Academic literature on the topic 'Arid regions forestry – Western Australia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arid regions forestry – Western Australia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arid regions forestry – Western Australia"

1

Giachino, Pier Mauro, Stefan Eberhard, and Giulia Perina. "A rich fauna of subterranean short-range endemic Anillini (Coleoptera, Carabidae, Trechinae) from semi-arid regions of Western Australia." ZooKeys 1044 (June 16, 2021): 269–337. http://dx.doi.org/10.3897/zookeys.1044.58844.

Full text
Abstract:
Globally, the great majority of Anillini species are endogean, adapted to live in the interstices of soil and leaf litter, while the extremely low vagility of these minute ground beetles gives rise to numerous shortrange endemic species. Until recently the Australian Anillini fauna was known only from leaf litter in rain forests and eucalypt forests in the wetter, forested regions of eastern and south eastern Australia, as well as Lord Howe and Norfolk islands. The first hypogean Anillini in Australia (17 species in six genera) were described in 2016 from mineral exploration drill holes in iron-ore bearing rocks of the Pilbara region in Western Australia, representing the first finding of the tribe deep underground in a semi-arid climate region. A further eight new genera and 20 new species are described herein, mostly from the Pilbara region as well as the semi-arid Kimberley and Goldfields regions; all were collected in mineral exploration drill holes. The following new genera are described: Erwinanillusgen. nov., Gregorydytesgen. nov., Pilbaraphanusgen. nov., Neoillaphanusgen. nov., Kimberleytyphlusgen. nov., Gilesdytesgen. nov., Pilbaradytesgen. nov., and Bylibaraphanusgen. nov. The following new species are described: Erwinanillus baehrisp. nov.; Gracilanillus hirsutussp. nov., G. pannawonicanussp. nov.; Gregorydytes ophthalmianussp. nov.; Pilbaraphanus chichesterianussp. nov., P. bilybarianussp. nov.; Magnanillus firetalianussp. nov., M. sabaesp. nov., M. salomonissp. nov., M. regalissp. nov., M. serenitatissp. nov.; Neoillaphanus callawanussp. nov.; Kimberleytyphlus carrboydianussp. nov.; Austranillus jinayrianussp. nov.; Gilesdytes pardooanussp. nov., G. ethelianussp. nov.; Pilbaradytes abydosianussp. nov., P. webberianussp. nov.; Bylibaraphanus cundalinianussp. nov.; and Angustanillus armatussp. nov. Identification keys are provided for all Australian anilline genera, and Western Australian species. All the described species are known from a single locality and qualify as short-range endemics. The Anillini are recognised as a significant and diverse element making up part of Western Australia’s remarkable subterranean fauna, and whose conservation may potentially be impacted by mining developments.
APA, Harvard, Vancouver, ISO, and other styles
2

Hnatiuk, RJ, and BR Maslin. "Phytogeography of Acacia in Australia in Relation to Climate and Species-Richness." Australian Journal of Botany 36, no. 4 (1988): 361. http://dx.doi.org/10.1071/bt9880361.

Full text
Abstract:
This paper reports on the kinds of geographic patterns encountered in the distribution of Australian species of Acacia and on some climatic correlates of these patterns. The analyses were based on distribution data of 837 species mapped on a 1° x 1.5° grid. The area of highest density of species was the south-west corner of the continent, especially adjacent to the major boundary separating the Arid Zone from the more humid South West Botanical Province. The second major centre of richness occurred in eastern Australia south of the Tropic of Capricorn along the topographically heterogeneous Great Dividing Range. Secondary centres of species-richness occurred in northern and north-eastern Australia, a number of rocky tablelands of the Arid Zone and in western Victoria. The principal species-poor areas were located in sandy and some riverine areas of the Arid Zone, in temperate forests of Tasmania and in coastal areas of the north of the continent. The geographic patterns of each section of Acacia, when combined with those of species density, highlighted the tropical (section Juliflorae) v. temperate areas (sections Phyllodineae, Pulchellae, Botrycephalae and Alatae). The numerical classification of grids resulted in the recognition of eight major Acacia areas, arranged under four Acacia regions: (1) South-west; (2) Eastern, comprising a southern and a northern area; (3) Northern, comprising an eastern and a western area; (4) Central, comprising a south-east, a central and a north-west area. A discriminant function analysis indicated that precipitation was more important than temperature in distinguishing between areas. Discussion of the potential evolutionary significance of these findings and brief comparison with other biogeographic studies are given.
APA, Harvard, Vancouver, ISO, and other styles
3

Short, Jeff, and Andrew Hide. "Distribution and status of the red-tailed phascogale (Phascogale calura)." Australian Mammalogy 34, no. 1 (2012): 88. http://dx.doi.org/10.1071/am11017.

Full text
Abstract:
The red-tailed phascogale once extended widely across semiarid and arid Australia, but is now entirely confined to the southern wheatbelt of Western Australia, occupying less than 1% of its former range. Here it occurs in a portion of the Avon Wheatbelt, Jarrah Forest, Mallee, and Esperance Plains biogeographical regions. The species persists only in areas that have been extensively cleared for agriculture and where the remaining bushland is highly fragmented. It does not appear to extend into unfragmented habitat in either the Jarrah Forest to the west or Mallee region to the east. It occurs primarily in woodland habitat with old-growth hollow-producing eucalypts, primarily wandoo (Eucalyptus wandoo) or York Gum (E. loxophleba), but records from the periphery of its current range appear to come from a broader range of habitats, including shrublands and various mosaics of woodland, shrubland, and scrub-heath. Key factors limiting persistence are likely to be fragmentation of habitat that is likely to greatly increase the risks associated with dispersal, a shortage of suitable nesting hollows in many vegetation associations, and predation by feral and domestic cats and by foxes. These factors, particularly fragmentation and lack of suitable nesting hollows, suggest that the species’ long-term persistence in areas beyond the wandoo belt is far from assured.
APA, Harvard, Vancouver, ISO, and other styles
4

Adams-Hosking, Christine, Hedley S. Grantham, Jonathan R. Rhodes, Clive McAlpine, and Patrick T. Moss. "Modelling climate-change-induced shifts in the distribution of the koala." Wildlife Research 38, no. 2 (2011): 122. http://dx.doi.org/10.1071/wr10156.

Full text
Abstract:
Context The impacts of climate change on the climate envelopes, and hence, distributions of species, are of ongoing concern for biodiversity worldwide. Knowing where climate refuge habitats will occur in the future is essential to conservation planning. The koala (Phascolarctos cinereus) is recognised by the International Union for Conservation of Nature (IUCN) as a species highly vulnerable to climate change. However, the impact of climate change on its distribution is poorly understood. Aims We aimed to predict the likely shifts in the climate envelope of the koala throughout its natural distribution under various climate change scenarios and identify potential future climate refugia. Methods To predict possible future koala climate envelopes we developed bioclimatic models using Maxent, based on a substantial database of locality records and several climate change scenarios. Key results The predicted current koala climate envelope was concentrated in south-east Queensland, eastern New South Wales and eastern Victoria, which generally showed congruency with their current known distribution. Under realistic projected future climate change, with the climate becoming increasingly drier and warmer, the models showed a significant progressive eastward and southward contraction in the koala’s climate envelope limit in Queensland, New South Wales and Victoria. The models also indicated novel potentially suitable climate habitat in Tasmania and south-western Australia. Conclusions Under a future hotter and drier climate, current koala distributions, based on their climate envelope, will likely contract eastwards and southwards to many regions where koala populations are declining due to additional threats of high human population densities and ongoing pressures from habitat loss, dog attacks and vehicle collisions. In arid and semi-arid regions such as the Mulgalands of south-western Queensland, climate change is likely to compound the impacts of habitat loss, resulting in significant contractions in the distribution of this species. Implications Climate change pressures will likely change priorities for allocating conservation efforts for many species. Conservation planning needs to identify areas that will provide climatically suitable habitat for a species in a changing climate. In the case of the koala, inland habitats are likely to become climatically unsuitable, increasing the need to protect and restore the more mesic habitats, which are under threat from urbanisation. National and regional koala conservation policies need to anticipate these changes and synergistic threats. Therefore, a proactive approach to conservation planning is necessary to protect the koala and other species that depend on eucalypt forests.
APA, Harvard, Vancouver, ISO, and other styles
5

Sawyer, Benjamin. "Sandalwood (Santalum spicatum) establishment in the semi-arid and arid regions of Western Australia." Rangeland Journal 35, no. 1 (2013): 109. http://dx.doi.org/10.1071/rj12088.

Full text
Abstract:
Harvesting of sandalwood (Santalum spicatum) occurs mainly from wild stands in the semi-arid and arid regions (typical annual rainfall 150–300 mm) of Western Australia. Regeneration of wild sandalwood in these regions is believed to be low since the occurrence of changes in land use associated with European settlement. This is thought to be due to factors including drought, poor seed dispersal and grazing. The objective of the study was to increase the germination and establishment of sandalwood through exploring seed response to rainfall. Additionally, the potential of soil-preparation techniques to utilise trace amounts of moisture was investigated. Two 25-ha plots were located either side of the semi-arid–arid divide. Into the plots 16 replicates of the control and 96 replicates of treatments were installed and sown with 11 200 seeds. Rainfall and other weather parameters were recorded at each site with an automated weather station. The study was replicated in 2008 and 2009. It was concluded from the study that there was a statistically significant relationship between germination and rainfall. It is proposed that the germination threshold is 264 mm per year which coincides with the long-term annual rainfall average of Kalgoorlie, Western Australia. Furthermore, a statistically significant relationship between germination and soil preparation was demonstrated. Ripping crust-forming soils before sowing and the construction of water-harvest banks had a positive effect. Information gained from these studies has led to the Western Australian State Government implementing a seeding program to increase sandalwood regeneration in the semi-arid region.
APA, Harvard, Vancouver, ISO, and other styles
6

DONNELLAN, S. C., M. J. MAHONY, and T. BERTOZZI. "A new species of Pseudophryne (Anura: Myobatrachidae) from the central Australian ranges." Zootaxa 3476, no. 1 (September 10, 2011): 69. http://dx.doi.org/10.11646/zootaxa.3476.1.4.

Full text
Abstract:
The myobatrachid frog genus Pseudophryne is highly variable in color pattern in eastern Australia where many species are distinguished by distinctive dorsal patterns. In contrast Pseudophryne from the western half of the continent are morphologically conservative. Two nominal species are widespread in south-western Australia and north-western South Australia, with one, P. occidentalis, being found in semi-arid and arid regions. Using mitochondrial DNA and morphological characters we establish that populations in the ranges of north-western South Australia assigned to P. occidentalis are a separate species. The new species comprises one of four major lineages of Pseudophryne while P. occidentalis falls within another lineage confined to south-western Australia.
APA, Harvard, Vancouver, ISO, and other styles
7

Abensperg-traun, M., G. W. Arnold, D. E. Steven, G. T. Smith, L. Atkins, J. J. Viveen, and M. Gutter. "Biodiversity indicators in semi-arid, agricultural Western Australia." Pacific Conservation Biology 2, no. 4 (1995): 375. http://dx.doi.org/10.1071/pc960375.

Full text
Abstract:
The predicted future loss of native Australian species of plants and animals, in part as a result of adverse land management strategies, has led to attempts to identify areas of high biotic richness (numbers of species). Bioindicators are measures of the physical environment, or of a subset of the plants or animals, that best predict biotic richness. Ideally, bioindicators should aim at predicting as large a component of the plant or animal fauna as is possible at minimum cost. For two contrasting vegetation types, we examined remnant area, vegetation structural diversity, species richness of plants, lizards and terrestrial arthropods, and the relative abundance of individual arthropod species, as indicators of faunal richness, using correlation, principal component regression and stepwise regression analyses. The study was carried out in gimlet Eucalyptus salubris woodlands (29 sites) and shrublands (27 sites) in semi-arid, agricultural Western Australia. Sites varied considerably in grazing history (woodland) and in farming history (shrubland). Fauna sampled were lizards (woodland), scorpions (woodland), isopods (woodland), cockroaches (woodland), termites (woodland, shrubland), earwigs (woodland), hemipterans (shrubland), beetles (woodland, shrubland), butterflies (shrubland) and ants (woodland, shrubland). None of the indicator variables in any analyses effectively predicted total faunal richness for either vegetation type (<35% of variation in total richness explained). In correlation analyses for woodlands, vegetation structural diversity and plant richness, but no fauna variable, explained a high percentage of the variation in the richness of lizards (56% explained by richness of native plants, +ve), scorpions (48%, richness of native plants, +ve), termites (55%, vegetation structural diversity, +ve) and beetles (59%, litter, –ve). The richness of the shrubland fauna was poorly predicted by all indicator variables (<25% explained). When using the total richness and abundance of ant functional groups, the abundance of a subset of species within ant functional groups, and of termite and beetle species, in principal component regressions, various ant functional groups explained 42% each of the richness of scorpions and beetles, and eight beetle species explained 50% of termite richness. When remnant area, vegetation structural diversity and the richness of native plants in woodland were tested in step-wise regressions as indicators of total faunal richness, remnant area was the only significant indicator variable, explaining 33% of total richness. The richness of native plants and vegetation structural diversity explained a total of 76% of the pooled richness of lizards + scorpions + termites. No significant indicator variable was found by regression procedures for total richness, or for a subset, of the shrubland fauna. We argue that differences in the predictive qualities of vegetation structure and plant richness between the vegetation types was due, in part, to differences in the spatial heterogeneity of biotic richness, and possibly the scale at which structure was measured. The use of structural diversity or plant richness as predictors of faunal richness for different woodland types, or those with different disturbance histories, or in different geographic or climatic regions, should not be adopted without verification of their efficiency at predicting the richness of the local fauna.
APA, Harvard, Vancouver, ISO, and other styles
8

Ewart, Anthony, Max S. Moulds, and David C. Marshall. "Arenopsaltria nubivena (Cicadidae: Cicadinae: Cryptotympanini) from the arid regions of Central Australia and southwest Western Australia." Records of the Australian Museum 67, no. 6 (November 25, 2015): 163–83. http://dx.doi.org/10.3853/j.2201-4349.67.2015.1643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Savini, G., J. D. Dunsmore, I. D. Robertson, and P. Seneviratna. "The epidemiology of Sarcocystis spp. in cattle of Western Australia." Epidemiology and Infection 108, no. 1 (February 1992): 107–13. http://dx.doi.org/10.1017/s0950268800049554.

Full text
Abstract:
SUMMARYOesophagus samples from 714 cattle from Western Australia were examined by artificial digestion to detect the presence of Sarcocystis spp. The overall prevalence of infection was 52%. The prevalence of infection increased with age and was highest in the entire males (92%). The prevalence was lower in cattle which originated from arid and semiarid regions (9 and 31% respectively) than those from tropical (87%) and temperate (60%) regions. possible reasons for these differences are discussed and it is concluded that environmental and management factors as well as host age and sex influence the prevalence of infection with Sarcocystis spp. in cattle.
APA, Harvard, Vancouver, ISO, and other styles
10

TAKAHASHI, N. "Water Use Efficiency of Eucalyptus camaldulensis Growing in Arid Regions in Western Australia." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 36, no. 4 (2003): 391–400. http://dx.doi.org/10.1252/jcej.36.391.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Arid regions forestry – Western Australia"

1

Wildy, Daniel Thomas. "Growing mallee eucalypts as short-rotation tree crops in the semi-arid wheatbelt of Western Australia." University of Western Australia. School of Plant Biology, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0031.

Full text
Abstract:
[Truncated abstract] Insufficient water use by annual crop and pasture species leading to costly rises in saline watertables has prompted research into potentially profitable deep-rooted perennial species in the Western Australian wheatbelt. Native mallee eucalypts are currently being developed as a short-rotation coppice crop for production of leaf oils, activated carbon and bio-electricity for low rainfall areas (300—450 mm) too dry for many of the traditional timber and forage species. The research in this study was aimed at developing a knowledge base necessary to grow and manage coppiced mallee eucalypts for both high productivity and salinity control. This firstly necessitated identification of suitable species, climatic and site requirements favourable to rapid growth, and understanding of factors likely to affect yield of the desirable leaf oil constituent, 1,8-cineole. This was undertaken using nine mallee taxa at twelve sites with two harvest regimes. E. kochii subsp. plenissima emerged as showing promise in the central and northern wheatbelt, particularly at a deep acid sand site (Gn 2.61; Northcote, 1979), so further studies focussed on physiology of its resprouting, water use and water-use efficiency at a similar site near Kalannie. Young E. kochii trees were well equipped with large numbers of meristematic foci and adequate root starch reserves to endure repeated shoot removal. The cutting season and interval between cuts were then demonstrated to have a strong influence on productivity, since first-year coppice growth was slow and root systems appeared to cease in secondary growth during the first 1.5—2.5 years after cutting. After decapitation, trees altered their physiology to promote rapid replacement of shoots. Compared to uncut trees, leaves of coppices were formed with a low carbon content per unit area, and showed high stomatal conductance accompanied by high leaf photosynthetic rates. Whole-plant water use efficiency of coppiced trees was unusually high due to their fast relative growth rates associated with preferential investments of photosynthates into regenerating canopies rather than roots. Despite relatively small leaf areas on coppice shoots over the two years following decapitation, high leaf transpiration rates resulted in coppices using water at rates far in excess of that falling as rain on the tree belt area. Water budgets showed that 20 % of the study paddock would have been needed as 0—2 year coppices in 5 m wide twin-row belts in order to maintain hydrological balance over the study period. Maximum water use occurred where uncut trees were accessing a fresh perched aquifer, but where this was not present water budgets still showed transpiration of uncut trees occurring at rates equivalent to 3—4 times rainfall incident on the tree belt canopy. In this scenario, only 10 % of the paddock surface would have been required under 5 m wide tree belts to restore hydrological balance, but competition losses in adjacent pasture would have been greater
APA, Harvard, Vancouver, ISO, and other styles
2

Hearman, Amy. "A modelling study into the effects of rainfall variability and vegetation patterns on surface runoff for semi-arid landscapes." University of Western Australia. School of Earth and Geographical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0047.

Full text
Abstract:
[Truncated abstract] Generally hydrologic and ecologic models operate on arbitrary time and space scales, selected by the model developer or user based on the availability of field data. In reality rainfall is highly variable not only annually, seasonally and monthly but also the intensities within a rainfall event and infiltration properties on semi-arid hillslopes can also be highly variable as a result of discontinuous vegetation cover that form mosaics of areas with vegetation and areas of bare soil. This thesis is directed at improving our understanding of the impacts of the temporal representation of rainfall and spatial heterogeneity on model predictions of hydrologic thresholds and surface runoff coefficients on semi-arid landscapes at the point and hillslope scales. We firstly quantified within storm rainfall variability across a climate gradient in Western Australia by parameterizing the bounded random cascade rainfall model with one minute rainfall from 15 locations across Western Australia. This study revealed that rainfall activity generated in the tropics had more within storm variability and a larger proportion of the storm events received the majority of rain in the first half of the event. Rainfall generated from fontal activity in the south was less variable and more evenly distributed throughout the event. Parameters from the rainfall analysis were then used as inputs into a conceptual point scale surface runoff model to investigate the sensitivity of point scale surface runoff thresholds to the resolution of rainfall inputs. This study related maximum infiltration capacities to average storm intensities (k*) and showed where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k* = 0.4) and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k* > 2). For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating drainage coefficients to average storm intensities (g*) and parameter ranges where predicted runoff was dominated by infiltration excess or saturation excess depending on the resolution of rainfall data were determined (ln g* <2). The sensitivity of surface runoff predictions and the influence of specific within storm properties were then analysed on the hillslope scale. '...' It was found that using the flow model we still get threshold behaviour in surface runoff. Where conditions produce slow surface runoff velocities, spatial heterogeneity and temporal heterogeneity influences hillslope surface runoff amounts. Where conditions create higher surface runoff velocities, the temporal structure of within storm intensities has a larger influence on runoff amounts than spatial heterogeneity. Our results show that a general understanding of the prevailing rainfall conditions and the soil's infiltration capacity can help in deciding whether high rainfall resolutions (below 1 h) are required for accurate surface runoff predictions. The results of this study can be considered a contribution to understanding the way within storm properties effect the processes on the hillslope under a range of overall storm, slope and infiltration conditions as well as an improved understanding of how different vegetation patterns function to trap runoff at different total vegetation covers and rainfall intensities.
APA, Harvard, Vancouver, ISO, and other styles
3

Cronin, Natasha Louise Rafaelle School of Biological Earth &amp Environmental Sciences UNSW. "The potential of airborne polarimetric synthetic aperture radar data for quantifying and mapping the biomass and structural diversity of woodlands in semi-arid Australia." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences, 2004. http://handle.unsw.edu.au/1959.4/30533.

Full text
Abstract:
Levels of carbon dioxide in the atmosphere have been steadily increasing since the beginning of the Industrial Revolution in the 1800s. The earth's climate is sensitive to alterations in these levels of carbon dioxide and other greenhouse gases (GHG), with significant changes in climate predicted long term. The adoption of the Kyoto Protocol in 1997 heralded a new age in terms of greenhouse gas accounting and emissions responsibility, for all nations. In Australia, carbon emissions from the Land Use and Land Use Change and Forestry sector are responsible for a large proportion of the national total emissions. Radar remote sensing has demonstrated considerable potential in the estimation and mapping of vegetation biomass and subsequently carbon. The aim of this research is to investigate the potential of airborne polarimetric radar for quantifying and mapping the biomass and structural diversity of woodlands in semi-arid Australia. Initial investigation focussed on the physical structure of the woodland, which revealed that despite a diversity of woodland associations, the species diversity was relatively low. Both excurrent and decurrent growth forms were present, which subsequently resulted in varying allocation of biomass to the components (i.e., branches, trunks). In view of this, both empirical and modelling methodologies were explored. Empirical relationships were established between SAR backscatter and the total above ground biomass. Considerable scatter was present in these relationships, which was attributed to the large range of species and their associated structures. Comparison of actual and model simulations for C-, L- and P-band wavelengths, reveal that no significant difference existed for these wavelengths, except at CHH, and the cross-polarised data at L- and P-band. The study confirmed that microwaves at C-band interacted largely with the leaves and small branches, with scattering at VV polarization dominating. Compared to the lower frequencies, the return from the ground surface (as expected) was significant. The differences in scattering mechanisms (i.e., branch-ground versus trunk-ground) between excurrent and decurrent structures were due largely to the larger angular branches associated with Eucalyptus and Angophora species, which were absent from Callitris glaucophylla.
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, Patrick John. "From conduits to communities : plant water use strategies and evapotranspiration in a semi-arid ecosystem in south-western Australia." University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0034.

Full text
Abstract:
[Truncated abstract] Understanding the ecohydrological dynamics of native vegetation can provide a benchmark for future efforts to restore landscape hydrology and allow predictions of potential landscape responses to climate uncertainty and associated changes in vegetation cover. The key drivers of evapotranspiration (Et) involved in maintaining a hydrological balance that minimises deep drainage in semi-arid ecosystems operate at a range of scales, and in this thesis I assessed the water relations of functionally and taxonomically diverse plant communities in south-western Australia from the leaf-level to ecosystem scale. For three key communities; heath shrubland, mallee (small multistemmed eucalypt) -heath, and open eucalypt woodland, populating a typical catenary sequence of soil types along a slope, I addressed the following questions: 1) What are the predominant water use strategies of wheatbelt native plant communities and what underlying trade-offs determine the distribution of plant water use strategies along the topographical gradient? 2) What are the roles of soil water and hydraulic limitation in controlling the spatial and temporal dynamics of transpiration in different functional types? 3) What is the magnitude and partitioning of total Et in the woodland community and what processes determine Et fluxes on a seasonal and annual basis? 4) What are the seasonal differences in Et among contrasting community-types and how do these patterns relate to canopy attributes and transpiration capacity along the topographical gradient? A key philosophical step in working with species-rich communities was to develop the concept of 'hydraulic functional types' (HFTs) to identify groupings of species using associations of physiological and morphological traits that define their hydrological functioning. .... However, as shallow soils dried during spring and summer, Et fluxes were significantly lower at the heath site (0.35 versus 0.66 mm day-1 for the woodland in February), demonstrating that the seasonality of Et fluxes differentiates communityscale contributions to regional water balance. Land-surface exchange of water over native vegetation is by no means uniform, but varies according to the spatial and temporal availability of water along topographical gradients. In general, shallow soils present fewer opportunities for water use partitioning and favour drought hardiness and a transpiration response that tracks recent rainfall patterns, whereas deeper soils promote greater differentiation in water use strategy and support canopies responsive to atmospheric demand. This thesis provides a unique description of ecosystem water balance in a global biodiversity hotspot by viewing complex vegetation mosaics in terms of their relevant hydrological units. This information is fundamental to sustainable agroforestry and revegetation efforts and our ability to gauge possible changes in vegetation structure and function under a changing climate.
APA, Harvard, Vancouver, ISO, and other styles
5

McIntyre, Rebecca Elise Sinclair. "Soil biogeochemistry and flooding in intermittent streams of the semi-arid Pilbara region." University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0115.

Full text
Abstract:
[Truncated abstract] Most of Australia, and large areas of many other continents, is drained by intermittent rivers and streams, however comparatively few biogeochemical studies have been completed for these systems. Intermittent, dryland streams are highly dynamic environments subject to unpredictable and sporadic flow. Natural disturbance from lengthy drought periods and sudden floods are typical for these systems. Without adequate baselines for natural disturbances, it is difficult to quantify other effects from anthropogenic disturbance such as dewatering, land clearing, and urbanisation, or climate change. This thesis presents work from a four-year study examining the biogeochemistry of nitrogen (N), phosphorus (P) and carbon (C) in soils and sediments of two intermittent streams (Barnett Creek and Pirraburdoo Creek) in the Pilbara region of north-west Australia. The Pilbara is an area of ancient geology and highly weathered environments that is undergoing rapid development yet is poorly understood from an ecological perspective. The principal objectives of this thesis were to determine: i) how flooding affects the spatiotemporal patterns of nutrients in intermittent stream landscapes; ii) the role of flooding in N and C mineralisation and microbial dynamics; and iii) the connections between benthic algae, microbes and nutrient availability in channel sediments. To address these objectives, three field studies and two incubation experiments were conducted. Field studies at Barnett Creek indicated that flooding reduced the spatial heterogeneity of available soil nutrients and microbes in the stream landscape, and that topography (relative elevation) in the stream landscape was of less importance in influencing nutrient and microbial patterns than flooding or landscape position. ... Field studies at Pirraburdoo Creek indicated that microbial biomass and activity increased in benthic algal mats during mat senescent stages, and decreased after flooding when mat biomass peaked. Benthic algae grew rapidly in gravel run environments after flooding, while declining in pools, and demonstrated moderate N limitation and strong P limitation. Pools had two to eight times greater NO3-N, three to five times more total N, and two to three times more labile P, OC and total C than either pools after flooding, or runs before or after flooding. Hence, the pools at Pirraburdoo Creek represented a local, interflood store of nutrients in otherwise nutrient-poor landscape, when connectivity to upstream reaches or upland environments was weak or non-existent. This thesis provides the first detailed analysis of soil and sediment biogeochemical responses to flooding for intermittent streams in the Pilbara region and for semi-arid Australia. Further pressing questions raised by this work include: What is the key pulse size and frequency for maintaining Pilbara riparian communities as well as soil microbial function? How do the spatio-temporal nutrient and microbial patterns observed persist over (i) multi-decadal scales, (ii) mega-spatial (larger landscape to regional) scales, (iii) different flood frequency-magnitude regimes, and (iv) different stream sizes? Stream biogeochemistry is a burgeoning field, and it is therefore reasonable to expect such existing gaps in knowledge may be addressed in the near future.
APA, Harvard, Vancouver, ISO, and other styles
6

Commander, Lucy. "Seed biology and rehabilitation in the arid zone : a study in the Shark Bay world heritage area, Western Australia." University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0091.

Full text
Abstract:
Research into seed biology and restoration ecology of areas disturbed by mining is crucial to their revegetation. Shark Bay Salt, a solar salt facility in the Shark Bay World Heritage Area in Western Australia has several areas of disturbance as a result of 'soil borrowing'. Soil from these areas termed 'borrow pits' was used to create infrastructure such as the roads and embankments surrounding the evaporation ponds. Many of the pits contain little to no vegetation after >10 years since disturbance ceased, hence research into their restoration is now essential. A vegetation survey at the site established the key species in the undisturbed vegetation, and investigated the vegetation in borrow pits subject to natural migration and topsoil replacement. The vegetation communities in the borrow pits were vastly different to those in the undisturbed vegetation, highlighting the need for research into revegetation. An investigation into the use of 'borrowed' topsoil on a small scale showed that seedling recruitment from 'borrowed' topsoil was generally similar in the donor site (natural vegetation) and the borrow pits. Due to the absence of topsoil for further revegetation, it was necessary to understand seed germination and dormancy characteristics to establish seed pre-treatments prior to seed broadcasting and seedling (greenstock) planting. An investigation into seed germination and dormancy characteristics of 18 common species revealed that most species germinated equally well at 26/13oC and 33/18oC, however seven species had improved performance at 26/13oC. Untreated seeds of seven species exhibited high germination. Seeds of two species had low imbibition, which increased with hot-water treatment, and hence require scarification for germination. Germination of seeds of three species substantially increased with gibberellic acid (GA3), smoke water (SW) and karrikinolide (KAR1, a butenolide isolated from smoke). Seeds of the remaining six species had low germination regardless of treatment. As a result, species were classified as likely to be non-dormant (44%), physiologically dormant (44%) or physically dormant (11%). Physiological dormancy of three species was at least partly alleviated by dry afterripening, whereby moisture content of seeds was adjusted to 13% or 50% equilibrium relative humidity and seeds were stored at 30oC or 45oC for several months. All iv after-ripening conditions increased germination percentage and rate of two species with one only germinating when treated with GA3 or KAR1. The germination of the third species was dependent on after-ripening temperature and seed moisture content.
APA, Harvard, Vancouver, ISO, and other styles
7

Carver, Scott Stevenson. "Dryland salinity, mosquitoes, mammals and the ecology of Ross River virus." University of Western Australia. School of Animal Biology, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0100.

Full text
Abstract:
[Truncated abstract] In an era of emerging and resurging infectious diseases, understanding the ecological processes that influence pathogen activity and the influences of anthropogenic change to those are critical. Ross River virus (RRV, Togoviridae: Alphavirus) is a mosquito-borne zoonosis occurring in Australia with a significant human disease burden. In the southwest of Western Australia (WA) RRV is principally vectored by Aedes camptorhynchus Thomson (Diptera: Culicidae), which is halophilic. The inland southwest, the Wheatbelt region, of WA is substantially affected by an anthropogenic salinisation of agricultural land called dryland salinity, which threatens to influence transmission of this arbovirus. This study assessed the ecological impacts of dryland salinity on mosquitoes, mammalian hosts and their interactions to influence the potential for RRV transmission. Many aquatic insect taxa colonise ephemeral water bodies directly as adults or by oviposition. Using a manipulative experiment and sampling from ephemeral water bodies in the Wheatbelt, I demonstrated that salinity of water bodies can modify colonisation behaviour and the distribution of some organisms across the landscape. Halosensitive fauna selected less saline mesocosms for oviposition and colonisation. In particular, Culex australicus Dobrotworksy and Drummond and Anopheles annulipes Giles (Diptera: Culicidae), potential competitors with Ae. camptorhynchus, avoided ovipostion in saline mesocosms and water bodies in the field. This finding suggests salinity influences behaviour and may reduce interspecific interactions between these taxa and Ae. camptorhynchus at higher salinities. Using extensive field surveys of ephemeral water bodies in the Wheatbelt I found mosquitoes frequently colonised ephemeral water bodies, responded positively to rainfall, and populated smaller water bodies more densely than larger water bodies. The habitat characteristics of ephemeral water bodies changed in association with salinity. Consequently there were both direct and indirect associations between salinity and colonising mosquitoes. Ultimately the structure of mosquito assemblages changed with increasing salinity, favouring an increased regional distribution and abundance of Ae. camptorhynchus. The direct implication of this result is secondary salinisation has enhanced the vectorial potential for RRV transmission in the WA Wheatbelt. ... This thesis contributes to an emerging body of research aimed at delineating important ecological processes which determine transmission of infections disease. Collectively the findings in this study suggest dryland salinity enhances the potential for RRV activity in the Wheatbelt. Currently, human RRV notifications in the Wheatbelt do not reflect the salinity-RRV transmission potential in that area, but appear to be associated with dispersal of RRV from the enzootic coastal zone of southwest WA. I speculate dryland salinity is a determinant of potential for RRV transmission, but not activity. Dryland salinity is predicted to undergo a two to four fold expansion by 2050, which will increase the regional potential for RRV activity. Preservation and restoration of freshwater ecosystems may ameliorate the potential for transmission of RRV and, possibly, human disease incidence.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Arid regions forestry – Western Australia"

1

Mitchell, A. A. Arid shrubland plants of Western Australia. 2nd ed. Nedlands, W.A: University of Western Australia Press in association with the Dept. of Agriculture, Western Australia, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mitchell, A. A. Arid shrubland plants of Western Australia. Nedlands, W.A: University of Western Australia Press with the Western Australian Dept. of Agriculture, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Place as occupational histories: An investigation of the deflated surface archaeological record of Pine Point and Langwell Stations, Western New South Wales, Australia. Oxford, England: Archaeopress, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

David, Bicknell, Prinsley Roslyn Tamara, Land and Water Resources Research and Development Corporation (Australia), Rural Industries Research and Development Corporation., and Western Australia. Dept. of Agriculture., eds. Low rainfall agroforestry: Proceedings of the workshop called by Rural Industries Research and Development Corporation & Land and Water Resources Research and Development Corporation : held on 30-31 August 1992 at the Club Capricorn, Yanchep, Western Australia. [South Perth, W.A.]: Dept. of Agriculture, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Arid regions forestry – Western Australia"

1

Peters, Debra P. C., and William H. Schlesinger. "Future Directions in Jornada Research: Applying an Interactive Landscape Model to Solve Problems." In Structure and Function of a Chihuahuan Desert Ecosystem. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195117769.003.0022.

Full text
Abstract:
The long history of research at the Jornada Basin (through the Agricultural Research Service [ARS] since 1912, New Mexico State University in the late 1920s, and joined by the Long-Term Ecological Research [LTER] program in 1981) has provided a wealth of information on the dynamics of arid and semiarid ecosystems. However, gaps in our knowledge still remain. One of the most perplexing issues is the variation in ecosystem dynamics across landscapes. In this concluding chapter to this volume, we propose a new conceptual model of arid and semiarid landscapes that focuses explicitly on the processes and properties that generate spatial variation in ecosystem dynamics. We also describe how our framework leads to future research directions. Many studies have documented variable rates and patterns of shrub invasion at the Jornada as well as at other semiarid and arid regions of the world, including the Western United States, northern Mexico, southern Africa, South America, New Zealand, Australia, and China (York and Dick-Peddie 1969; Grover and Musick 1990; McPherson 1997; Scholes and Archer 1997; see also chapter 10). In some cases, shrub invasion occurred very rapidly: At the Jornada, areas dominated by perennial grasses decreased from 25% to < 7% from 1915 to 1998 with most of this conversion occurring prior to 1950 (Gibbens et al. 2005; Yao et al. 2002a). In other cases, shrub invasion occurred slowly, and sites were very resistant to invasion; for example, perennial grasses still dominate on 12 out of 57 research quadrats originally established in black grama (Bouteloua eropoda) grasslands in the early twentieth century (Yao et al. 2002b). Soil texture, grazing history, and precipitation patterns are insufficient to account for this variation in grass persistence through time (Yao et al. 2002a). It is equally perplexing that although many attempts to remediate these shrublands back to perennial grasses have led to failure, some methods worked well, albeit with long (> 50 year) time lags (Rango et al. 2002; see also chapter 14). Although variations in vegetation dynamics and shrub invasion are the most well known, other lesser known aspects of arid and semiarid systems have been found to be quite variable as well.
APA, Harvard, Vancouver, ISO, and other styles
2

Wilhite, Donald A., and Mark D. Svoboda. "Monitoring Drought in the United States: Status and Trends." In Monitoring and Predicting Agricultural Drought. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195162349.003.0017.

Full text
Abstract:
Drought occurs somewhere in the United States almost every year and results in serious economic, social, and environmental costs and losses. Drought is more commonly associated with the western United States because much of this region is typically arid to semiarid. For example, this region experienced widespread drought conditions from the late 1980s through the early 1990s. The widespread and severe drought that affected large portions of the nation in 1988 resulted in an estimated $39 billion in impacts in sectors ranging from agriculture and forestry to transportation, energy production, water supply, tourism, recreation, and the environment (Riebsame et al., 1991). In the case of agriculture, production losses of more than $15 billion occurred and especially devastated corn and spring wheat belts in addition to reducing exports to other nations. In 1995, the U.S. Federal Emergency Management Agency (FEMA) estimated annual losses attributable to drought at $6–8 billion (FEMA, 1995). Since 1995, drought has occurred in nearly all parts of the country, and many regions have been affected on several occasions and in consecutive years. Most of the eastern United States experienced an extremely severe drought in 1998– 99, and in parts of the southeast, drought occurred each year from 1999 through 2002, especially in Florida and Georgia. Figure 9.1 depicts nonirrigated corn yields for Nebraska for the period from 1950 to 2002. Nebraska is one of the principal agricultural states in the United States, and corn is one of its primary crops. The drought effects on yields are most apparent during the severe droughts of the mid-1950s, mid-1970s, 1980, 1983, 1988–89, and 2000. Extremely wet years, such as 1993 in the eastern part of the state, also depressed corn yields. Monitoring drought presents some unique challenges because of its distinctive characteristics (Wilhite, 2000). The purpose of this chapter is to document the current status of drought monitoring and assessment in the United States, particularly with regard to the agricultural sector.
APA, Harvard, Vancouver, ISO, and other styles
3

Lloret, Francisco, and Josep Piñol. "Wildfires." In The Physical Geography of the Mediterranean. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780199268030.003.0033.

Full text
Abstract:
Fire is currently recognized as one of the major natural hazards of the Mediterranean basin. In an average year the total burnt area in the whole basin is around 600,000 hectares, the product of approximately 50,000 fires. The estimated annual cost is around 775 million Euros (FAO 2001). Official data on casualties due to fires are often not available, but, for example, seventy-nine people have been killed directly by fire in Portugal since 1966 and fifty in Catalonia (northeast Spain) since 1970. Fire is commonly considered to be a key component of the dynamics of Mediterranean ecosystems (Chapters 7 and 23). Long dry periods, usually in summer, and vegetation assemblages that produce large amounts of standing branches and debris, are the main factors promoting the propagation of fires. These characteristics are common to other regions of the world with a similar climate and vegetation structure including California, central Chile, South Africa, and south-western Australia. Fire is a common occurrence and a significant natural hazard in all these regions. Although initially a natural phenomenon, during the course of the Holocene human activity has become an increasingly powerful driver of fires (Chapter 9). Prevention of wildfires is now one of the top priorities of the forestry and environmental agencies across the Mediterranean region because of the huge extent of the burned surface area, the high expenditure on both fire prevention and fire fighting, and the impacts in terms of both human life and property. The development of models to investigate the relative roles of extreme weather conditions and fire suppression policies in the generation of large fires is a key area of research (Piñol et al. 2007). The pattern of fire occurrence is not uniform across the Mediterranean basin and orders of magnitude differences appear. When standardized to the forested area of each country, the average burnt area exceeds 103 ha per 103 km2 per year in Greece, Israel, Italy, Algeria, Portugal, and Spain. This means that, on average, more than 1 per cent of the forested area is burnt in these countries each year.
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, Debra P. C., and Robert P. Gibbens. "Plant Communities in the Jornada Basin: The Dynamic Landscape." In Structure and Function of a Chihuahuan Desert Ecosystem. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195117769.003.0014.

Full text
Abstract:
Plant communities of the Jornada Basin are characteristic of the northern Chihuahuan Desert both in structure and dynamics. Although a number of plant communities can be differentiated, five major vegetation types are often distinguished that differ in plant species cover and composition, as well as other factors, such as animal populations, soil properties, and elevation. These five types are black grama (Bouteloua eriopoda) grasslands, playa grasslands, tarbush (Flourensia cernua) shrublands, creosotebush (Larrea tridentata) shrublands, and mesquite (Prosopis grandulosa) shrublands. Similar to many other parts of the Chihuahuan Desert, these plant communities have experienced major shifts in vegetation composition over the past 50–150 years (York and Dick-Peddie 1969). The most dramatic changes in vegetation and associated ecosystem processes have occurred as a result of a shift in life form due to woody plant encroachment into perennial grasslands (Grover and Musick 1990; Bahre and Shelton 1993). This encroachment of shrubs has occurred in many arid and semiarid regions of the world, including the Western United States, northern Mexico, southern Africa, South America, New Zealand, and Australia (McPherson 1997; Scholes and Archer 1997). A number of drivers have been implicated in these grass–shrub dynamics, including various combinations of livestock grazing, small animal activity, drought, changes in fire regime, and changes in climate (Humphrey 1958; Archer 1989; Allred 1996; Reynolds et al. 1997; Van Auken 2000). The causes of shrub invasion are quite variable and often poorly understood, although the consequences consistently lead to the process of desertification (Schlesinger et al. 1990). This chapter describes the characteristics of each vegetation type and the documented changes in each type at the Jornada Basin. We then discuss the key drivers influencing these dynamics. Vegetation in the Chihuahuan Desert region has been classified as desert-grassland transition (Shreve 1917), desert savanna (Shantz and Zon 1924), desert plains grasslands (Clements 1920), desert shrub grassland (Darrow 1944), and shrubsteppe (Kuchler 1964). Desert grassland is often used as a general descriptive name for the area (McClaran 1995), although landscapes at the Jornada and throughout the northern Chihuahuan Desert often consist of a mosaic of desert grasslands, Chihuahuan Desert shrublands, and plains-mesa sand scrub (Dick-Peddie 1993).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography