Academic literature on the topic 'Armour layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Armour layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Armour layer"
Agung, Ida Bagus. "PENGARUH DURASI SERANGAN GELOMBANG TERHADAP TINGKAT KERUSAKAN LAPIS LINDUNG PEMECAH GELOMBANG." Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi 1, no. 1 (August 2, 2015): 18–27. http://dx.doi.org/10.30738/jst.v1i1.471.
Full textMAYSTRENKO, Anatoliy L., Volodymyr I. KUSHCH, Evgeniy A. PASHCHENKO, Vitaliy G. KULICH, Olecksiy V. NESHPOR, and Sergiy P. BISYK. "Ceramic Armour for Armoured Vehicles Against Large-Calibre Bullets." Problems of Mechatronics Armament Aviation Safety Engineering 11, no. 1 (March 31, 2020): 9–16. http://dx.doi.org/10.5604/01.3001.0014.0279.
Full textMouton, le Fras, Alexander Flemming, Michael Bates, and Chris Broeckhoven. "The relationship between generation gland morphology and armour in Dragon Lizards (Smaug): a reassessment of ancestral states for the Cordylidae." Amphibia-Reptilia 39, no. 4 (2018): 457–70. http://dx.doi.org/10.1163/15685381-20181032.
Full textVan den Bosch, Ilse, Erik Ten Oever, Pieter Bakker, and Markus Muttray. "STABILITY OF INTERLOCKING ARMOUR UNITS ON A BREAKWATER CREST." Coastal Engineering Proceedings 1, no. 33 (October 25, 2012): 11. http://dx.doi.org/10.9753/icce.v33.structures.11.
Full textSantos, João Alfredo, Francisco Pedro, Mário Coimbra, Andrés Figuero, Conceição Juana E. M. Fortes, José Sande, Moritz Körner, et al. "3-D Scale Model Study of Wave Run-Up, Overtopping and Damage in a Rubble-Mound Breakwater Subject to Oblique Extreme Wave Conditions." Defect and Diffusion Forum 396 (August 2019): 32–41. http://dx.doi.org/10.4028/www.scientific.net/ddf.396.32.
Full textLu, Jiang Ren, Xin Li Sun, Xing Hui Cai, San Qiang Dong, and Guo Liang Wang. "Numerical Study on the Ballistic Impact on Lightweight Composite Armour." Applied Mechanics and Materials 670-671 (October 2014): 824–28. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.824.
Full textYoung, Martin, John Hayman-Joyce, and Seok Hyeon Kim. "USE OF SINGLE LAYER CONCRETE ARMOUR UNITS AS TOE REINFORCEMENT." Coastal Engineering Proceedings 1, no. 33 (October 25, 2012): 48. http://dx.doi.org/10.9753/icce.v33.structures.48.
Full textBakker, Pieter, Tiemen de Hoop, and Markus Muttray. "STABILITY OF XBLOCPLUS ARMOUR LAYERS AFTER INITIAL DAMAGE." Coastal Engineering Proceedings, no. 36v (December 28, 2020): 16. http://dx.doi.org/10.9753/icce.v36v.structures.16.
Full textLatham, John-Paul, Eleni Anastasaki, and Jiansheng Xiang. "A FEMDEM NUMERICAL MODEL STUDY OF RUBBLE-MOUND STRUCTURES ARMOURED WITH CONCRETE ARMOUR UNITS." Coastal Engineering Proceedings 1, no. 33 (December 15, 2012): 37. http://dx.doi.org/10.9753/icce.v33.posters.37.
Full textBurcharth, Hans Falk, Thomas Lykke Andersen, and Josep R. Medina. "STABILITY OF CUBIPOD ARMOURED ROUNDHEADS IN SHORT-CRESTED WAVES. A COMPARISON BETWEEN CUBIPOD AND CUBE ARMOUR STABILITY." Coastal Engineering Proceedings 1, no. 32 (February 1, 2011): 39. http://dx.doi.org/10.9753/icce.v32.structures.39.
Full textDissertations / Theses on the topic "Armour layer"
Silva, Diogo Filipe Teixeira Cerqueira da. "Parameter analysis of the armour layer incoastal structures." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13993.
Full textCoastal erosion is a serious problem that affects numerous countries and particularly Portugal. The sediment deficit, increasing urbanistic pressure and highly energetic coastal areas anticipate the necessity of large investments in shore protection structures. The design process of coastal structures is mainly dependent on empirical formulations, followed by tests on physical models to validate the design solutions. In these empirical formulations, the incorporation of several parameters in to coefficients, adds a level of subjectivity that is relevant on the results. This document intends to address the subjectivity problem through the analysis of the stability coefficient in the Hudson formula. In the original formula, this coefficient expresses the influence of a certain amount of parameters on the armour layer stability of coastal structures. However, there is an absence of recommended values that take into account some important parameters. By increasing the knowledge over the several parameters that influence the stability coefficient, a better accuracy can be achieved. The main focus is on the parameters considered by the Van der Meer formulations (permeability, storm duration, damage level and slope angle) and on the incidence angle in which the wave attacks the structure. A sensitivity analysis was performed for various parameters, in order to evaluate the influence of each parameter on the stability coefficient and final stability values. Using two study cases, a comparison was performed on the design stability coefficient and the coefficient that resulted from physical tests.
A erosão costeira é um problema grave que afecta muitos países do mundo e em particular, Portugal. O défice sedimentar e a crescente pressão urbanística, aliadas a um regime costeiro energético, anteveem a necessidade de avultados investimentos em estruturas de proteção costeira. O processo de dimensionamento de estruturas costeiras passa pela utilização de formulações empíricas, seguido de testes em modelo físico para validar as soluções. Nestas formulações, a incorporação de diversos aspectos em coeficientes, adiciona um nível de subjetividade relevante aos resultados. A intenção deste trabalho é abordar o problema da subjetividade pela análise do coeficiente de estabilidade, presente na fórmula de Hudson. Na fórmula original, este coeficiente exprime a influência de um certo número de parâmetros na estabilidade do manto de proteção de estruturas costeiras. No entanto, existe uma ausência de valores recomendados que tenham em conta alguns parâmetros importantes. Ao amentar o conhecimento sobre os diversos parâmetros que influenciam o coeficiente de estabilidade, é possível alcançar uma maior precisão. De entre os parâmetros que influenciam a estabilidade, o foco principal da análise é sobre os parâmetros considerados nas fórmulas de Van der Meer (permeabilidade, duração da tempestade, nível de dano e ângulo do talude da estrutura) e no ângulo de incidência da onda sobre a estrutura. Uma análise de sensibilidade foi feita para avaliar a influência de cada parâmetro no valor do coeficiente de estabilidade e na estabilidade final. Usando dois casos de estudo, foi feita uma comparação do coeficiente de estabilidade obtido na fase de projeto e o coeficiente que resulta dos testes em modelo físico.
Pratola, Luigi. "Studio dell'interazione tra moto ondoso e strutture marittime mediante modellazione fisica." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1921.
Full textLe aree costiere rappresentano sistemi naturali del tutto unici, così come unici sono i fenomeni che le caratterizzano. L’erosione dei litorali, divenuta ormai un fenomeno di interesse planetario, ha spinto verso un approfondimento delle conoscenze dei processi costieri, consentendo di operare nella lotta ai suddetti fenomeni, attraverso strategie sempre più mirate e attente. Una migliore conoscenza dei processi costieri, infatti, può consentire agli ingegneri di adottare approcci più corretti nella progettazione di opere di protezione costiera. La principale fonte di supporto per l’ingegneria costiera è rappresentata dalla letteratura tecnica e scientifica relativa ad interventi già posti in essere nel passato. Strumenti di conoscenza aggiuntivi possono essere forniti da fonti di diversa natura. Uno su tutti la modellistica fisica, che rappresenta senza dubbio un importantissimo mezzo di conoscenza al servizio della progettazione del tipo di opere in parola. Tramite la modellistica fisica è possibile, ad esempio, studiare fenomeni quali la propagazione del moto ondoso nel suo percorso dal largo verso riva, l’agitazione ondosa all’interno dei porti, la stabilità delle strutture sottoposte alle azioni dinamiche del moto ondoso, così come il wave runup, l’overtopping, la riflessione e la trasmissione ad esse associati. Si tratta di fenomeni la cui conoscenza risulta di fondamentale importanza quando nasce l’esigenza di progettare un’opera di difesa costiera. E il risultato è tanto migliore, quanto più sono specifiche le conoscenze su cui viene fondato il progetto. Si consideri, ad esempio, il caso delle dighe a scogliera, il cui strato di armatura più classico è costituito da massi naturali di grandi dimensioni: laddove non ci dovesse essere sufficiente disponibilità del suddetto materiale, o laddove si sia in presenza di condizioni meteomarine particolarmente gravose, le unità di armatura in massi naturali vengono normalmente sostituite da unità in calcestruzzo, per le quali esiste ormai una gran varietà. E’ evidente che, a seconda della forma e delle dimensioni delle suddette unità, nonché del numero di strati con cui esse vengono posizionate sulla mantellata, cambia sensibilmente il comportamento idraulico della struttura. Ne consegue la necessità, in fase di progettazione, di poter disporre di parametri che siano caratteristici della tipologia di unità di armatura della mantellata che si deve realizzare. L’individuazione dei suddetti parametri deve essere necessariamente il risultato di prove sperimentali eseguite in laboratorio su modelli fisici di strutture realizzate con quelle specifiche unità di armatura. Oggetto del presente lavoro, dunque, è lo studio dei fenomeni che intervengono nell’interazione tra il moto ondoso e le strutture di difesa costiera, in particolare per un’opera a gettata costituita da una tipologia di unità di armatura in calcestruzzo non presente in mercato, attualmente sottoposta a procedura brevettuale. Il lavoro è stato condotto mediante sperimentazione su un modello fisico bidimensionale realizzato presso il Laboratorio di Ricerca e Sperimentazione per la Difesa delle Coste (LIC) del Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh) del Politecnico di Bari. Lo studio ha permesso di individuare alcuni parametri caratteristici delmasso in oggetto, quali ad esempio il coefficiente di stabilità e il coefficiente di scabrezza, necessari per il calcolo delle grandezze con cui poter effettuare il dimensionamento dell’opera. Inoltre, sono state valutate alcune delle formulazioni presenti in letteratura per il calcolo delle suddette grandezze, al fine di analizzare la loro adattabilità al nuovo masso. [a cura dell'autore]
XII n.s.
Don, Rasika Perera Solangarachchige. "Investigation of fretting behaviour in pressure armour layers of flexible pipes." Thesis, Sheffield Hallam University, 2007. http://shura.shu.ac.uk/20219/.
Full textAlavandimath, Shivaraj. "Local plastic deformation in pressure and tensile armour layers of flexible risers." Thesis, Sheffield Hallam University, 2009. http://shura.shu.ac.uk/7113/.
Full textJohnson, Andrew. "Establishing design characteristics for the development of stab resistant Laser Sintered body armour." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16743.
Full textFehmi, Jeffrey S. "Research note: A rock mulch layer supported little vegetation in an arid reclamation setting." TAYLOR & FRANCIS INC, 2017. http://hdl.handle.net/10150/627088.
Full textDedeoglu, Mehmet Rifat. "An Experimental Study On The Stability Of Eastern Black Sea Coastal Highway Defense Structures." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1088178/index.pdf.
Full text#8217
s approach and berm design guidelines alternative cross sections were generated.In the second step of the model studies, 8 different models were constructed using a model scale of 1/31.08 and they were tested both for breaking and non-breaking waves. The experiments took place in the Coastal and Harbor Engineering Laboratory of the Middle East Technical University, Civil Engineering Department. The newly designed and optimized berm type structure was proved to be successful and economical.
Hinton, Darren D. "Complexity of Bed-Load Transport in Gravel Bed Streams: Data Collection, Prediction, and Analysis." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3384.
Full textNovák, Jan. "Měření dynamických charakteristik zpětných armatur." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318147.
Full textNewberry, Simon David. "An experimental investigation into the influence of geometric properties and construction techniques on the packing density of rock armour layers for coastal engineering structures." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406440.
Full textBooks on the topic "Armour layer"
Wolf, John R. Study of breakwaters constructed with one layer of armor stone; Detroit District. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1989.
Find full textWees, Hans van. Citizens and Soldiers in Archaic Athens. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198817192.003.0004.
Full textBook chapters on the topic "Armour layer"
van Gelderen, Peter, and Stephen Auld. "Innovative technique for single layer armour unit placement." In Coasts, marine structures and breakwaters: Adapting to change, 1: 425–436. London: Thomas Telford Ltd, 2010. http://dx.doi.org/10.1680/cmsb.41301.0037.
Full textPhillip, Besley, and Michel Denechere. "Single layer armour systems - toe, crest and roundhead details." In Coasts, marine structures and breakwaters: Adapting to change, 1: 128–141. London: Thomas Telford Ltd, 2010. http://dx.doi.org/10.1680/cmsb.41301.0011.
Full textLatham, John-Paul, and Jiansheng Xiang. "Application of the finite-discrete element method to dynamic stress development in armour units and armour layers." In Coasts, marine structures and breakwaters: Adapting to change, 1: 272–284. London: Thomas Telford Ltd, 2010. http://dx.doi.org/10.1680/cmsb.41301.0023.
Full textWang, Tao, and Xingnian Liu. "The Breakup of Armor Layer in a Gravel-Bed Stream with No Sediment Supply." In Advances in Water Resources and Hydraulic Engineering, 919–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_161.
Full textde Oliveira Braga, Fábio, Pedro Henrique L. M. Lopes, Fernanda Santos da Luz, Édio Pereira Lima, and Sergio Neves Monteiro. "Influence of the Areal Density of Layers in the Ballistic Response of a Multilayered Armor System Using Box-Behnken Statistical Design." In The Minerals, Metals & Materials Series, 557–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_59.
Full textEvans, Dorinda. "7. The Death and Legacy of a Maverick Artist." In William Rimmer, 197–208. Cambridge, UK: Open Book Publishers, 2022. http://dx.doi.org/10.11647/obp.0304.07.
Full textDunster, J. A., A. R. Wilkinson, and N. W. H. Allsop. "9. Single layer armour units." In Design of Breakwaters, 177–88. Thomas Telford Publishing, 1988. http://dx.doi.org/10.1680/dob.13513.0012.
Full textBurcharth, H. F., Morten Christensen, Thomas Jensen, and Peter Frigaard. "Influence of core permeability on Accropode armour layer stability." In Coastlines, structures and breakwaters, 34–45. Thomas Telford Publishing, 1998. http://dx.doi.org/10.1680/csab.26681.0004.
Full textHettiárachchi, S. S. L., and P. Holmes. "P3. Performance of single layer hollow block armour units." In Design of Breakwaters, 363–81. Thomas Telford Publishing, 1988. http://dx.doi.org/10.1680/dob.13513.0026.
Full textIglesias Rodriguez, Gregorio, Alberte Castro Ponte, Rodrigo Carballo Sanchez, and Miguel Ángel Losada Rodriguez. "Artificial Intelligence and Rubble-Mound Breakwater Stability." In Machine Learning, 1499–506. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch519.
Full textConference papers on the topic "Armour layer"
de Schoesitter, Philippe, Sarah Audenaert, Leen Baelus, Annelies Bolle, Andrew Brown, Luciana Das Neves, Tiago Ferradosa, et al. "Feasibility of a Dynamically Stable Rock Armour Layer Scour Protection for Offshore Wind Farms." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24426.
Full textReedijk, Bas, Markus Muttray, Arnoud van den Berge, and Richard de Rover. "EFFECT OF CORE PERMEABILITY ON ARMOUR LAYER STABILITY." In Proceedings of the 31st International Conference. World Scientific Publishing Company, 2009. http://dx.doi.org/10.1142/9789814277426_0278.
Full textde Rover, Richard, Henk Jan Verhagen, Arnoud van den Berge, and Bas Reedijk. "BREAKWATER STABILITY WITH DAMAGED SINGLE LAYER ARMOUR UNITS." In Proceedings of the 31st International Conference. World Scientific Publishing Company, 2009. http://dx.doi.org/10.1142/9789814277426_0279.
Full textThompson, Alex C., and Hans F. Burcharth. "Stability of Armour Units in Flow Through a Layer." In 19th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1985. http://dx.doi.org/10.1061/9780872624382.176.
Full textFernando, Upul S., Michelle Davidson, Iwan Harries, Andrew Thompson, and Terry Sheldrake. "Assessment of Loading on the Carcass and Pressure Armour due to Environment Swelling of Polymer." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11238.
Full textSaevik, Svein, and Naiquan Ye. "Armour Layer Fatigue Design Challenges for Flexible Risers in Ultra-Deep Water Depth." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79924.
Full textMarzeddu, Andrea, Jordi De Leau, Alexander Mathijs, Xavi Gironella, Hofland Bas, Vicente Gracia, and Agustin Sanchez Arcilla. "Effects of Storm Duration and Sequencing on Armour Layer Damages." In ICE Coasts, Marine Structures and Breakwaters. ICE Publishing, 2018. http://dx.doi.org/10.1680/cmsb.63174.1189.
Full textRytter, Jan. "Qualification Approach to Unbonded Flexible Pipes With Fibre Reinforced Armour Layer." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51175.
Full textBradbury, AP, J.-P. Latham, and NWH Allsop. "Rock Armour Stability Formulae-Influence of Stone Shape and Layer Thickness." In 22nd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1991. http://dx.doi.org/10.1061/9780872627765.110.
Full textHušek, Martin, Jiří Kala, Petr Král, and Filip Hokeš. "Concept and numerical simulations of a reactive anti-fragment armour layer." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992643.
Full textReports on the topic "Armour layer"
Pirie, Douglas, Bradd Schwichtenberg, Thomas J. Bender, Jeff Wiggin, George Young, and Jack McKellar. Design Guidance for Selectively Placed Quarrystone Revetment Armor Layers. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ad1003870.
Full textMelito, Ivano, and Jeffrey A. Melby. Wave-Induced Runup and Overtopping Transmission for Core-Loc(TM) Armor Layers. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383460.
Full textWolf, John R. Study of Breakwaters Constructed with One Layer of Armor Stone, Detroit District. Repair, Evaluation, Maintenance and Rehabilitation Research Program. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212631.
Full text