Dissertations / Theses on the topic 'ARN G-Quadruplexes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'ARN G-Quadruplexes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bonnat, Laureen. "Synthèse et étude d'ADN et d'ARN G-quadruplexes à topologies contrôlées. Applications pour la caractérisation et la sélection de ligands." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV081/document.
Full textGuanines or cytosines rich nucleic acids can fold into tetrameric G-quadruplexes (G4) or i-motifs structures. G4 motifs are found within the human genome and should contribute to cellular regulation. In particular G4 are found at telomeric region and also in promoters of oncogenes or within viral genomes. They are suspected of participating in the regulation of human pathologies and have therefore been envisioned as potential therapeutic and diagnostic targets. However, the intrinsic conformational polymorphism of G4 motifs complicates the development of specific and affine ligands. In this context, the laboratory has developed the TASQ concept for "Template Assembled Synthetic G-Quadruplex" with the aim to obtain a defined G4 topology.The first chapter reports on the assembly on the peptide template of RNA and DNA:RNA hybrid G4 structures that derive from the human telomeric sequence as well as of DNA G4 structure found within the HIV virus promoter. G-triplex (G3) motif which is supposed to be an intermediate during the formation of the G4 motifs has also been prepared. By using appropriate ligations of the oligonucleotide strands on the peptide template we were able to control the folding of G-quadruplex motifs and stabilize them.The second chapter reports the studies for the characterization and the selection of ligands against G4 and G3 motifs. The evaluation of the affinity and selectivity of different families of ligands for these constrain motifs was performed by using surface plasmon resonance or by bio-layer interferometry. The selection of ligands was carried out by the SELEX method in order to obtain affine and specific aptamers of a constrained G4 motif
Bourdon, Sebastien. "Régulation des ARN G-Quadruplexes par les protéines de liaison à l'ARN et leur interaction avec les N6-Méthyladénosines dans les cellules du cancer." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES129.
Full textCancer development and response to treatments are associated to post-transcriptional rewiring which in turn modifies the cancer proteome qualitatively and/or quantitatively. Post-transcriptional regulation involves RNA binding proteins (RBP) interacting with cis-acting elements like RNA sequences, modifications or structures. Among the cis-regulators, non-canonical structures, called RNA G-Quadruplexes (RG4), and N6-methyladenosines modifications (m6A), play a critical role in shaping post-transcriptional expression of cancer genes and their targeting is currently investigated in pre-clinical studies. One major challenge in the field lies in understanding the mechanisms controlling selectivity in m6A deposition, reading and removal, as well as deciphering RG4 folding and regulators. Whether m6A and RG4 colocalize and regulate each other remains to be fully investigated. Another key challenge is to link RG4-protein interactions in transcripts to cancer-relevant biological functions by leveraging predictions of RG4 structuration and experimental data on RG4 and RBP.My thesis project tackled these two challenges centered on the cis- and trans- regulation of RG4s, using multidisciplinary approaches including bioinformatics, molecular and cellular biology. To globally map and characterize RG4 trans-acting regulators, we developed QUADRatlas (https://rg4db.cibio.unitn.it), a database of experimentally-derived and computationally predicted RG4 in the human transcriptome, linked with their biological function and disease associations (Bourdon et al, NAR, 2023). This work provides a broad access to a manually curated catalogue of known RG4-binding proteins, complemented with an extensive RBP binding sites dataset to discover new potential RG4-RBP interactions. Our study on the interplay between RG4 and m6A revealed their colocalization in the human coding transcriptome. We demonstrated in vitro that RG4 stability was not inhibited by m6A presence. However, we showed that the stabilisation of RG4 decreased global m6A level in cancer cell lines. To explain this effect, we studied the ability of RBP to bind RG4, m6A or RG4 containing m6A (RG4(m6A)) and found that RG4 could act as a platform for m6A binding proteins and thus regulate their presence on transcripts. This work provides insights on the co-regulation of two major mRNA cis-acting elements by RBP. Future analyses will then be needed to unravel the effect of RG4(m6A) colocalization on cancer gene expression
Largy, Eric. "Ciblage d’acides nucléiques G-quadruplexes : synthèse et développement de méthodes pour l’analyse et le criblage de ligands sélectifs multimodaux." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112257.
Full textThe aim of this thesis work was to study the interactions of small molecules with multiple structures of quadruplex DNA via i) the development and use of a high-throughput test for the analysis of ligand-quadruplex DNA interactions and screening of chemical libraries and ii) the preparation of compounds with multiple binding modes (stacking/groove, covalent/non-covalent, etc..) selective (quadruplex vs. duplex and intra-quadruplex) and possibly functionalized (biotin, fluorophore, etc.). The first part of the work was focused on the development of the G4-FID (G-quadruplex Intercalator Fluorescent Displacement) assay, which is a semi-quantitative method for evaluating the affinity and selectivity of small molecules for quadruplex DNA by displacing an off/on probe, the Thiazole Orange (TO). The test has been implemented successfully with microplate (HT-G4-FID). On the other hand, we have shown the importance of alternative fluorophores, TO-PRO-3 and Hoechst 33258, with complementary spectral characteristics. This method of analysis has also been successfully used for the identification of new selective ligands of quadruplex DNA and the identification of structure-activity relationships and structural selectivities. The second part of the work was devoted to the preparation and study of new DNA quadruplex ligands. These ligands possess particular characteristics either in their mode of interaction (grooves, coordination) or by their bifunctionality (biotinylated, fluorescent). We have prepared an acyclic polyheteroaryle quadruplex ligand (TOxaPy) with an unexpected selectivity for certain structures of quadruplex DNA. Furthermore, we showed that complexes of terpyridine derivatives can be tailored by changing the organic ligand and / or the metal in order to interact with quadruplex DNA by covalent and / or non-covalent interaction
Zheng, Alice Jia-Li. "How the Epstein-Barr virus-encoded EBNA1 mRNA translation is regulated in cis by its mRNA dynamic structure and its nascent polypeptide." Thesis, Université Paris Cité, 2021. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=3378&f=38122.
Full textMRNA translation and protein synthesis are tightly regulated events in the cell. Mechanisms describing these key cellular events involve the mRNA sequence and its structure with the association of RNA-binding protein to it, as well as the quality of the translation product encoded by the mRNA, assessed notably through ribosome-associated quality control. In this context, the Epstein-Barr virus EBNA1 (Epstein-Barr Nuclear Antigen 1) mRNA translation regulation is an interesting example. EBNA1 is known to be an essential protein for the virus survival in the host cells. Even though EBNA1 is present in every infected cell, its protein level is remarkably low. As EBNA1 is highly antigenic, it has been suggested that EBNA1 levels in the cells are low enough to escape the immune system of the host, but sufficient to maintain EBV infection. This balance requires a tightly controlled EBNA1 production. Further studies showed that the GAr (glycine-alanine repeat) domain, located in the N-terminal part of EBNA1, triggers an in cis mechanism leading to the inhibition of the translation initiation of its own mRNA, without affecting translation of other mRNAs in the cell. Thus, the GAr domain of EBNA1 is a unique tool to study selective mRNA translation control without affecting general protein synthesis. It was previously shown that RNA G4 (G-quadruplex) structures can be folded in the GAr-encoding mRNA. Numerous studies underlined the importance of these RNA structures in the regulation of EBNA1 mRNA translation, and the team previously showed that nucleolin can interact with these RNA G4 structures, interaction which can be competed by some G4 ligands. However, it was also formerly shown that the GAr peptide itself plays a role in controlling in cis the translation of EBNA1-encoding mRNA, rather than just the RNA sequence. The main focus of the study presented here is to shed light on how this translation event and the fate of the encoding mRNA are regulated in cis by the mRNA and the encoded nascent polypeptide. In line with the fact that RNA G4 structures are highly dynamic, we first showed that GAr RNA G4-associated functions, namely mRNA localisation, translation and ability to bind RNA-binding proteins, are dependent on the context they are in, i.e. their position in the mRNA, the structures in their surrounding or the factors binding the mRNA, such as G4 ligands. We next demonstrated that translation of the EBNA1 mRNA is necessary for nucleolin-binding to it, meaning that the translation event modifies some properties of the EBNA1 mRNA. In parallel, we showed that the NACA, a subunit of the NAC chaperone complex, is detached from the ribosome and interacts with the GAr polypeptide. Interestingly, the NACA is also an RNA binding protein in addition to its chaperone function, and is determinant for the future processing of the EBNA1 mRNA. Finally, and unexpectedly, we show that translation initiation factors are also key players in the downregulation of the EBNA1 mRNA translation, affecting also the mRNA nucleolin-binding capacity, the most effective translation initiation factor in the downregulation of EBNA1 mRNA translation identified so far being eIF4A1. These results support the idea that both the RNA sequence and structure and the corresponding nascent polypeptide are involved in the downregulation of EBNA1 mRNA translation. However, it does not rule out the possibility that both the RNA structure and the polypeptide sequence trigger also their own separated inhibitory pathway. As viruses use components already present in the cells to maintain themselves, the cellular biology elements brought out here can provide insights on many other pathologies in addition to EBV-associated diseases
Stefan, Loïc. "Template-Assembled Synthetic G-Quartets (TASQ) hydrosolubles : du ligand de quadruplexes d'ADN et d'ARN à la plateforme catalytique." Thesis, Dijon, 2013. http://www.theses.fr/2013DIJOS084/document.
Full textNatural G-quartets, a cyclic and coplanar array of four guanine residues held together via Hoogsteen H-bond network, have recently received much attention due to their involvement in G-quadruplex-DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events (chromosomal stability, regulation of gene expression). Besides this, synthetic G-quartets, which artificially mimic native G-quartets, have also been widely studied for their involvement in nanotechnological applications (i.e. nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G-quartets, also named template-assembled synthetic G-quartet (TASQ), have been more sparingly investigated, despite a technological potential just as interesting.In this way, we designed and synthesized three series of innovative hydrosoluble TASQ: DOTASQ (for DOTA-Templated Synthetic G-Quartet), PorphySQ (containing a porphyrin template) and the most effective PNADOTASQ where PNA-guanine arms replace native DOTASQ alkyl-guanine arms. We report herein the results of both DNA and RNA interactions (notably their selective recognition of quadruplex-DNA according to a bioinspired process) and peroxidase-like hemin-mediated catalytic activities (either in an autonomous fashion as precatalysts for TASQzyme reactions, or in conjunction with quadruplex-DNA as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications
Ferret, Lucille. "Involvement of lysosomes in cancer resistance to transcription inhibitors." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL044.
Full textLysosomes have been known to contribute to the development of drug resistance through a variety of mechanisms that include the sequestration of drugs within their compartments and the activation of adaptive stress pathways. Although targeting RNA Polymerase I (POL I) has shown anticancer effects, the contribution of lysosomes to the efficacy and resistance of RNA POL I inhibitors remains largely unknown. In this study, we investigated this aspect in the context of two potent POL I transcription inhibitors (compounds A and B). We found that they were unexpectedly sequestered in lysosomes, causing lysosomal membrane permeabilization (LMP). This effect activated the transcription factor TFEB resulting in cytoprotective autophagy. Targeting lysosomes using chloroquine derivatives or blue light excitation induced substantial LMP, resulting in the liberation of the compound A from lysosomes. This effect amplified both the inhibition of DNA-to-RNA transcription and cell death induced by both POL I inhibitors. Moreover, combining compound A with the chloroquine derivative DC661 reduced the growth of fibrosarcoma established in immunocompetent mice more efficiently than did monotherapies with each agent. Altogether, our results reveal an unanticipated lysosome- related mechanism that contributes to resistance to POL I transcription inhibitors, as well as a strategy to combat this resistance
Decorsière, Adrien. "Régulation de la maturation en 3' des pré-ARNm de gènes de susceptibilité aux cancers p53 et msh6." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1313/.
Full textPre-mRNA3'-end processing is an essential post-transcriptional step. It is composed of two reactions: cleavage at the pre-mRNA 3' end that allows release of mRNA from the transcription site and addition of the poly(A) tail that controls nuclear export, stability and the translation of the mature transcript. Several studies show that 3'end processing is globally inhibited during DNA damage and that deregulation of this process may contribute to tumor development. Our work focused on 3'-end processing regulation of (i) p53 pre-mRNA during DNA damage (ii) MSH6 pre-mRNA involved in Lynch syndrome. (i) We have shown that p53 pre-mRNA resists to DNA damagedependent inhibition of 3'-end processing through the recruitment of the protein factor hnRNP H/F on a RNA structure called G-quadruplex located downstream of the cleavage site. (ii) We then identified a duplication of 20 nucleotides upstream of the polyadenylation signal at the MSH6 pre-mRNA in two distinct families with Lynch syndrome. This duplication causes a reduction of MSH6 pre-mRNA 3'-end processing efficiency and in consequence, it may be causal of Lynch syndrome
Paul, Alexis. "G-quadruplexes and acridines : from molecular recognition to drug design." Strasbourg, 2009. https://publication-theses.unistra.fr/public/theses_doctorat/2009/PAUL_Alexis_2009.pdf.
Full textBedrat, Amina. "G4-Hunter : un nouvel algorithme pour la prédiction des G-quadruplexes." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0197/document.
Full textBiologically relevant G4 DNA structures are formed throughout the genome including immunoglobulin switch regions, promoter sequences and telomeric repeats. They can arise when single-stranded G-rich DNA or RNA sequences are exposed during replication, transcription or recombination. Computational analysis using predictive algorithms suggests that the human genome contains approximately 370 000 potential G4-forming sequences. These predictions are generally limited to the standard G3+N(1−7)G3+N(1−7)G3+N(1−7)G3+ description. However, many stable G4s defy this description and escape this consensus; this is the reason why broadening this description should allow the prediction of more G4 loci. We propose an objective score function, G4- hunter, which predicts G4 folding propensity from a linear nucleic acid sequence. The new method focus on guanines clusters and GC asymmetry, taking into account the whole genomic region rather than individual quadruplexes sequences. In parallel with this computational technique, a large scale in vitro experimental work has also been developed to validate the performance of our algorithm in silico on one hundred of different sequences. G4- hunter exhibits unprecedented accuracy and sensitivity and leads us to reevaluate significantly the number of G4-prone sequences in the human genome. G4-hunter also allowed us to predict potential G4 sequences in HIV and Dictyostelium discoideum, which could not be identified by previous computational methods
Hodeib, Samar. "Real-time unfolding of DNA G-quadruplexes by helicases and polymerases." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE027/document.
Full textG-quadruplex (G4) structures are considered as the major impediments for the replisome progression. The putative G4 forming sequences in the human genome are mostly located in the double-stranded DNA regions of oncogenes and proto-oncogenes and on the single-stranded overhangs of telomeres. Most of the biochemical and biophysical studies have characterized the G4 thermodynamics properties using melting temperature Tm as a proxy to infer thermodynamics of G4 folding/unfolding energetic. However, these thermodynamics properties give only indirect information about G4 dynamics. In this work, using single molecule magnetic tweezers technique, we first characterize the kinetics of folding and unfolding and thus the stability of a single G4 inserted in a dsDNA: a situation that mimics the G4s in promoters, where the complementary sequence competes with the G-rich structure. We find that the lifetime of telomeric G4 is short (~20 s) and thus that this G4 unfolds without the need of a helicase. This is not the case for the very stable c-MYC G4 (~2 hr). We observe in real time how helicases or polymerases behave as they collide with the c-MYC G4 on their track. We find that the Pif1 helicase unwinds dsDNA, resolves this G4 after pausing and resume unwinding, while RecQ helicase and the bacteriophage T4 replicative helicase do not resolve the G4 but may jump it. We also find that RPA does not unfold the c-MYC G4. Besides, we find that T4 bacteriophage gp43 polymerase, T7 polymerase and Yeast Pol ε can replicate the G4 which surprisingly does not appear as a major roadblock for them
Sidibe, Assitan. "Effet de ligands de G-quadruplexes sur la séquence terminale des télomères." Paris, Muséum national d'histoire naturelle, 2012. http://www.theses.fr/2012MNHN0017.
Full textThe role of telomeres in protecting the genome, and their involvement in senescence and cancer make them a prime target in the fight against cancer. An original strategy is to block the access of proteins to the telomeric end necessary for replication and stability, such as telomerase which is activated in 85% of cancers or TRF2 and POT1, proteins that protect the telomeric end. Because of the guanine repetition on the G strand, telomeric ends can form quadruplex structures in guanine (G-quadruplexes) whose stabilization by specific ligands (G4 ligands) blocks the replication of telomeres and alters its integrity. Treatment of tumor cells with G4 ligands causes a dysfunction associated with the dissociation of telomeric proteins POT1 and TRF2 and leads to apoptosis or cell senescence. The analysis of the telomeric end terminal sequence by the STELA method (Single Telomere Length Analysis) shows that the C-terminal sequence of the strand ends mainly by the sequence ATC-5 ʼ. POT1 protein is responsible for the resection of the C strand of telomeres by recruiting an exonuclease capable of creating a single-stranded substrate for telomerase. Depletion of POT1 by RNA interference causes a deregulation of the C strand end. We studied in our work the effect of G4 ligands on the terminal sequence of the telomeric C strand at the telomere of chromosome XpYp and at all telomeres using a modification of the technique of STELA. Our results show that a low concentration of derivatives of the pyridine dicarboxamides series causes a minor but significant effect on the terminal sequence of XpYp telomeres and of all telomeres in HT1080 cell line. On the contrary, a higher concentration does not alter the C strand termination in HT1080, A549 and HeLa cells but induces a replicative stress. The modest effect of these ligands can be explained by an incomplete activity of dissociation of the protein POT1 of telomeres compared to its depletion by RNA interference. Indeed, we also showed that the nearly complete depletion of POT1 by shRNA randomizes the terminal sequence of the C strand
Elizondo-Riojas, Miguel-Angel. "Simulations de dynamique moléculaire et études spectroscopiques des interactions entre le complexe antitumoral cisplatine et l'ADN." Paris 7, 2002. http://www.theses.fr/2002PA077075.
Full textGurung, Pratima. "Deciphering the role of G-quadruplexes and their interacting proteins in Plasmodium falciparum." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT010.
Full textMalaria continues to be one of the major causes of morbidity and mortality in the developing countries. The development of the resistance against the available antimalarial drugs and scarcity of effective vaccines have demanded the urgent need of finding new antimalarial targets. The severe form of malaria is caused by Plasmodium falciparum, which manifests a complex life cycle involving various morphologically and functionally distinct forms within two different hosts - human and Anopheles mosquitoes. In order to thrive in two distinctive host’s environment, these parasites employ different mechanisms to regulate their tightly coordinated gene expression. This thesis project is focused on exploring the regulation, which is mediated by guanine-rich DNA secondary structures, predominantly G-quadruplexes. These structures are found in wide range of organisms and are involved in gene regulation such as transcription, DNA replication and telomeric maintenance. Recently, they are also found to be involved in the process of virulence to evade the host’s immune response in numerous pathogens such as bacteria, protozoa and viruses. In Plasmodium, the G-quadruplex forming motifs are found to be enriched in the telomeric and sub-telomeric regions, where the virulence genes are present. The G4 existence in these AT biased genome points towards their role in the mechanism of gene regulation and antigenic variation. However, there is a lack of experimental evidence to support this hypothesis. The aim of this project is to provide the first comprehensive survey of the G4-interactome in order to understand the role of G4-mediated regulatory mechanisms in Plasmodium biology. Using a combination of unbiased approaches (Yeast one-hybrid and DNA pull-down assay), we have identified ~152 putative G4 interacting proteins in Plasmodium falciparum. The orthologs of some of these proteins were shown to interact with G4s, thus strengthening our results. Furthermore, to understand how these candidates contribute to G4 mediated regulatory processes, we have selected and characterized two proteins (GBP2 and DNAJ) to perform functional studies following validation of their binding properties. These proteins are shown to play an important role in Plasmodium biology. In this study, we have found that the GBP2 is a dispensable protein that interacts with the selected G4. Even though the deletion of the gene is not lethal to the parasites, it still affects the expression of var genes. Whereas putative DNAJ is an essential protein and its deletion results into the arrest of the parasites at the late stages of erythrocytic cycle. Collectively, this study sheds light on this understudied DNA structure based regulatory mechanism and provide the first systematic survey of the G4 interactome. Given their essential role in parasite development further characterization of obtained candidates will likely generate new targets for antimalarial drugs that will in the long term contribute to the eradication of the disease
Laurent, Marc. "Rôle des G-quadruplexes dans la spécification des origines de la réplication chez les vertébrés." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC162/document.
Full textReplication origins are the position where DNA synthesis is initiated. Mapping of replication origins across the genome showed a link between origins and G4 motifs. G4 motifs are sequences the potential for forming G-quadruplexes. Works carried out previously in the laboratory showed that the ability to fold into G-quadruplex is critical for the activity of two model origin in the DT40 cell line. However, the G4 motif is not enough to specify a replication origin. In the βA model origin, a 227 bp cis element is required for the initiation of replication. The analysis of this sequence indicates the presence of several motifs known to be binding sites for transcription factors. We tested the potential roles of these motifs by evaluating the effect of their individual deletion on the activity of the βA origin. This work identified the TATA and CCAAT boxes who bind TBP (TATA Binding Protein) and NFY (Nuclear Factor Y) respectively as the crucial elements, with the G4 motifs, pour the initiation of replication.We endeavored to shed light on the manner by which these elements enable the specification of a replication origin. We hypothesized that the G4 motifs associated with replication origins are those able to form a G-quadruplex in vivo. The formation of the G-quadruplex of the βA origin would require the presence of the TATA and CCAAT boxes who could recruit transcription factors facilitating the opening of the double helix and G-quadruplex folding. We tested this hypothesis by two different manners. First, we undertook to stabilize a G-quadruplex at a given position in the genome by inducing the transcription of a G4 motif. Then, we observed the effects of a genome wide stabilization of G-quadruplexes on the position of replication origins. For that, we mapped replication origins in DT40 cell lines in which factors implicated in G-quadruplex linearization are inactivated. According to our hypothesis, without such factors, like the FancJ helicase of the translesional DNA polymerase Rev1, more G4 motifs could fold into G-quaduplexes and specify replication origins
Buffet, Charles-Henri. "Photoactivatable G-quadruplex ligands : synthesis, activation, reactivity, and biological application." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF009.
Full textG-quadruplexes (G4s) are non-canonical four-stranded nucleic acid structures generated by the folding of G-rich sequences in the presence of potassium ions. G4s have been found to form in the human genome (> 10,000) and seem to play a role in the regulation of many cellular processes.The aim of this project is to develop and study trifunctional ligands that can be used in an immunoprecipitation methodology to understand more about G4 accessibility and dynamics by means of a covalent association between the G4 ligand and the G4 structure. These ligands are composed of i) the PDC core able to interact selectively with G-quadruplexes, ii) a photoactivatable moiety (benzophenone, benzyl and aliphatic diazirine, and aryl azide) able to trap covalently G-quadruplexes, and iii) a terminal alkyne for post-covalent binding functionalisation by CuAAC reaction.The first part describes the synthesis and the biophysical and biochemical studies of the two new families of photoactivatable G4 ligands (in-line and branched compounds). The conservation of the specificity of PDC toward G4s was evaluated by FRET-melting and G4-FID assays. Their ability to generate a covalent bond with the G4 structures was assessed by denaturing gel electrophoresis and the identification of the alkylation sites determined by both chemical and enzymatic sequencing experiments.The second part describes the photochemical studies performed in the presence of mimic prototypes. The nature of the reactive intermediates was studied by Laser Flash photolysis. Finally, photoreactivity was studied in the presence of different nucleosides and generated adducts were characterised by NMR
Morel, Elodie. "Conception d’outils chimiques pour la détection des structures d’ADN G-quadruplex." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS237.
Full textNucleic acids secondary structures may form in guanine-rich regions by Hoogsteen base-pairing around a cation (K+ or Na+) and stacking of guanine quartets. Those nucleic acid secondary structures called G-quadruplex are believed to play regulatory roles in the main functions related to DNA processing. However, although numerous sequences, potentially forming G4-structures are present in genomes, evidence concerning their in vivo formation and biological role remains limited. Primary aim of our research is to provide new chemical biology tools for evaluating the biological impacts of quadruplexes and the potential of our compounds for quadruplex-targeted anticancer therapy. We have synthetized a set of compounds equipped with biotin and cross linking moieties in order to trap and pull-down G4-structures in various cellular contexts. The G4-ligands (PDC, PhenDC3 and Metal-ttpy) were evaluated thanks to FID and FRET-melting assays, and carefully chosen to efficiently target G-quadruplexes but also to display enough selectivity for cellular assays. Direct trapping of a G-quadruplex structures can also be done by metal complexes, thanks to coordination with DNA bases. Platinum tolylterpyridine derivatives have been studied on gel electrophoresis to map the platination sites and to evaluate the kinetics of the phenomenon. By adding photo crosslinking moieties to Pt-ttpy, efficient double-anchoring has been done on DNA G-quadruplex structure. Moreover, first cellular imaging evaluations were done by adding a fluorophore to this platinum tolylterpyridine complex. To eventually probe quadruplex DNA at the genome-wide scale, full control of the trapping protocol is indeed a key step. Full development of the pull-down step has been done, using streptavidin-coated magnetic beads. On-beads experiments indicate that efficacy of trapping can vary dramatically depending on quadruplex and G4-ligand topologies. Moreover, photo crosslinking moiety, introduced on some compounds, has not shown any improvement of the trapping. However, the development of this method and the design of the capture compounds have led to an optimal isolation of telomeric G-quadruplex forming sequences, from genomic DNA
Bertrand, Hélène. "Hétérocycles aromatiques étendus : variations structurales pour l'auto-assemblage bi-dimensionnel et la reconnaissance d'ADN G-quadruplexe." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2008. http://tel.archives-ouvertes.fr/tel-00343363.
Full textDans ce but, nous avons développé une famille de molécules, les triazatrinaphthylènes (TrisK), se caractérisant par un large coeur aromatique ainsi que par la diversité des chaînes latérales qui peuvent y être introduites, leur nature gouvernant le type d'application désirée.
L'introduction de chaînes lipophiles confère aux TrisKs des propriétés d'auto-assemblage sur des surfaces. Les monocouches auto-assemblées obtenues sont étudiées par microscopie à effet tunnel (STM). Ces études constituent un premier pas dans la caractérisation des TrisKs en tant qu'éventuels composants actifs dans le domaine des matériaux organiques.
La substitution des TrisKs par des chaînes aminées leur apporte de l'hydro-solubilité, les rendant particulièrement adaptés pour le ciblage d'une structure particulière d'ADN,
l'ADN G-quadruplexe. Cette structure est actuellement étudiée de manière intensive pour son rôle central dans ce qui pourrait constituer une nouvelle stratégie anti-cancéreuse. Nous avons également développé l'utilisation de complexes de platine pour interagir sélectivement avec ces structures.
Merle, Patrick. "Etude de ligands de l'ADN G-quadruplexe télomérique dans le traitement du glioblastome et cancer bronchique : approches combinatoires." Thesis, Clermont-Ferrand 1, 2011. http://www.theses.fr/2011CLF1MM14.
Full textPipier, Angélique. "Etudes des G-quadruplexes : impact de la stabilisation par des ligands en tant qu'agents anti-cancéreux et identification des protéines associées régulant leur métabolisme." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30118.
Full textG-quadruplexes (or G4) are non-canonical structures of nucleic acid formed from guanine-rich sequences. G4 are stable structures, present throughout the genome and could be folded into different conformations. G4 formation can regulate, positively or negatively, different cellular processes such as transcription, replication, RNA transactions and mitochondrial mechanisms. All these processes require the recruitment of proteins able to modulate the formation of these structures. Indeed, some proteins, such as BLM, WRN or DHX36 helicases, are able to unwind G4 while others, like nucleolin (NCL), bind to and stabilize G4. Finally, G4 ligands, small molecules stabilizing G4, can impact various processes in which G4 are involved; in particular, they can cause repression of oncogene expression and lead to genomic instability. Thus, G4 ligands are considered to be potential anti-cancer agents. My thesis work focuses on several issues concerning G4: 1/ the improvement of G4 ligands and their characterization; 2/ the deciphering of the mechanisms inducing genomic instability following G4 stabilization by ligands; 3/ the identification of proteins able to bind to G4 (or GBPs for "G4 Binding Proteins"). Through biochemical and biophysical experiments, I have participated in the characterization of porphyrin-derived ligands. In the case of the AuMA ligand, I showed an increase in both G4 stabilization capacity and G4 specificity, compared to other porphyrin-derived molecules. This molecule therefore represents a better therapeutic potential than TMPyP4, a widely characterized ligand from which it is derived. I have also studied the genomic instability due to G4 stabilization using the pyridostatin ligand and the CX5461 ligand, currently in Phase II of a clinical trial. These ligands induce DNA double-strand breaks (or DSBs) dependent on transcription by RNA polymerase II and partly due to the transcriptional pausing. DSBs are initiated by the activity of Topoisomerases II, enzymes involved in the resolution of DNA topological stresses due to transcription and replication. These results show the significant role of transcription in the induction of genomic instability and open up new therapeutic approaches in the treatment of cancers in which these proteins are overexpressed or by combining them with other chemotherapies such as etoposide to increase their cytotoxic potential. I have studied G4-binding proteins using constrained structures, blocked in a particular conformation, by developing a protocol for the detection of GBPs through Pull-Down experiments followed by mass spectrometry analysis. These results, validated by the binding to G4 of proteins already identified and characterized such as WRN, DHX36 or CNBP, allow the identification of 425 GBP. Thus, I have highlighted new GBPs involved in various cellular processes such as replication, DNA repair, transcription and RNA metabolism. Aside, the study of CNBP protein in a zebrafish model has shown that the regulation of G4 in vivo affects transcription and embryonic development, reinforcing the role of G4 in whole living organisms. My work contributes to extend the knowledge of G4 and their ligands, particularly the mechanisms of action of G4 during transcription, and is opening up new therapeutic perspectives
Beauvarlet, Jennifer. "Caractérisation du rôle de la voie de réponse aux dommages à l'ADN et des lysosomes dans la mort cellulaire et la sénescence induites par un ligand G-quadruplexe." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0318.
Full textG-quadruplexes (G4) are unusual nucleic acid structures that can be formed by guanine-rich DNA and RNA. Through their ability to stabilize G4 structures, G4 ligands (G4L) have been described to display potent anticancer properties. Here, we studied the G4L 20A belonging to the triarylpyridine family of compounds that have the ability to efficiently bind to and stabilize G4 structures in vitro. The objectives of this work were to determine the molecular and cellular mechanisms responsible for the anti-proliferative effects of 20A in cancer cells. In this study, we showed that 20A causes cancer cell growth arrest in cell culture and a mice tumour xenograft model, through induction of senescence and apoptotic cell death. These cellular responses are associated with the induction of the DNA damage response pathway (DDR), in particular ATM activation, which promotes the induction of both autophagy (a lysosomal catabolic pathway) and senescence, while protecting cells against apoptosis. Furthermore, we found that 20A induces failure of cytokinesis which results in the accumulation of binucleated cells that display marked resistance to 20A-induced cell death. Unexpectedly, we found that 20A accumulates in the lysosomal compartment and causes lysosome enlargement. The combination of a lysosomotropic agent, chloroquine, and 20A promotes a significant induction of lysosomal membrane permeabilization (LMP) and a robust cell death. In particular, this combination significantly sensitizes binucleated cells to cell death. Altogether, our results uncover the relationship of the DDR and lysosomal pathways to cell death and senescence induced by the G4L 20A. Such regulation should also be taken into account when using antiproliferative drugs susceptible to interfere with the lysosomal functions
Reznichenko, Oksana. "Combinatorial chemistry approaches for the development of G-quadruplex DNA and RNA ligands." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASF014.
Full textG-quadruplexes (G4s) are four-stranded structures of nucleic acids (DNA or RNA) that consist of at least two coplanar guanine quartets. An important feature of G4s is their ability to form stable complexes with exogenous small molecules (ligands) and thus influence biological processes in which they are involved. G4 targeting is often associated with oncology, where G4 ligands may suppress the expression of oncogenes, inhibit telomerase, or induce DNA damage in cancer cells. This work aims to develop methodologies for rapid and simple synthesis and screening of compounds, in order to identify selective and highly affine ligands of given non-canonical structures of nucleic acids, in particular G4s. Specifically, this works exploits the chemistry of reversible synthesis of acylhydrazones, which has been barely applied for the development of DNA or RNA ligands before. First, a small library of 20 cationic bis(acylhydrazones), analogues of the previously reported G4-ligands PDC (360A) and PhenDC3, was obtained by preparative synthesis. Through fluorescence melting experiments it is demonstrated that some of compounds indeed have high affinity to G4-DNA, validating the suitability of the acylhydrazone motif as a scaffold for the development of G4 ligands. Next, a method of dynamic combinatorial chemistry (DCC), which consists in simultaneous one-pot generation of libraries of up to 20 compounds with consecutive pull-down of most affine ligands by bead-immobilized targets (i.e., G4-DNA), was developed. By using this method, a non-symmetrical bis(acylhydrazone) was identified as a promising ligand of a parallel G4-DNA Pu24T. However, biophysical experiments with its close structural analogues did not confirm their preferential binding in comparison with the symmetrically substituted compound. It is proposed that the outcome of DCC experiments may be biased by non-specific interactions of ligands with magnetic beads, leading to false-positive results. In order to improve the analysis of dynamic combinatorial libraries, a novel method based on solid-phase extraction of the G4-ligand complex was developed and applied to two libraries of non-symmetric acylhydrazones. In a few rounds of selection, 13 hits were obtained out of 70 in situ generated compounds. Three of them were selected for preparative synthesis and detailed study of interaction with G4-DNA. In parallel, a classical combinatorial chemistry approach was developed, resulting in generation of a combinatorial library of 90 individual bis(acylhydrazone) derivatives in the form of ready-to-use 2 mM solutions in DMSO, with an average purity of 87%. These samples were directly used for biophysical screening experiments towards four G4-DNA targets of three different topologies. Three most active compounds were obtained in preparative manner and their interaction with the mentioned biological targets was studied in detail by several biophysical methods, including native mass spectrometry experiments. This way, at least one derivative with a G4-DNA affinity superior to that of PhenDC3 and unprecedented selectivity towards anti-parallel G4-DNA could be identified. Finally, in the framework of a collaborative project (M. Blondel, University of Western Brittany) the ligands synthesized in this work were studied with respect to their capacity to act as modulators of the immune evasion of Epstein–Barr virus (EBV). Specifically, it was shown that several bis(acylhydrazones) bind in vitro to G4-RNA structures formed by the guanine-rich repeat sequence of mRNA encoding for the glycine-alanine rich (GAr) domain of viral genome maintenance protein EBNA1. Moreover, two derivatives were found to displace the host cell factor nucleolin from EBNA1 mRNA, leading to overexpression of EBNA1 protein and a concomitant increase of antigen presentation in EBV-infected cell cultures. This effect represents an interesting therapeutic opportunity for treatment of EBV-related cancers
Audry, Julien. "Réplication et maintenance des télomères chez Schizosaccharomyces pombe : Rôle du complexe RPA dans la prévention ou la résolution de structures secondaires de type G-quadruplexes." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4013.
Full textTelomeres are nucleoprotein structures that protect chromosome ends from degradation and ensure replication of the terminal DNA. In fact, many of replication proteins are involved in telomere maintenance, like RPA (Replication Protein A). RPA is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In S. pombe a mutation in the largest RPA subunit (Rpa1-D223Y) leads to substantial telomere shortening. In this study, we found that the D223Y mutation leads to the accumulation of aberrant secondary structures at telomeres. The presence of these secondary DNA structures correlates with a high association of Polα with telomeres suggesting that this mutation impairs lagging strand (G-rich) telomere replication. Strikingly, heterologous expression of the budding yeast Pif1 known to efficiently unwind G-quadruplex, human PIF1 and Phf1 (homolog of Pif1 in S.pombe) rescue the telomeric length defects of the D223Y cells. Furthermore, in vitro data show that the identical D to Y mutation in human RPA specifically affects its ability to bind G-quadruplex. We propose that RPA prevents the formation of G-quadruplex structures at lagging strand telomeres to facilitate telomerase action at telomeres. Furthermore, the study, in S.pombe, of the stability of G-rich repeat sequences (minisatellite CEB25) as known to form G4 enforce the hypothesis that RPA can prevents the formation of G4 or helps to solve this structure
Romero, Salas Tonatiuh. "Etude in vitro des interactions entre la protéine de réplication A humaine (hRPA) et l' ADN." Paris 6, 2005. http://www.theses.fr/2005PA066542.
Full textSaadallah, Dounia. "Synthèse de complexes originaux de Ruthénium(II) à base de ligands étendus dérivés de phénanthroline, caractérisation photophysique et propriétés d’interaction avec les G-quadruplexes." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/242038.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Lefebvre, Joël. "Outils moléculaires pour l'étude des G-quadruplex au sein du génome." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS536/document.
Full textDeoxyribonucleic acid has different structures in human beings. The most known is the double helix but a lot of secondary structures exist and particularly G-quadruplex. It consists of guanine-rich nucleic acid sequences. The association of four guanines through hydrogen bonds forms a plan called G-quartet. This set of hydrogen bonds is called Hoogsteen base pairs. The stacking of at least two quartets around a monovalent cation like potassium or sodium establishes the G-quadruplex. These structures have been much studied over the past twenty years. They are involved in numerous biological mechanisms like replication, transcription, translation and also telomere maintenance. G-quadruplex presence can cause an important genetic as well as epigenetic instability. That is why many methods have been developed in order to localize these structures and to understand their role in vivo. To this end, a broad panel of molecular tools has been used. However, it is still difficult to bring an answer to all the questions about the involvement of G-quadruplex at the genomic level with this panel. In this thesis work, we developed new molecular tools able to target selectively G-quadruplex in a complex biological medium from two benchmark ligands, PhenDC3 and PDC, which have very good affinity and selectivity for G-quadruplex.On the one hand, functionalized ligands have been synthetized with a biotin and/or a photoactivatable group in order to trap and pull-down G-quadruplex in various cellular contexts. On the other hand, derivative compounds which are able to be functionalized in cellulo by bioorthogonal reactions have been obtained. Once the compound interacts with its cellular target, a function (fluorophore or biotin) can be added through an orthogonal reaction. The new panel of compounds has been evaluated by biophysical techniques, FRET-melting experiment and FID assay, in order to determine their affinity to G-quadruplex and their selectivity. We proposed a relation between the two biophysical experiments in order to have a good ranking of ligands for G-quadruplex structures.One of the most important objectives of this work was to localize G-quadruplex ligands in human cancer cells. First, a complete study in fixed cells has been performed using two reactions of click chemistry: reaction of copper-catalyzed-alkyne-azide-cycloaddition (CuAAC) and reaction of strain-promoted alkyne-azide cycloaddition (SPAAC). Secondly, the study has been pursued in living cells using SPAAC reaction because of the toxicity of copper in cells.These compounds have also been used to extract G-quadruplex from biological systems with cyclooctyne-coated magnetic beads. However, results obtained in this preliminary study are not decisive so it could be interesting to optimize the system before concluding
Sfaxi, Rym. "Régulation de la maturation en 3' des pré-ARNm en réponse aux dommages de l'ADN." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS358.
Full textThe 3’-end processing of pre-mRNA, a key step in the post-transcriptional gene expression regulation, is essential for mRNA stability, export and translation. This process is a two-step reaction composed of a cleavage at the 3’-end followed by the addition of a poly(A) tail. Studies have shown that pre-mRNA 3’-end processing is inhibited in response to DNA damage. However, compensatory mechanisms exist to allow some pre-mRNA to be properly processed at their 3’-end in order to maintain cell integrity. For instance, in response to DNA damage, the 3’-end processing of the pre-mRNA coding for the tumor suppressor p53 is able to escape from its inhibition. In the present work, we have shown that the underlying mechanism involves the DHX36 helicase that unwinds a secondary structure called G-quadruplex located downstream of the cleavage site of the p53 pre-mRNA. Moreover, in a second study, we have shown that the maintained p53 pre-mRNA 3’-end processing in response to DNA damage is uncoupled from the transcription process, unlike the inhibited TBP pre-mRNA 3’-end processing. This uncoupling takes place through a co-transcriptional cleavage of p53 pre-mRNA from the chromatin and its release in the nucleoplasm where it undergoes its 3’-end processing. A genome-wide study allowed us to show that the pre-mRNA 3’-end processing occurring in the nucleoplasm is associated with a maintained 3’end processing in response to DNA damage
Mougeot, Romain. "Synthèse de sondes fluorescentes hybrides epicocconone-triphénylamine pour le piégeage de protéines liées aux zones à risques de l'ADN." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR126.
Full textUnderstanding biological process and proteins involved in has challenged biologists’ mind for a while. Specific DNA sequences, such as G-quadruplex and Adenine-Thymine rich sequences, have been studied for many years, especially for their involvement in genetic diseases like cancer. Scientists have also been interested in fluorescence monitoring and imaging of these specific sequences for a long time. Indeed, the huge sensitivity of these fluorescent technics and the wide scope of synthetic dyes available allowed several improvements on targeting DNA sequences responsible for genetic disorders. Nonetheless, relation between proteins and these areas remains mostly unknown. In order to answer this question, a pro-fluorescent dye built of two main parts, which are a DNA ligand (designed by Curie Institute teams, UMR 176) and a protein trap (based on epicocconone core). These parts were synthesized, coupled thanks to a Spontaneous Azoture Alkyne Cycloaddition (SPAAC) and the biological properties of the probe were evaluated. Furthermore, new ligands were synthesized using a new and innovating method of “on water” C-H activation reaction
Miclot, Tom. "Modeling the influence of DNA lesion on the regulation of gene expression." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0256.
Full textNucleic acids are organic macromolecules that result from the polymerization of nucleotides. These molecules are generally considered as the support of the genetic information. Two families of nucleic acids are currently known: DNA and RNA. From a structural point of view, the most popular form is the double helix of DNA. However, other forms exist and among them are the G-quadruplex. This is a folding of the DNA, or RNA, in an area rich in guanines. These form quadruplex of guanines, which are stacked on top of each other and are stabilized by a central cation. G-quadruplex structures are increasingly studied. This is not surprising since their biological role involves the regulation of genetic mechanisms. They are notably involved in the regulation of the cell cycle, but they also play a role in cancer, certain neurological or viral diseases. The aim of this PhD thesis is to study G-quadruplex using theoretical chemistry tools. The three years of work raise very important points for the research on G-quadruplex. First, the modeling of a theoretical G-quadruplex structure can be achieved by sequence homology and validated by calculations of a theoretical circular dichroism spectrum. Consequently, it is possible to use these tools to propose and use a G-quadruplex structure if it is not yet experimentally solved. Then, the work done shows that G-quadruplex form a very stable folding since they are globally conserved even when 8-oxo-guanine or strand breaks lesions are introduced at the quartets. Then, the paper focuses on the interaction between G-quadruplex and proteins. It highlights the important role of G-quadruplex RNA in the infection of the viral pathogen SARS-CoV-2. This RNA promotes the dimerization of the SUD protein of the virus, which in turn is responsible for the disruption of the immune system. Finally, this thesis provides a structural explanation for the specific interaction between the DARPin 2E4 protein and the G-quadruplex of the c-Myc promoter
Lecarme, Lauréline. "Synthèse de complexes métallo-salen et dérivés pour la biocatalyse et l'assemblage supramoléculaire." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENV038/document.
Full textWe prepared salen and dipyrrophenolate iron complexes involving electron rich (tertbutyland methoxy substituents) phenolate moieties. Their oxidative chemistry leads to radicalspecies, one of them being characterized by X-Ray diffraction. The manganese and copperdipyrrophenolate complexes were also synthesized and oxidized, affording radical species.The first ones are efficient catalysts for the oxygenation of olefins, while the second ones areactive towards alcohol oxidation.Functionnalization of the phenols by alkylimidazolium chains makes the compoundshydrosoluble. The so-prepared nickel salophen complexes interact strongly with GquadruplexDNA (KD < 1-2 mM), mainly through p-stacking interactions over the lastguanine quartet. They stabilize the G-quadruplex structures against thermal denaturation andinhibit telomerase activity with IC50 < 3 mM
Ferreira, Cátia Vanessa Pereira. "Ácidos nucleicos como alvo terapêutico: presente e futuro." Master's thesis, 2016. http://hdl.handle.net/10451/35800.
Full textOs ácidos nucleicos são as moléculas base dos seres vivos. Desde a mais simples bactéria até aos mamíferos mais desenvolvidos, todos os têm nas suas células, e é a partir deles que todas as proteínas são originadas. Mutações que provoquem erros na sua replicação, transcrição e tradução, se incapazes de serem corrigidos, podem dar origem à desregulação das células e consequentemente a doenças, ou até à morte dessas células. Mas há casos em que pode ser desejada a morte celular, como no caso de infeções virais, bacterianas e fúngicas, ou ainda no caso da proliferação indesejada de células, como o caso das neoplasias. Por isso, muitos fármacos que perturbam o normal funcionamento dos processos que envolvem os ácidos nucleicos, como a replicação, a transcrição e o processamento de ARN, têm sido desenvolvidos com sucesso. No entanto, a sua pouca seletividade e elevada toxicidade faz com que haja a necessidade de desenvolver novas moléculas com melhores propriedades. O desenvolvimento tecnológico dos métodos de estudo dos ácidos nucleicos é muito importante, pois faz com que se conheça melhor a sua estrutura e assim, permite que se sintetizem novos fármacos mais específicos para atuarem no ADN e ARN. Recentemente, têm sido investigadas estruturas secundárias, como o ADN triplex e os G-quadruplexes, que devido à sua localização e função no genoma pensa-se serem bons alvos terapêuticos. Nesta monografia serão abordadas as estruturas secundárias do ADN e ARN de um modo geral e posteriormente os fármacos utilizados na prática clínica. Por fim, descrever-se-ão algumas das novas moléculas que interagem com os alvos já referidos, sendo que algumas se encontram em ensaio clínico e poderão dar origem a medicamentos inovadores. No entanto, o problema da seletividade mantém-se de certo modo, já que, apesar de estas moléculas atuarem em estruturas específicas do genoma (e não em todo o genoma), essas estruturas existem tanto em células normais como em células tumorais. É, por isso, necessário que se desenvolvam moléculas específicas para uma sequência e não só para uma estrutura.
Nucleic acids are the basic molecules of all living beings. From the simplest bacteria to the most developed mammal, they all have them in their cells and it’s from them that all gels are generated. Mutations causing replication, transcription and translation errors, if not corrected may originate dysregulation of cells and consequent diseases or even death of those cells. However there are cases in which cell death might me desired such as viral, bacterial and fungi infections, but also when there is unwanted proliferation of cells such as what happens in tumors. Therefore, many drugs that disturb the normal functioning of processes involving nucleic acids such as replication, transcription and RNA processing have been developed successfully. However their low selectivity and high toxicity make it necessary for new molecules with better properties to be developed. It is also very important to develop new methodologies for the study of nucleic acids, since it enables a more comprehensive view of their structure making it possible for more specific drugs targeting DNA and RNA to be synthesized. Recently several secondary structures (like triplex DNA and G-quadruplexes) have been studied and will possibly make good targets in the future because of their locations and functions in the genome. In this review DNA and RNA secondary structures will be briefly discussed and also the drugs used in clinical practice. New molecules that target those nucleic acids and that may originate new drugs in the future will be approached later. Some of those molecules are currently in clinical trial although there are no approvals yet. The issue concerning selectivity still stands because even though these molecules target specific structures (contrary to the whole genome) the structures exist in normal and abnormal cells. Therefore it is necessary to develop novel compounds targeting (or also targeting) specific sequences instead of specific structures alone.