Academic literature on the topic 'ARM Cortex-M3 processor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ARM Cortex-M3 processor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ARM Cortex-M3 processor"
Cheng, Shan Ying, Xue Mei Zhou, and Qin Jiang. "An Intelligent Traffic Signal Control System Based on ARM Cortex-M3." Applied Mechanics and Materials 602-605 (August 2014): 1378–82. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.1378.
Full textOyetoke, Oluwole O. "A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering." International Journal of Intelligent Systems and Applications 9, no. 7 (July 8, 2017): 70–88. http://dx.doi.org/10.5815/ijisa.2017.07.08.
Full textMallikarjun, G. "Implementation of True Color Led Display for Video Processing Using Arm Cortex M3 Processor." IOSR Journal of Electronics and Communication Engineering 2, no. 6 (2012): 27–30. http://dx.doi.org/10.9790/2834-0262730.
Full textHan, Xiao Wei, Jing Lin Duan, and Jian Zhang. "Design of Environmental Monitoring Data Collection Repeater." Advanced Materials Research 955-959 (June 2014): 1112–15. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.1112.
Full textLi, Yun Hong, and Xin Hai Yang. "Design of Generally Remote Transmission System." Key Engineering Materials 480-481 (June 2011): 916–21. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.916.
Full textPan, Yong, Zi Ye Hou, Jiang Xiong, and Kai Hua Liu. "Research on the System of Radio Frequency Identification and Localization Works in Microwave." Applied Mechanics and Materials 441 (December 2013): 993–96. http://dx.doi.org/10.4028/www.scientific.net/amm.441.993.
Full textPan, Yong, Kai Hua Liu, Yi Gao, and Rui Zhao. "A Study on the System of Radio Frequency Identification and Localization Works in UHF." Advanced Materials Research 588-589 (November 2012): 932–35. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.932.
Full textLi, Da Zhai, Zhe Jiang, and Chun Wei Yang. "Design of Control System of Gemstone Processing Machine Based on CAN-Bus." Applied Mechanics and Materials 389 (August 2013): 654–59. http://dx.doi.org/10.4028/www.scientific.net/amm.389.654.
Full textChen, Zong Mei. "Design of High-Accuracy Digital Controlled Direct Current Power Supply." Applied Mechanics and Materials 155-156 (February 2012): 298–302. http://dx.doi.org/10.4028/www.scientific.net/amm.155-156.298.
Full textFojtik, Matthew, David Fick, Yejoong Kim, Nathaniel Pinckney, David Money Harris, David Blaauw, and Dennis Sylvester. "Bubble Razor: Eliminating Timing Margins in an ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally Independent Error Detection and Correction." IEEE Journal of Solid-State Circuits 48, no. 1 (January 2013): 66–81. http://dx.doi.org/10.1109/jssc.2012.2220912.
Full textDissertations / Theses on the topic "ARM Cortex-M3 processor"
Botma, Pieter Johannes. "The design and development of an ADCS OBC for a CubeSat." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18040.
Full textENGLISH ABSTRACT: The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully 3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This thesis describes the design and development of an Onboard Computer (OBC) suitable for ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat OBC to focus only on command and data handling, communication and payload management. This thesis describes, in detail the development process of the OBC. Multiple Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-M3 processor due to its performance, power efficiency and functionality. The hardware was designed to be as robust as possible, because radiation tolerant and redundant components could not be included, due to their high cost and the technical constraints of a CubeSat. The software was developed to improve recovery from lockouts or component failures and to enable the operational modes to be configured in real-time or uploaded from the ground station. Ground tests indicated that the OBC can handle radiation-related problems such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital average is substantially lower. The proposed OBC is therefore not only sufficient in its intended application as an ADCS OBC, but could also stand in as a backup for the main OBC in case of an emergency.
AFRIKAANSE OPSOMMING: Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om ’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC wat aan die ADCS toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en datahantering, kommunikasie en loonvragbestuur. Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is. Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings, asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie. Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme, soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van nood.
Books on the topic "ARM Cortex-M3 processor"
The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors. Elsevier, 2014. http://dx.doi.org/10.1016/c2012-0-01372-5.
Full textBook chapters on the topic "ARM Cortex-M3 processor"
Elahi, Ata, and Trevor Arjeski. "ARM Cortex-M3 Processor and MBED NXP LPC1768." In ARM Assembly Language with Hardware Experiments, 83–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11704-1_6.
Full textLe Corre, Yann, Johann Großschädl, and Daniel Dinu. "Micro-architectural Power Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors." In Constructive Side-Channel Analysis and Secure Design, 82–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89641-0_5.
Full textYIU, J. "Getting Started with the Cortex-M3 Processor." In The Definitive Guide to the ARM Cortex-M3 TI, 269–81. Elsevier, 2010. http://dx.doi.org/10.1016/b978-1-85617-963-8.00020-x.
Full textYiu, Joseph. "Introduction to ARM® Cortex®-M Processors." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, 1–24. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.00001-4.
Full text"Cortex®-M3/M4 Exceptions Quick Reference." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, e107-e110. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.15004-3.
Full textYiu, Joseph. "Using the ARM® CMSIS-DSP Library." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, 717–35. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.00022-1.
Full textYiu, Joseph. "ARM® Cortex®-M4 and DSP Applications." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, 673–716. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.00021-x.
Full text"Cortex®-M3/M4 Debug Components Programmer’s Model." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, e149-e181. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.15007-9.
Full textYiu, Joseph. "Getting Started with Keil Microcontroller Development Kit for ARM®." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, 487–540. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.00015-4.
Full textYiu, Joseph. "Getting Started with the IAR Embedded Workbench for ARM®." In The Definitive Guide to ARM® CORTEX®-M3 and CORTEX®-M4 Processors, 541–59. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-408082-9.00016-6.
Full textConference papers on the topic "ARM Cortex-M3 processor"
Thenge, Gajanan S., Suhel S. Mulla, and A. B. Patki. "System identification using chaos theory on ARM Cortex M3 processor development board." In 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015. http://dx.doi.org/10.1109/iadcc.2015.7154811.
Full textSamotyja, Jacek, and Kerstin Lemke-Rust. "Practical Results of ECC Side Channel Countermeasures on an ARM Cortex M3 Processor." In CCS'16: 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2996366.2996371.
Full textSobti, Rajeev, G. Geetha, and Sami Anand. "Performance Comparison of Grøestl, JH and BLAKE - SHA-3 Final Round Candidate Algorithms on ARM Cortex M3 Processor." In 2012 International Conference on Computing Sciences (ICCS). IEEE, 2012. http://dx.doi.org/10.1109/iccs.2012.57.
Full text