, are provided to validate the effectiveness of the proposed method. The numerical results demonstrate that the proposed method not only reduces the computational time and memory usage but also significantly improves the accuracy. The proposed method provides a powerful tool for synthesizing and predicting the radiation pattern of array antennas and offers new avenues for optimizing array antennas and phased array antennas.
8

Shevchenko, M. E., A. B. Gorovoy, V. M. Balashov, and S. N. Solovyov. "Features of application of ESPRIT method for different configurations of antenna arrays." Issues of radio electronics, no. 12 (February 3, 2021): 30–37. http://dx.doi.org/10.21778/2218-5453-2020-12-30-37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The paper discusses the features of the application of the ESPRIT method, which provides direction finding of a variety of radio sources with minimal computational costs, including in real time. To be able to use ESPRIT, antenna arrays are required that have the property of shift invariance, and for practical implementation, antenna arrays are required that allow you to form estimates of the directions of arrival of the largest number of signals that overlap in the spectrum, with a minimum number of antennas and reception channels. The aim of the work is to analyze the influence of the antenna array configuration on the features of ESPRIT application for different antenna array with the same number of antennas. A comparative qualitative analysis of the properties and features compared to the MUSIC method is presented. The algorithms developed by the authors for processing multichannel data received by angle and square antenna arrays are presented. It is shown analytically that when using a corner antenna array, it is necessary to take into account the possible presence of signals from indistinguishable-mirror directions of arrival. With a square antenna array, there are no mirror directions of arrival of different signals, which simplifies the implementation of the algorithm. It is shown analytically and by simulation modeling that the configuration of a square antenna array allows to increase the number of simultaneously tracked signals that overlap in the spectrum, compared to a corner antenna array with the same number of antennas.
9

Bagus, Bambang, Sukahir Sukahir, Ayub Wimatra, and Fatmawati Sabur. "ANALISA PENINGKATAN GAIN ANTENNA MENGGUNAKAN ARRAY FEEDING PADA FREKUENSI X BAND." Jurnal Penelitian 8, no. 1 (April 13, 2023): 28–41. http://dx.doi.org/10.46491/jp.v8i1.1356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Microstrip antennas are antennas that are often applied because of their simple structure and easy to apply. The purpose of the experiment was to design and analyze the results of microstrip antennas in CST applications with a frequency of 10.5 GHz. Experiments used single patch antennas, 1 x 2 arrays using 2 patches and 1 x 4 antenna arrays using 4 antenna patches. Each series has different characteristics of return loss, gain, VSWR, and axial ratio. Based on these experiments, the results were obtained, namely the return loss of single patch, array 1x2 and array 1 x 4 respectively were -19 dB, -11 dB and -19 dB, while antenna gain was 2.9 times, 9.09 times and 2.27 times. The lowest VSWR value is found in the single patch circuit while the highest is found in the 1 x 4 array antenna. The axial ratio of a single patch and an array of 1 x 4 has the same value of 40, while a series of arrays of 1 x 2 has an axial ratio value of 35. Based on these results, it can be concluded that each circuit has a specification of values that are not the same, but it is still included in the appropriate antenna criteria, namely VSWR <2 and return loss below -10 dB.
10

Gupta, Parul, Leeladhar Malviya, and S. V. Charhate. "5G multi-element/port antenna design for wireless applications:a review." International Journal of Microwave and Wireless Technologies 11, no. 9 (May 28, 2019): 918–38. http://dx.doi.org/10.1017/s1759078719000382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractFifth generation (5G) is the current hot topic of the world's leading telecommunication companies. The compact designs of antennas made it possible for them to resonate at higher frequencies, thus to enable the devices to attain higher data rate as compared to 4G technology. Data rate of 5G technology for low mobility users is expected to be 50.0 Gbps and for high mobility users it is 5.0 Gbps. On the other hand, International telecommunication union's objective for 5G is 3 times more spectrally efficient thanlong-term evolution (LTE). The paper has carried out meticulous study over the impact of 5G antennas on the size of antenna, size/type of substrate, gain, efficiency, and isolation, etc. Also, different arrays andmultiple input multiple outputs (MIMOs) with patch antenna, magneto electric-dipole, microstrip grid array antenna, folded dipole, series-fed array, connected antenna array, MIMO are studied. The paper also includes the existing technology i.e 4G LTE and their isolation enhancement approaches. Many of the designs used the reflector plates to reduce the back lobe radiation problem in MIMO/array antennas to increase front-to-back ratio. The gain in 5G antennas can be increased by using balun, parasitic element as directors, multiple notch structures, three identical slot sub-arrays, etc. Mathematical equations of multi-element/port antennas are included to model the designed antennas. The beam steering is also included for the 5G technology in this paper.

Dissertations / Theses on the topic "Array of antennas":

1

Leonard, Cathy Wood. "Optical feeds for phased array antennas." Thesis, Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/80079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis investigates optical feed methods for phased array antennas. The technical and practical limitations are analyzed and an optimum design is determined. This optimum optical feed is a two-beam interferometric approach which uses acoustooptic phase control. The theory is derived; a computer model is developed; and the limitations are determined. Design modifications are suggested which reduce limitations and greatly extend the range of applications.
Master of Science
2

Ong, Chin Siang. "Digital phased array architectures for radar and communications based on off-the-shelf wireless technologies." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FOng.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, December 2004.
Thesis advisor(s): David C. Jenn, Siew Yam Yeo. Includes bibliographical references (p. 63-64). Also available online.
3

Alsawaha, Hamad Waled. "Synthesis of Ultra-Wideband Array Antennas." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Acquisition of ultra-wideband signals by means of array antennas requires essentially frequency-independent radiation characteristics over the entire bandwidth of the signal in order to avoid distortions. Factors contributing to bandwidth limitation of arrays include array factor, radiation characteristics of the array element, and inter-element mutual coupling. Strictly speaking, distortion-free transmission or reception of ultra-wideband signals can be maintained if the magnitude of the radiated field of the array remains constant while its phase varies linearly with frequency over the bandwidth of interest. The existing wideband-array synthesis methods do not account for all factors affecting the array bandwidth and are often limited to considering the array factor and not the total field of the array in the synthesis process. The goal of this study is to present an ultra-wideband array synthesis technique taking into account all frequency-dependent properties, including array total pattern, phase of the total radiated field, element field, element input impedance, and inter-element mutual coupling. The proposed array synthesis technique is based on the utilization of frequency-adaptive element excitations in conjunction with expressing the total radiated field of the array as a complex Fourier series. Using the proposed method, element excitation currents required for achieving a desired radiation pattern, while compensating for frequency variations of the element radiation characteristics and the inter-element mutual coupling, are calculated. An important consideration in the proposed ultra-wideband array design is that the "phase bandwidth", defined as the frequency range over which the phase of the total radiated field of the array varies linearly with frequency, is taken into account as a design requirement in the synthesis process. Design examples of linear arrays with desired radiation patterns that are expected to remain unchanged over the bandwidth of interest are presented and simulated. Two example arrays, one with a wire dipole as its element and another using an elliptically-shaped disc dipole as the element are studied. Simulation results for far-field patterns, magnitude and phase characteristics, and other performance criteria such as side-lobe level and scanning range are presented. Synthesis of two-dimensional planar arrays is carried out by employing the formulations developed for linear arrays but generalized to accommodate the geometry of planar rectangular arrays. As example designs, planar arrays with wire dipoles and elliptical-shaped disc dipoles are studied. The simulation results indicate that synthesis of ultra-wideband arrays can be accomplished successfully using the technique presented in this work. The proposed technique is robust and comprehensive, nonetheless it is understood that the achieved performance of a synthesized array and how closely the desired performance is met also depends on some of the choices the array designer makes and other constraints, such as number of elements, type of element, size, and ultimately cost.
Ph. D.
4

Eng, Cher Shin. "Digital antenna architectures using commercial off-the-shelf hardware." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FEng.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (M.S. in Engineering Science (Electrical Engineering)--Naval Postgraduate School, December 2003.
Thesis advisor(s): David C. Jenn, Roberto Cristi. Includes bibliographical references (p. 75-76). Also available online.
5

Scattone, Francesco. "Phased array antenna with significant reduction of active controls." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S168/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'objectif de cette thèse est d'exploiter les phénomènes des ondes de fuite pour améliorer les performances des antennes classiques à ouverture pour les applications spatiales. Ici, nous considérons des configurations planaires où les ondes de fuite sont excitées entre un plan de masse et un superstrat partiellement réfléchissant. Des réseaux de petites ouvertures sur le plan de masse sont utilisés pour alimenter les antennes considérées. Les structures avec superstrat sont développées en configuration réseaux simples ou réseaux à commande de phase, considérées intéressantes en termes de flexibilité du système pour des liens satellitaires de nouvelle génération.Pour étudier efficacement ces antennes, nous avons développé un outil d'analyse basé sur une approche spectrale avec fonction de Green. Cet outil permet d'analyser les structures proposées en prenant en compte l'impact du couplage mutuel entre les éléments sur les performances de rayonnement avec une réduction du temps de calcul et d'utilisation de mémoire.L'augmentation du gain des structures à ondes de fuite peut ouvrir la voie à la réduction du nombre d'éléments des réseaux associés, et donc des commandes en amplitude et phase. Dans une configuration à ondes de fuite, chaque élément du réseau rayonne avec une ouverture équivalente plus grande, augmentant ainsi l'espacement entre les éléments sans affecter le gain global de la structure. Comme largement expliqué dans le manuscrit, les solutions à ondes de fuite représentent par conséquent un avantage majeur pour les antennes du segment utilisateur.En plus de l'amélioration du gain, la technologie à ondes de fuite peut être efficacement exploitée pour synthétiser le diagramme de rayonnement, en choisissant correctement les paramètres de conception de l'antenne. Cette caractéristique peut être utilisée dans les réseaux à commande de phase, pour produire un diagramme d'élément qui minimise les pertes par dépointage et qui filtre les lobes de réseaux. Une procédure de synthèse pour des antennes réseaux raréfiés à ondes de fuite est ainsi présentée dans le manuscrit, ainsi qu'une nouvelle configuration de réseaux avec superstrat irrégulier. Ce dernier permet de réduire les lobes secondaires de l'antenne en utilisant une excitation uniforme. Cette dernière configuration montre clairement que la capacité de modifier le diagramme de rayonnement est la caractéristique la plus attrayante des antennes planaires à ondes de fuite, pour être utilisée dans des solutions de réseaux à commande de phase
The objective of this thesis is to exploit the leaky-wave phenomena to enhance the performance of classical aperture antennas for space applications. Here, we consider planar configurations where the leaky modes are excited between a ground plane and a partially reflective superstrate. Arrangements of small apertures opening on the ground plane are used to feed the antennas under study. The superstrate-like leaky-wave structures are developed in array or phased array configurations, considered of interest in terms of flexibility of the system for next generation satellite links. In order to efficiently study planar leaky-wave arrays, we have developed an analysis tool based on a Green's function spectral approach. The developed tool allows to precisely analyze the proposed structure by taking into account the impact of the mutual coupling among the elements on the radiation performance of the whole antenna. In addition, it can handle extremely large structures in terms of wavelengths with a small computational effort with respect to commercial tools. In particular, the gain enhancement of leaky-based structures can pave the way to the reduction of the number of elements of the associated phased arrays. In a leaky-wave configuration each element of the array will radiate with a larger equivalent aperture allowing a larger spacing among elements without affecting the final gain of the whole structure. This aspect is particularly important in the case of phased arrays, where phase shifters and control cells are, typically, the most expensive components of the system. As extensively explained in the manuscript, antennas for user segment might find the highest benefit by using leaky-wave solutions. Besides the gain enhancement, the leaky-wave technology can be effectively exploited to conveniently shape the radiation pattern by properly engineering the design parameters of the antenna. This capability can be used in phased arrays to generate a convenient element pattern to minimize the scan losses and filter the grating lobes appearing in the visible space when dealing with periodicities larger than a wavelength. Therefore, a synthesis procedure for thinned leaky-wave arrays is presented in the manuscript. Also, a novel array configuration, the irregular superstrate array, is presented. The irregular superstrate allows the reduction of the side lobes of the antenna below -20 dB in the considered 2.5 % band, using a uniform excitation. This last configuration clearly shows that the shaping capability of leaky-wave antennas is the most appealing feature to be used in phased array solutions
6

Sundaram, Ananth Ramadoss Ramesh. "Electronically Steerable Antenna Array using PCB-based MEMS Phase Shifters." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/SUNDARAM_ANANTH_51.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bertulli, Scott. "MATLAB-Based Dipole Array Simulator Tool For MIT Haystack Observatory." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-050505-104840/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Pei. "Novel wideband dual-frequency L-probe fed patch antenna and array /." access abstract and table of contents access full-text, 2006. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ee-b21471447a.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph.D.)--City University of Hong Kong, 2006.
"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy" Includes bibliographical references (leaves 179-189)
9

Hee, Ta Wei. "Wide bandwidth conformal array antennas." Thesis, University of Birmingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davids, Vernon Pete. "Implementation of a wideband microstrip phased array antenna for X-band radar applications." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2009
This thesis presents the design, analysis and implementation of an eight-element phased array antenna for wideband X-band applications. The microstrip phased array antenna is designed using eight quasi-Yagi antennas in a linear configuration and is printed on RT/Duroid 6010LM substrate made by Rogers Corporation. The feeding network entails a uniform beamforming network as well as a non-uniform -25 dB Dolph-Tschebyscheff beamforming network, each with and without 45° delay lines, generating a squinted beam 14° from boresight. Antenna parameters such as gain, radiation patterns and impedance bandwidth (BW) are investigated in the single element as well as the array environment. Mutual coupling between the elements in the array is also predicted. The quasi-Yagi radiator employed as radiating element in the array measured an exceptional impedance bandwidth (BW) of 50% for a S11 < -10 dB from 6 GHz to 14 GHz, with 3 dB to 5 dB of absolute gain in the frequency range from 8 GHz to 11.5 GHz. The uniform broadside array measured an impedance BW of 20% over the frequency band and a gain between 9 dB to 11 dB, whereas the non-uniform broadside array measured a gain of 9 dB to 11 dB and an impedance BW of 14.5%. Radiation patterns are stable across the X-band. Beam scanning is illustrated in the E-plane for the uniform array as well as for the non-uniform array.

Books on the topic "Array of antennas":

1

Bhattacharyya, Arun K. Phased Array Antennas. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471769126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hansen, Robert C. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

C, Hansen Robert. Phased array antennas. New York: Wiley, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Hansen Robert. Phased array antennas. 2nd ed. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

C, Hansen Robert. Phased array antennas. New York: Wiley-InterScience, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bhattacharyya, Arun. Phased Array Antennas. New York: John Wiley & Sons, Ltd., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Visser, Hubregt. Array and Phased Array Antenna Basics. New York: John Wiley & Sons, Ltd., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gour, Puran, Nagendra Singh, Rajesh Kumar Nema, Ravi Shankar Mishra, and Ashish Kumar Srivastava. Array and Wearable Antennas. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Array of antennas":

1

Guo, Y. Jay, and Stephen K. Barton. "Reflective Array Antenna." In Fresnel Zone Antennas, 83–99. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3611-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Martin S. "Further Array Topics." In Introduction to Antennas, 89–113. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19384-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Josefsson, Lars, and Patrik Persson. "Conformal Array Antennas." In Handbook of Antenna Technologies, 1851–92. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-4560-44-3_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Josefsson, Lars, and Patrik Persson. "Conformal Array Antennas." In Handbook of Antenna Technologies, 1–35. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-4560-75-7_65-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Jiaguo, Wei Wang, Xiaolu Wang, and Yongxin Guo. "Digital Array Antennas." In Active Array Antennas for High Resolution Microwave Imaging Radar, 349–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1475-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, Aby K., Tushar Kumar Pandey, Madhukar Dubey, T. M. Shashidhar, Vandana Roy, and Nishakar Kankalla. "Antenna design for IoT and biomedical applications." In Array and Wearable Antennas, 1–12. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verma, Kirti, Sateesh Kourav, M. Sundararajan, and Adarsh Mangal. "Analysis and simulation of standard gain 18–40 GHz frequency band horn antenna." In Array and Wearable Antennas, 31–58. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwari, Rovin, Raghavendra Sharma, and Rahul Dubey. "Circular shaped 1×2 and 1×4 microstrip patch antenna array for 5G Wi-Fi network." In Array and Wearable Antennas, 152–73. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Richhariya, Geetam, Rajesh Kumar Shukla, Manish Sawale, Nita Vishwakarma, and Nagendra Singh. "Recent trends in 3D printing antennas." In Array and Wearable Antennas, 218–33. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kourav, Sateesh, Kirti Verma, Jagdeesh Kumar Ahirwar, and M. Sundararajan. "Design and analysis of a high bandwidth patch antenna loaded with superstrate and double-L shaped parasitic components." In Array and Wearable Antennas, 184–205. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003422440-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Array of antennas":

1

Weverka, Robert T., Anthony W. Sarto, and Kelvin Wagner. "Photorefractive Phased-Array-Radar Processor Dynamics." In Optical Computing. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/optcomp.1993.owd.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Large adaptive, two dimensional phased-array radar antennas can consist of thousands of antenna elements, have GHz bandwidths, and must be able to steer and adapt the antenna beam rapidly in a dynamic signal environment.
2

Bachmann, M., M. Schwerdt, B. Döring, and C. Schulz. "Accurate antenna pattern modelling for spaceborne active phased array antennas." In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2010). IEEE, 2010. http://dx.doi.org/10.1109/array.2010.5613360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Washington, Gregory. "Active Aperture Antennas." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Recent studies have shown that reflector surface adaptation can achieve performance characteristics on the order of phase array antennas without the complexity and cost. The work proposed in this study develops a class of antennas capable of variable directivity (beam steering) and power density (beam shaping). The actuation for these antennas is employed by attaching polyvinylidene fluoride (PVDF) film to a metalized mylar substrate. A voltage drop across the material will cause the material to expand or contract. This movement causes a moment which causes a moment to be developed in the structure which causes the structure to change shape. Several studies of flexible structures with PVDF films have shown that cylindrical antennas can achieve significant deflections and thereby offer beneficial changes to radiation patterns emanating from aperture antennas. In this study, relatively large curved actuators are modeled and a deflection vs. force relationship is developed. This relationship is then employed in simulations where the far field radiation patterns of an aperture antenna are manipulated.
4

Sun, Caiming, Binghui Li, Ning Ding, and Aidong Zhang. "High-resolution Radiation Characterization for an Uniformly Emitted SiNx Nanophotonic Phased Array." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.m3c.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With a high-resolution characterization setup, waveguide modes are clearly observed in near-field radiation patterns of SiNx nano-antennas. This phased array has uniform emission throughout the antenna within 3dB bandwidth of 120 nm from 785-905 nm.
5

Ng, W., and G. Tangonan. "First demonstration of an optically steered dual-band microwave phased-array antenna." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fee2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The radiated beam of an electronically steered microwave phased- array antenna is steered by controlling the relative phase between successive radiating elements of the array. Fiber-optic delay lines offer a lightweight, compact solution to accomplish truetime-delay steering of these antennas. By using a fiber-guided lightwave as the carrier for microwave signals that drive the radiating elements, we realized an optical beam-forming network that was nondispersive over multiple microwave bands.
6

Compton, Richard C., and David B. Rutledge. "Optical techniques at millimeter wavelengths." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mh5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Millimeter systems have evolved as scaled-down versions of existing microwave technology.1 As the operating wavelength decreases, the components become smaller, more difficult to build, and very expensive. At these high frequencies, waveguide and transmission lines become lossy and are restricted in the power they can carry. Optical components, like lenses, can be used to overcome many of these problems. A typical quasi-optical system might consist of a primary lens which focuses radiation onto a secondary substrate lens.1 On the back side of the substrate lens sits an antenna which couples the incident radiation into a small detector. Calculations made using a modified diffraction integral predict efficiencies as high as 70% for infinitesimal dipoles in these systems. In practice bow-tie antennas are used because of their broadband properties. Measurements and calculations for the bow-tie show several interesting phenomena. Log-periodic antennas have also been studied and show excellent performance. Quasi-optical design can be extended to multielement imaging systems. Arrays of bow-ties have been analyzed, fabricated, and measured.2 A major difficulty in an array is accessing the signal from each element. This problem can be avoided by using an array in which each element has its own lens. The lens has the effect of magnifying the size of the receiving antenna allowing smaller antennas to be used. This frees up more space on the substrate for running wires to each element.
7

Sikina, Thomas V. "Reordered lattices for phased array antennas." In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2010). IEEE, 2010. http://dx.doi.org/10.1109/array.2010.5613272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ureña, Mario, Sergi García, Jose I. Herranz, and Ivana Gasulla. "Experimental Demonstration of Optical Beamforming on a Dispersion-Engineered Heterogeneous Multicore Fiber." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf2m.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report the experimental demonstration of tunable optical beamforming for phased-array antennas on a dispersion-engineered heterogeneous multicore fiber. We developed in-house both the fiber and the antenna and successfully demonstrated radio beam-steering at 26 GHz.
9

Keevil, John E. "Feed equations for phased array multiport antennas." In 2013 IEEE International Symposium on Phased Array Systems and Technology (ARRAY 2013). IEEE, 2013. http://dx.doi.org/10.1109/array.2013.6731849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Debogovic, T., J. Bartolic, and D. Crnogorac. "Education in Antennas &#8211; Phased Array Antenna." In 2005 18th International Conference on Applied Electromagnetics and Communications. IEEE, 2005. http://dx.doi.org/10.1109/icecom.2005.205004.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Array of antennas":

1

Brock, B. C. The frequency response of phased-array antennas. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6415463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doerry, Armin Walter. SAR processing with stepped chirps and phased array antennas. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/893561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jenn, D. C. Computer Modeling Techniques for Array Antennas on Complex Structures. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada337253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rengarajan, S. R., and J. B. Rao. Improved Sidelobe Performance of Array Antennas with the Use of Overlapping Sub-Array Architecture. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada379420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hill, D. A. A near-field array of Yagi-Uda antennas for electromagnetic susceptibility testing. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.tn.1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koepke, Galen H., David A. Hill, and Mark T. Ma. Analysis of an array of log-periodic dipole antennas for generating test fields. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wittman, Ronald C., Allen C. Newell, Carl F. Stubenrauch, Katherine MacReynolds, and Michael H. Francis. Simulation of the merged spectrum technique for aligning planar phased-array antennas, part I. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.3981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steier, W. H., M. C. Oh, C. Zhang, H. Zhang, and A. Szep. Electro-optic Polymers and Applications in Phase Shifters for Next Generation Phase Array Antennas. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada381051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fenn, A. J., and E. J. Kelly. Theoretical Effects of Array Mutual Coupling on Clutter Cancellation in Displaced Phase Center Antennas. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada382122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brock, Billy C. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/932884.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography