Dissertations / Theses on the topic 'Armour Ceramics'

To see the other types of publications on this topic, follow the link: Armour Ceramics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Armour Ceramics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Huang, Shuo. "Nanostructured advanced ceramics for armour applications." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ceramics have been widely used for personnel and vehicle armour because of their desirable properties such as high hardness and low density. However the brittle nature associated with the ceramic materials, i.e. low toughness, reduces their ability to withstand multiple ballistic hits. The present work is focused on ceramic armour materials made from alumina and zirconia toughened alumina (ZTA). The effects of grain size and zirconia phase transformation toughening on the mechanical and high strain rate properties in both materials were investigated in detail. Alumina, 10%, 15% and 20% nano ZTA with 1.5 mol% yttria stabiliser were produced with various grain sizes. The processing of the materials started from suspension preparation, spray freeze drying of the suspension and die pressing to produce homogeneous green bodies with densities above 54%. Then, the green bodies were sintered using conventional single stage and/or two stage sintering to produce the samples with full density and a range of grain sizes (0.5 to 1.5 µm alumina grains and 60 to 300 nm zirconia grains). The effects of the processing conditions on the microstructures were studied and the optimum processing route for each sample was determined. The mechanical properties of the alumina and ZTA samples were investigated, including Vickers hardness, indentation toughness, 4-point bend strength and wear resistance. The results showed that, with an increasing amount of zirconia addition, evident increases of the toughness, strength and wear resistance properties were observed, whilst the hardness reduced slightly correspondingly. The effect of density and grain sizes on the hardness and toughness were studied as well: larger alumina grain size led to a higher hardness and negligible change in toughness, whilst the zirconia grain coarsening enhanced the phase transformation toughening effect and the samples displayed a higher toughness. In addition to the investigation of the mechanical properties, the alumina and nano ZTA samples were subjected to high strain rate testing, including split Hopkinson pressure bar (SHPB) (8-16 m/s) and gas gun impact testing (100-150 m/s). The high strain rate performances were compared in terms of their fracture behaviours, fragmentation process and fragment size distribution. Raman spectroscopy was used to measure the amount of zirconia phase transformation in ZTA samples after the high strain rate testing. The residual stress and dislocation density in alumina grains after testing were quantitatively measured using Cr3+ fluorescence spectroscopy. The results indicated that zirconia phase transformation can reduce the residual stress and dislocation densities in the ZTA samples, resulting in less damage, lower plastic deformation and less crack propagation. In addition, a nano zirconia material with 1.5 mol% yttria stabiliser (1.5YSZ) was subjected to a gas gun impact test with a very high impact speed (142 m/s); a deep projectile penetration was observed, due to the low hardness of the pure zirconia, whilst the sample stayed intact. The result further confirmed that the zirconia phase transformation toughening effect can improve the sample's high strain rate performance.
2

Fakolujo, Olaniyi Samuel. "Characterisation and Properties Improvement of Armour Ceramics." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
As firearms continuously become more sophisticated, there have been commensurate efforts to optimize the ballistic performance of armours, with ceramic materials currently at the forefront of such studies. These efforts have focused on improving processing and microstructural design with reinforcements using dispersion particles, carbon nanotubes (CNT) and boron nitride nanotubes (BNNT). In most studies, ballistic testing has been used to identify parameters affecting the performance. The research documented here focuses on: (1) the investigation of two commercial ceramics, namely silicon carbide (SiC) and zirconia toughened alumina (ZTA). The primary material properties evaluated for the characterization included: hardness, fracture toughness, flexural strength and Young’s modulus. Other properties investigated included the microstructure, porosity/density, and mode of failure or fracture. (2) Ballistic depth of penetration (DOP) testing for six candidate ceramic armour systems including three monolithic ceramics (Al2O3, SiC and B4C) and three nanotube toughened ceramic composites (Al2O3-BNNT, Al2O3-single walled CNT and SiC-BNNT). SiC showed a hardness of 2413 HV, which is far beyond the requirements for armour ceramic. In contrast, ZTA barely met the hardness requirement of 1500 HV, but showed improved toughness of 4.90 MPa m1/2 beyond values reported for monolithic alumina. SiC and ZTA showed that microstructural design improves fracture toughness but processing introduces defects that can substantially reduce other armour related properties such as the strength. The results of the Charpy and drop tower impact tests are in agreement with indentation fracture toughness results suggesting a great degree of reliability of this cost efficient method. The addition of nanotubes produced an increase in toughness and a decrease in hardness in the ceramics, which resulted in an overall drop in performance during ballistic depth of penetration (DOP) tests. A microstructure-quasi-static mechanical properties-ballistic performance relationship was established which led to the development of a novel ballistic performance index and a new DOP model. The proposed ballistic performance index yielded a ranking, which agrees better with experimental observations than the currently published indices. The developed semi-empirical model suggests that the ballistic performance of ceramics is improved with increased fracture toughness, reduced flaw size and higher density.
3

Johnstone, Charles Douglas. "Fundamental study of glassy ceramics for armour plating." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Westerling, Lars. "Interaction of Cylindrical Penetrators with Ceramic and Electromagnetic Armour." Doctoral thesis, Uppsala universitet, Tillämpad mekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-197563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Armoured vehicles have traditionally used steel armour as protection against penetrators such as projectiles and shaped charge jets. The latter produce a thin stretching metal jet, usually of copper, with a tip velocity of about 7-8 km/s. In order to obtain more weight-efficient solutions, there is a search for lighter materials and other protection techniques. In this thesis, ceramic and electromagnetic armours are studied. Ceramic materials are lighter than steel, and their high compressive strength makes them useful as armour materials. Electromagnetic armour consists of two metal plates connected to an electric power supply capable of delivering a strong current pulse. A conductive penetrator passing through both plates is destroyed by the effects of the resulting current. Tests of the ceramic armour materials alumina and boron carbide were performed with reverse impact technique, which signifies that a target assembly (ceramic confined in a metal cylinder) was launched by a gun towards a projectile placed in front of the gun barrel. By this technique yaw was eliminated, but the geometric scale had to be very small. Therefore, we studied scaling laws for ceramic armour through a series of tests with direct impact technique and projectile diameters from 2 to 10 mm. The small scale has the advantage that flash X-ray photography can be used to photograph the projectile inside the ceramic target. The phenomenon of interface defeat or dwell was also demonstrated. It signifies that the ceramic, at least for a short time, can withstand the impact pressure so that the projectile just flows out onto the target surface. A transition velocity, above which dwell does not occur, was determined. Simulations were performed with the continuum-dynamic code Autodyn and by use of a model for the brittle ceramic materials by Johnson and Holmquist. The simulations reasonably well represented the penetration behaviour above the transition velocity. They also did below, if under this condition the ceramic model was forced to remain undamaged. The performance of electromagnetic armour was tested against a shaped charge jet. The jet was registered with shadowgraph flash X-ray photography between the plates and after passing through the plates. The current through the jet and the voltage over the plates were also registered. The current caused heating leading to melting and even vaporization. The magnetic Lorentz force compressed the jet radially, and as this effect increases with decreasing jet radius, instability may arise. Explosions in the compressed regions resulted in a fragmented jet with disk-shaped fragments which are less effective penetrators than the elongated fragments obtained in the absence of current. We also performed a theoretical study, in which the penetrator was subjected to small elastic strains only and the current was constant. The magnetic field was determined by FFT, and the stresses due to the Lorentz force were calculated with a semi-analytical method. The velocity skin effect was demonstrated.
5

Hazell, Paul J. "The failure of ceramic armour subjected to high velocity impact." Thesis, Cranfield University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Genevois, Julia. "Etude du comportement de céramiques à blindage sous chargement de compression haute-vitesse par essais d’impact de plaque plan ou sans choc." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALI106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les matériaux céramiques sont largement utilisés dans la composition de blindages ou de structures de protection car ils permettent, à performances égales, un gain de masse important par rapport à leurs homologues en acier. Dans ces conditions, ils subissent des chargements extrêmes conduisant à des mécanismes de microplasticité et d’endommagement sous fort confinement et sous haute vitesse. Pour bien comprendre le comportement de ces matériaux il est nécessaire de procéder à une caractérisation du comportement mécanique sous des conditions de vitesse et de pression représentatives. Plusieurs techniques expérimentales sont utilisées pour étudier le comportement dynamique des céramiques sous fort confinement. Parmi elles figure la technique d'essai d'impact de plaque. Au cours de cet essai, une plaque impactrice (souvent constituée d'un matériau métallique) frappe le matériau cible, et certaines propriétés mécaniques telles que la limite élastique d'Hugoniot (HEL) ainsi que la courbe d'Hugoniot du matériau peuvent être déduites grâce au profil de vitesse mesuré en face arrière de la cible. Néanmoins, ce test présente l'inconvénient de générer une discontinuité de l’état de contrainte sans passer par les états de contrainte et de densité intermédiaire.L’un des objectifs de cette thèse a été de développer et de mettre en œuvre une configuration expérimentale d’impact de plaques sans choc permettant de pratiquer une Analyse Lagrangienne. Les différentes campagnes expérimentales ont été effectuées à l’aide du lanceur présent au sein du laboratoire 3SR. L’utilisation de plaque impactrice ondulée permettant de générer une rampe de chargement a été validée à l’aide d’essais sur acier 316L qui présente l’avantage de ne pas changer de phase sur la plage des contraintes étudiées. Par la suite deux céramiques, l’alumine F99.7 et le SiC Forceram, ont été étudiées dans cette configuration. Ces essais, couplés à l’utilisation de la technique d’analyse lagrangienne, ont permis d’obtenir la courbe de la contrainte axiale en fonction de la déformation axiale au-delà de la HEL.Parallèlement aux essais sans choc, des configurations d’impact de plaque plan ont été développées pour caractériser les profils temporels de contraintes axiales et radiales dans la céramique. Cette configuration repose sur l’utilisation de jauges piezorésistives en Manganin. Ces essais ont été pratiqués sur des cibles en acier puis en alumine. Les résultats ont été comparés avec ceux obtenus par mesure de vitesse en face arrière pratiquée pendant ces mêmes essais.L’ensemble des résultats expérimentaux de la thèse ont été comparés à des simulations numériques par éléments finis s’appuyant sur un modèle de plasticité de type JH2 (Johnson–Holmquist). Ces calculs ont permis d’identifier par approche inverse les paramètres du modèle de comportement de la céramique permettant de mieux appréhender le comportement mécanique de ces matériaux sous de telles conditions de chargement. Néanmoins, d’autres essais, notamment des essais triaxiaux, pourront être envisagés afin de compléter l’identification d’un modèle de comportement pour ces microstructures sous des pressions intermédiaires de confinement
Ceramic materials are widely used in armour or protective structures providing weight savings for equivalent performance compared to their steel counterparts. In these conditions, they experience extreme damage, micro-plasticity and fragmentation mechanisms. To fully understand these behaviours, characterization under high-strain-rate compression needs to be conducted. Several experimental techniques, such as the plate-impact test, are used to investigate the dynamic behaviour of ceramic under high compressive loading. During this experiment, a flyer plate (often made of a metallic material) strikes the target, and some mechanical properties such as the HEL (Hugoniot Elastic Limit) as well as the Hugoniot curve of the material can be deduced from the rear side velocity measured at the back of the target. Nevertheless, this test do not provide a controllable loading-rate in the target and the hardening behaviour cannot be directly deduced.One of the aims of this thesis was to develop and implement an experimental shockless plate-impact configuration enabling Lagrangian Analysis. The various experimental campaigns were carried out using the 3SR laboratory launcher. The use of wavy flyer plates to generate a loading ramp was validated using tests on 316L steel, which has the asset of not changing phase in the range of studied stresses. Two ceramics, F99.7 alumina and Forceram SiC, were then studied in this configuration. These tests coupled with Lagrangian analysis enable to obtain the curve of axial stress as a function of axial strain beyond the HEL.At the same time, some other plate impact configurations were developed to characterise the temporal profiles of axial and radial stresses in the ceramic. This configuration is based on the use of Manganin piezoresistive gauges. These tests were carried out on steel and alumina targets. The results were compared with the ones obtained by rear side velocity measurements during the same tests.The experimental results from the thesis were compared with numerical finite element simulations based on a JH2-type (Johnson–Holmquist) plasticity model. These calculations were used to identify the parameters of the ceramic behaviour model thanks to an inverse approach. It helps providing a better understanding of the mechanical behaviour of these materials under such loading conditions. Nevertheless, other tests, in particular triaxial tests, could be further considered in order to complete the identification of a constitutive model for these microstructures under intermediate confinement pressures
7

Wiley, Charles Schenck. "Synergistic methods for the production of high-strength and low-cost boron carbide." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Boron carbide (B₄C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B₄C make it a nearly ideal material for personnel and vehicular armor. B₄C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B₄C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B₄C powders. The boron carbide powder examined in this study was a submicron (0.6 μm median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form ofphenolic resin, and titanium additives in the form of 32 nm and 0.9 μm TiO₂ powders were selected. Parametric studies of sintering behavior were performed via high-temperature dilatometry in order to measure the in-situ sample contraction and thereby measure the influence of the additives and their amounts on the overall densification rate. Additionally, broad composition and sintering/post-HIPing studies followed by characterization and mechanical testing elucidated the effects of these additives on sample densification, microstructure development, and mechanical properties such as Vickers hardness and microindentation fracture toughness. Based upon this research, a process has been developed for the sintering of boron carbide that yielded end products with high relative densities (i.e., 100%, or theoretical density), microstructures with a fine (∼2-3 μm) grain size, and high Vickers microindentation hardness values. In addition to possessing these improved physical properties, the costs of producing this material were substantially lower (by a factor of 5 or more) than recently patented work on the pressureless sintering and post-HIPing of phase-pure boron carbide powder. This recently patented work developed out of our laboratory utilized an optimized powder distribution and yielded samples with high relative densities and high hardness values. The current work employed the use of titanium and carbon additives in specific ratios to activate the sintering of boron carbide powder possessing an approximately mono-modal particle size distribution. Upon heating to high temperatures, these additives produced fine-scale TiO ₂ and graphite inclusions that served to hinder grain growth and substantially improve overall sintered and post-HIPed densities when added in sufficient concentrations. The fine boron carbide grain size manifested as a result of these second phase inclusions caused a substantial increase in hardness; the highest hardness specimen yielded a hardness value (2884.5 kg/mm²) approaching that of phase-pure and theoretically-dense boron carbide (2939 kg/mm²). Additionally, the same high-hardness composition exhibited a noticeably higher fracture toughness (3.04 MPa•m¹/²) compared to phase-pure boron carbide (2.42 MPa• m¹/²), representing a 25.6% improvement. A potential consequence of this study would be the development of a superior armor material that is sufficiently affordable, allowing it to be incorporated into the general soldier’s armor chassis.
8

Healey, Adam. "Understanding the ballistic event : methodology and observations relevant to ceramic armour." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/841056/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this porosity was linked to the loss of a boron-rich second phase. Investigating why these inclusions are lost and the extent of the effect of this on ballistic behaviour may have important implications for the use of multi-phase ceramic materials as armour.
9

Fellows, N. A. "Behaviour of ceramic armours subjected to high velocity impact." Thesis, Cranfield University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harris, Andrew J. "The surface treatment of advanced ceramic materials for improved adhesive bond strength in armour applications." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lightweight ceramic armour is desirable to reduce mass of armoured vehicles. Alumina and silicon carbide are the two most frequently used ceramics and they are incorporated into the system using adhesive bonding technology, which historically has proved problematic. Thus, in this work, a range of surface treatments have been investigated with the aim of increasing the strength of the bond between alumina or' silicon carbide and a toughened epoxy adhesive, in ballistic applications. Three surface conditions for each ceramic have been characterised; as-fired and laser processed samples as well as grit blasted alumina and retired silicon carbide. Physical and chemical changes to the surface were investigated using scanning electron microscopy, profilometry, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and the sessile drop technique. After grit blasting alumina it was found that the surface had been contaminated. For silicon carbide it was observed after refiring that the surface was oxidised. It was found after laser processing alumina and silicon carbide that the treated surfaces had a greater concentration of hydroxyl groups and for the silicon carbide surface it . was found also to have been oxidised. These chemical changes were tentatively linked to the improved wettability and more specifically, the increased polar component of the surface energy. These surfaces demonstrated the greatest improvements in bond strength in comparison to the as-fired, grit blasted and refired samples. Ballistic tests were performed on a range of processed alumina and silicon carbide . tiles. The results were consistent with the predictions made on the basis of the quasi-static testing, in that the damage to the laser processed tiles resulted in less debonding and hence better ballistic performance than the control samples. Thus, this study has shown that the laser processing of the ceramic surface has the potential to improve the performance of ceramic armour systems.
11

Aharonian, Charles. "Elaboration de matériaux céramiques composites et/ou d'architectures lamellaires pour la protection balistique des personnes et des matériels." Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0059/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le développement de céramiques légères à hautes performances mécaniques et à bas coût à base de silico-alumineux, suscite un intérêt grandissant dans divers domaines d’application tels que la protection balistique. Dans ce contexte, l’objectif de ce travail a été de développer un matériau innovant susceptible de rivaliser avec les protections balistiques en alumine ou en carbure. Plusieurs voies ont été explorées. Une étude approfondie des compositions de silico-alumineux a permis d’obtenir des matériaux présentant un meilleur compromis masse volumique / module d’Young, et dont le principal avantage est d’utiliser des procédés d’élaboration conventionnels (pressage, coulage sous pression) ainsi que les fours dédiés à la cuisson de la porcelaine par frittage naturel. Afin de renforcer la dureté de surface, des dépôts de carbures ont été réalisés à l’aide d’un protocole qui a permis une bonne accroche du carbure sur le substrat tout en conservant un traitement thermique conventionnel de consolidation. Enfin, des architectures lamellaires ont également été élaborées afin de maximiser les phénomènes de dissipation d’énergie. En bénéficiant d’un différentiel d’expansion thermique entre deux compositions de silico-alumineux, l’apparition de contraintes thermiques résiduelles au refroidissement de l’étape de frittage a permis d’augmenter la valeur de contrainte à la rupture des matériaux à architectures lamellaires de plus de 60%
The development of lightweight alumino-silicate based ceramics exhibiting high mechanical performances and low cost, shows a growing interest in various application areas such as ballistic protection. In this context, the aims of this study is the development of innovative materials corresponding to competitive ballistic protection comparing to carbide or alumina materials. Several ways were explored. A thorough study of alumino-silicate compositions has allowed to obtain materials with a best compromise density / Young's modulus, the main advantage is the ability to use conventional methods of preparation (pressing, die-casting) and conventional kilns used for the firing of porcelain. To improve the surface hardness, carbide coatings were performed. The original protocol developed leads to carbide coating with good adhesion on the substrate using a traditional thermal treatment method. Finally, lamellar architectures of materials were developed to increase the energy dissipation of failure. Thanks to a differential thermal expansion between the two compositions of alumino-silicates, the occurrence of residual thermal stresses in lamellar materials has increased the average stress of failure values of more than 60%
12

Mansur, Ali. "Modeling Of Mechanical Properties of Ceramic-Metal Composites for Armor Applications." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this study, AISI 450 stainless steel and ceramic-metal matrix composites (CMMCs) impacted by a 7.61x51mm armor piercing (AP) projectile, are numerically investigated by using Abaqus/Explicit. For AISI steel, three different failure criteria are used in order to determine the critical thickness values for perforation for different projectile impact velocities. Overall, the standard Abaqus and the elongation to fracture criteria yield comparable results, while the strain energy model yields critical plate thickness values nearly twice as large as those obtained using the two other models. Because of the unavailability of most parameters needed for the standard ductile-shear criteria, only the alternative failure criteria, elongation to fracture and strain energy, were used for CMMCs, specifically WC-CO. This result is contrary to the real condition experience and expectation that CMMCs provide better ballistic performance. It can be rationalized by the non-consideration of local heating and shear band formation in this study.
13

Sarva, Sai Sushilkumar. "Dynamic failure mechanisms in armor grade ceramics : the effect of lateral confinement and membrane restraint /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3104047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Basaran, Mustafa Bulent. "Computational Analysis Of Advanced Composite Armor Systems." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608858/index.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Achieving light weight armor design has become an important engineering challenge in the last three decades. As weapons becoming highly sophisticated, so does the ammunition, potential targets have to be well protected against such threats. In order to provide mobility, light and effective armor protection materials should be used. In this thesis, numerical simulation of the silicon carbide armor backed by KevlarTM composite and orthogonally impacted by 7.62mm armor piercing (AP) projectile at an initial velocity of 850 m/s is analyzed by using AUTODYN hydrocode. As a first step, ceramic material behavior under impact conditions is validated numerically by comparing the numerical simulation result with the test result which is obtained from the literature. Then, different numerical simulations are performed by changing the backing material thickness, i.e. 2, 4, 6 and 8mm, while the thickness of the ceramic is held constant, i.e. 8mm. At the end of the simulations, optimum ceramic/composite thickness ratio is sought. The results of the simulations showed that for the backing thickness values of 4, 6 and 8mm, the projectile could not perforate the armor system. On the contrary, the projectile could penetrate and perforate the armor system for the backing thickness value of 2mm and it has still some residual velocity. From these results, it is inferred that the optimum ceramic/composite thickness ratio is equal to about 2 for the silicon carbide and kevlar configuration.
15

Vargas-Gonzalez, Lionel Ruben. "Microstructural optimization of solid-state sintered silicon carbide." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as sintering aids. SiC batches between 0.25-4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0-2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (~95.5-96.5%) and a fine, equiaxed microstructure (d50 = 2.525 µm). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 µm). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 ± 44.13 kg/mm2) and Knoop (2098.50 ± 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (~4.5 MPa m1/2) are almost double that of Verco SiC (2.4 MPa m1/2), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.
16

Coelho, Marcelo Luis Ramos. "Estudo da influência do teor de TiB2, obtido pela reação in situ de B4C e TIC, nas propriedades mecânicas de carâmicas a base de B4C." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-24082012-140442/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
O carbeto de boro é um material sintético com ligações químicas essencialmente covalentes, tem um alto ponto de fusão só é sinterizável em elevada temperatura. Possui excepcional dureza, baixa densidade, resistência a abrasão, elevada velocidade sônica e boas propriedades mecânicas, características ideais para as aplicações balísticas. Tem como principal característica a alta seção de choque para nêutrons térmicos para aplicações nucleares. O presente trabalho teve por objetivo avaliar as propriedades mecânicas do carbeto de boro, pela introdução de diferentes teores de diboreto de titânio, pela reação in situ com pós de carbeto de titânio, e adição do carbono durante a sinterização, em forno resistivo sem pressão e prensagem isostática a quente dos componentes cerâmicos. Em menores temperaturas valores obtidos da densidade teórica para o carbeto de boro puro, foram alcançados com o emprego do aditivo. Os resultados obtidos na sinterização mostram a eficiência da introdução do carbeto de titânio para o aumento da densificação do material. Com percentuais de 20% de carbeto de titânio, obteve-se os máximos valores para microdureza (HV) de 35 GPa e tenacidade a fratura (KlC) de 3,16 MPa.m1/2. Comprovadamente a dificuldade de sinterização em elevadas temperaturas, para maior densificação, de componentes cerâmicos de carbeto de boro pode ser minimizada com a introdução de percentuais de carbeto de titânio.
Boron Carbide is a synthetic material with essentially covalent chemical bonds with high fusion point. The main characteristics are: it is sintered at high temperature, high hardness, low density, abrasion resistant, high sonic velocity, good mechanical properties and high neutron absorption cross section (10BxC, x>4). Those features are ideal for ballistics applications. The aim of this study was to evaluate the changes in mechanical properties of Boron Carbide with different concentration of Titanium Diboride by reaction in situ with TiC powders. The addition of carbon during sintering without pressure and hot isostatic pressing of ceramic components was studied. At low temperatures, the nearly values for the theoretical density for pure Boron Carbide were obtained only with the use of additives. In sintering, the use of TiC increased Boron Carbide density. At concentrations up to 20% of TiC, the maximum values for hardness (HV) and fracture toughness (KlC) were obtained. With the introduction of different levels of additive, the difficulty of sintering at high temperatures was minimized and the density of ceramic components was maximized.
17

Keller, Andrew R. "An experimental analysis of the dynamic failure resistance of TiB₂/A1₂O₃ composites." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rossiquet, Gilles. "Carbure de silicium pour application blindage : élaboration et étude du comportement à l'impact." Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les matériaux céramiques sont des composants incontournables dans les blindages antibalistiques multicouches. Leur faible densité, typiquement deux à trois fois inférieure à celle de l’acier, combinée à une très haute résistance en compression les rends essentiel pour des applications d’armures légères. Le carbure de silicium est un matériau prometteur pour cette application en raison de sa faible densité et de sa dureté élevée en comparaison des autres céramiques. L’étude du lien entre la microstructure du matériau et son processus de fragmentation pendant l’impact est une étape importante afin d’optimiser les céramiques pour les applications de protection balistique.Quatre nuances de carbure de silicium denses avec différentes microstructures ont été étudiées, dont trois élaborées au cours de ces travaux. Pour cela, deux modes de frittage ont été utilisés (frittage en phase solide et frittage en phase liquide) ainsi que deux procédés de frittage (frittage naturel et frittage flash). Un soin particulier a été porté aux diverses étapes de la fabrication afin de produire des microstructures homogènes et denses. Des pièces de taille satisfaisante pour l’application ont été réalisées pour chaque nuance. Elles ont été soumises à des caractérisations microstructurales (microscopie électronique à balayage et en transmission, diffraction des rayons X, cartographie élémentaire, analyses chimiques) et mécaniques en quasi-statique (dureté, ténacité, contrainte à la rupture, module de Weibull) et en dynamique. La fragmentation dynamique des carbures de silicium a été étudiée grâce à des essais utilisant une configuration d’impact sur la tranche. Une première configuration a permis d’observer la phénoménologie et la chronologie de l’endommagement du matériau grâce à une caméra ultra-rapide. Une seconde configuration ‘sarcophage’ a permis d’observer la fragmentation des matériaux, c’est-à-dire le motif et la densité de fissuration des cibles. Il a été observé que la microstructure joue un rôle clef sur l’intensité de l’endommagement subit par la céramique pendant l’impact. Une bonne adéquation avec des simulations utilisant le modèle d’endommagement anisotrope Denoual-Forquin-Hild (DFH) a été mise en évidence. Une autre configuration expérimentale mettant en oeuvre un double impact sur une même cible a été utilisée afin de caractériser la résistance de la céramique endommagée. En parallèle, des essais balistiques avec des munitions 7,62x54mmR API B32 et 7,62x51mm AP8 ont été réalisés. La microstructure des céramiques a montré jouer un rôle important sur la performance balistique
Ceramics are a key component in multilayer armor structures. Their low density, typically two to three times lower than steel, combined with a high compressive strength make them essential materials for lightweight armor solutions. Silicon carbide is a promising material for this application due to its particularly low density and high hardness, even among other ceramics. However, armor performance is controlled by more than just the composition and understanding the link between the ceramic microstructure and the fragmentation process during the impact is essential to produce optimized and high performance materials for armor applications.Four dense silicon carbide grades with various microstructures have been used, including three produced during this work. For that, two sintering modes (solid state sintering and liquid phase sintering) and two sintering processes (pressureless sintering and spark plasma sintering) have been used. Particular care has been taken with ceramic processing in order to produce different homogenous and dense microstructures. Silicon carbide parts have been produced at a sufficient size for the application. They were submitted to microstructural characterization (scanning and transmission electronic microscopy, X-ray diffraction, elemental cartography, chemical analysis) and mechanical characterization in quasi-static mode (hardness, toughness, module of rupture, Weibull modulus) and dynamic mode. Dynamic fragmentation of silicon carbide grades has been studied by means of Edge-On Impact (EOI) experiments. A first configuration enabled the study of the damage process that spreads out within the tile thanks to an ultra-high speed camera. A second ‘sarcophagus’ configuration was used to enable observation of the target fragmentation, i.e., crack patterns and crack densities. It has been observed that the microstructure of ceramics plays a key role in the damage intensity generated during impact. A good match with a simulation using the Denoual-Forquin-Hild (DFH) anisotropic damage model has been highlighted. Another experimental configuration implying a double impact on ceramics has been used to characterize the resistance of the damaged target. In parallel, ballistic experiments with 7.62 x54mmR API B32 and 7.62x51mm AP8 threats have been performed. Microstructure of ceramics has been shown to play an important role on ballistic performance
19

Akella, Kiran. "Studies for Design of Layered Ceramic Armour Inspired by Seashells." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pearly layers in seashells, also known as nacreous layers, are reported to be three orders of magnitude tougher than their primary constituent, aragonite. Their high toughness is attributed to a particular structure of alternating layers of natural ceramic and polymer materials. This work tries to emulate it using engineering materials. The thickness, strength, and stiffness of the ceramic layer; the thickness, stiffness, strength, and toughness of the polymer interface layer; and the number of layers are the factors that contribute to different degrees. Furthermore, understanding the relative contribution of different toughening mechanisms in nacre would enable identification of key parameters to design tough engineered ceramics. As a step towards that, in this thesis, layered ceramic beams replicating nacre were studied analytically, computationally, and experimentally. The insights and findings from these studies were then used to develop a new method to make tough layered ceramics mimicking nacre. Subsequently, the use of layered ceramics for armour applications was evaluated. Based on analytical numerical and experimental studies, we observed that the strength of the layers is a key factor to replicate the high toughness of nacre in engineered ceramics. We also demonstrated that, crack deflection and bridging observed in nacre in studies elsewhere, occur due to the high strength of platelets. Based on these findings, the new method developed in this study uses green alumina-based ceramic tapes stacked with screen printed stripes of graphite. During sintering, graphite oxidizes leaving empty channels in the stack. These channels were filled with tough interface materials afterwards. As a result, a ceramic- polymer composite with more than 2-fold increase in toughness was developed. Subsequently, we evaluated layered ceramics for armour applications based on numerical analysis validated with experiments. Consistent to the trends in literature, we observed that layers degrade the resistance to ballistic impact. However, improved energy absorption is demonstrated in layered ceramics. These conflicting dual trends were not presented and quantified in any earlier studies conducted elsewhere. Another new observation not documented earlier is the effect of interface strength. Using an interface material of sufficient strength, penetration resistance of layered ceramics can be improved beyond monolithic ceramics. Using these findings, new layered ceramic armour can be designed that is cost- effective and better performing than monolithic ceramics.
20

Akella, Kiran. "Studies for Design of Layered Ceramic Armour Inspired by Seashells." Thesis, 2015. http://etd.iisc.ernet.in/2005/3768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pearly layers in seashells, also known as nacreous layers, are reported to be three orders of magnitude tougher than their primary constituent, aragonite. Their high toughness is attributed to a particular structure of alternating layers of natural ceramic and polymer materials. This work tries to emulate it using engineering materials. The thickness, strength, and stiffness of the ceramic layer; the thickness, stiffness, strength, and toughness of the polymer interface layer; and the number of layers are the factors that contribute to different degrees. Furthermore, understanding the relative contribution of different toughening mechanisms in nacre would enable identification of key parameters to design tough engineered ceramics. As a step towards that, in this thesis, layered ceramic beams replicating nacre were studied analytically, computationally, and experimentally. The insights and findings from these studies were then used to develop a new method to make tough layered ceramics mimicking nacre. Subsequently, the use of layered ceramics for armour applications was evaluated. Based on analytical numerical and experimental studies, we observed that the strength of the layers is a key factor to replicate the high toughness of nacre in engineered ceramics. We also demonstrated that, crack deflection and bridging observed in nacre in studies elsewhere, occur due to the high strength of platelets. Based on these findings, the new method developed in this study uses green alumina-based ceramic tapes stacked with screen printed stripes of graphite. During sintering, graphite oxidizes leaving empty channels in the stack. These channels were filled with tough interface materials afterwards. As a result, a ceramic- polymer composite with more than 2-fold increase in toughness was developed. Subsequently, we evaluated layered ceramics for armour applications based on numerical analysis validated with experiments. Consistent to the trends in literature, we observed that layers degrade the resistance to ballistic impact. However, improved energy absorption is demonstrated in layered ceramics. These conflicting dual trends were not presented and quantified in any earlier studies conducted elsewhere. Another new observation not documented earlier is the effect of interface strength. Using an interface material of sufficient strength, penetration resistance of layered ceramics can be improved beyond monolithic ceramics. Using these findings, new layered ceramic armour can be designed that is cost- effective and better performing than monolithic ceramics.
21

Demirbas, Memduh Volkan. "Microstructure-property relaltionship in silicon carbide armor ceramics." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Brennan, Raymond. "Ultrasonic nondestructive evaluation of armor ceramics." 2007. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chang, Min-Sen, and 張閔森. "Simulation of Ceramic Composite Armor Experiencing Armor-piercing Fin-stabilized Discarding Sabot Projectile Impact." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/j536ap.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xu, Tai-Sheng, and 徐台生. "Ultrasonic Machining of Armor Ceramic Tiles Materials Inspection Technological." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/98785988044712372705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
元智大學
機械工程學系
99
The Marine Corps LAV is being covered with ceramic tiles to protect it against heavy artillery. Ultrasonic machining(USM) is one of the machining processes for armor ceramic tiles materials. Edge chipping, commonly observed in USM of ceramic materials, not only compromises geometric accuracy but also possibly causes an increase in machining cost. Reliable and cost-effective machining of ceramic tiles is crucially important for them to be widely used in a number of critical engineering applications. The potential of Ultrasonic Machining (USM) process has been recognized as one of the reliable and cost-effective machining methods for advanced ceramics and commercial machinery is available for the process. One limitation of the commercial USM machines is that only circular holes can be efficiently machined. In this investigation, a five-variable two-level fractional factorial design is used to conduct the experiments. The purpose of these experiments is to reveal the main effects as well as the interaction effects of the process parameters on the process outputs such as Material Removal Rate (MRR), circularity, cylindricity and surface roughness, which was drawn by comparing ultrasonic machining with rotary ultrasonic machining by polycrystalline diamond(PCD)tool.

To the bibliography