Academic literature on the topic 'Archaean'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Archaean.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Archaean"
Sleep, Norman H. "Archaean palaeosols and Archaean air." Nature 432, no. 7016 (November 2004): 1. http://dx.doi.org/10.1038/nature03167.
Full textOhmoto, Hiroshi, and Yumiko Watanabe. "Archaean palaeosols and Archaean air (reply)." Nature 432, no. 7016 (November 2004): 1–2. http://dx.doi.org/10.1038/nature03168.
Full textSandaa, Ruth-Anne, Øivind Enger, and Vigdis Torsvik. "Abundance and Diversity of Archaea in Heavy-Metal-Contaminated Soils." Applied and Environmental Microbiology 65, no. 8 (August 1, 1999): 3293–97. http://dx.doi.org/10.1128/aem.65.8.3293-3297.1999.
Full textHerzberg, Claude. "Archaean drips." Nature Geoscience 7, no. 1 (December 1, 2013): 7–8. http://dx.doi.org/10.1038/ngeo2033.
Full textWINDLEY, B. "Archaean Geochemistry." Earth-Science Reviews 24, no. 1 (March 1987): 67. http://dx.doi.org/10.1016/0012-8252(87)90051-1.
Full textImachi, Hiroyuki, Masaru K. Nobu, Nozomi Nakahara, Yuki Morono, Miyuki Ogawara, Yoshihiro Takaki, Yoshinori Takano, et al. "Isolation of an archaeon at the prokaryote–eukaryote interface." Nature 577, no. 7791 (January 15, 2020): 519–25. http://dx.doi.org/10.1038/s41586-019-1916-6.
Full textCockell, Charles S. "Photobiological uncertainties in the Archaean and post-Archaean world." International Journal of Astrobiology 1, no. 1 (January 2002): 31–38. http://dx.doi.org/10.1017/s1473550402001003.
Full textHattori, Keiko, and Eion M. Cameron. "Archaean magmatic sulphate." Nature 319, no. 6048 (January 1986): 45–47. http://dx.doi.org/10.1038/319045a0.
Full textRollinson, Hugh, and Martin Whitehouse. "Archaean crustal evolution." Precambrian Research 112, no. 1-2 (November 2001): 1–3. http://dx.doi.org/10.1016/s0301-9268(01)00167-x.
Full textChin, G. J. "MICROBIOLOGY: Archaean Viruses." Science 294, no. 5544 (November 2, 2001): 959e—961. http://dx.doi.org/10.1126/science.294.5544.959e.
Full textDissertations / Theses on the topic "Archaean"
Brown, Isobel Julia. "Geology and geochemistry of Archaean gold mineralization, Arcturus District, Zimbabwe." Thesis, Oxford Brookes University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290402.
Full textDougherty-Page, Jon Stanley. "The evolution of the Archaean continental crust of Northern Zimbabwe." Thesis, Open University, 1994. http://oro.open.ac.uk/54877/.
Full textRobertson, S. "Late Archaean crustal evolution in the Ivisartoq region, southern west Greenland." Thesis, University of Exeter, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.353048.
Full textOpiyo-Akech, Norbert. "Geology and geochemistry of the late Archaean greenstone associations, Maseno area, Kenya." Thesis, University of Leicester, 1988. http://hdl.handle.net/2381/35080.
Full textCarles, Patricia 1975. "Constraints on the genesis of the Archaean Troilus gold-copper deposit, Quebec." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31204.
Full textRocks of the Troilus domain include a coarse- to medium-grained metadiorite, a finer-grained amphibolite, a rock with a brecciated texture and felsic dykes, which crosscut the metadioritic pluton, the amphibolite and the breccia. The amphibolite, breccia, and felsic dykes all locally host ore.
Previous researchers have proposed a porphyry-type model for the genesis of the Troilus deposit. However, evidence that the breccia unit is not hydrothermal but a product of magma mixing, that the felsic dykes predate mineralization, and that mineralization and associated alteration occurred as two discrete events separated by a major episode of regional metamorphism (amphibolite facies), requires that alternative genetic models for the deposit be considered, such as orogenic gold model. (Abstract shortened by UMI.)
Horstwood, Matthew Simon Anthony. "Stratigraphy, geochemistry and zircon geochronology of the Midlands Greenstone Belt, Zimbabwe." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246222.
Full textLane, Monica Leonie. "Nickel sulphide mineralization associated with Archean komatiites." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005594.
Full textStubbs, Heather M. "The geochemistry and petrogenesis of Archaean and paleoproterozoic dykes and sills of Zimbabwe." Thesis, University of Portsmouth, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440491.
Full textWightman, R. T. "Constraints on crustal development and tectonics in the Archaean rocks of south India." Thesis, Open University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374494.
Full textTaylor, Jeanne. "The anatectic history of Archaean metasedimentary granulites from the Ancient Gneiss Complex, Swaziland." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/20311.
Full textENGLISH ABSTRACT: This study is an investigation of the anatectic history of high-grade paragneisses from the Ancient Gneiss Complex (AGC) in Swaziland. The work involved an integrated field, metamorphic, geochemical, geochronological and structural study of metasedimentary granulites from three separate, but spatially related areas of outcrop in south-central Swaziland, which were subjected to multiple high-grade partial melting events throughout the Meso- to Neoarchaean. The project has aimed to constrain the age(s) and conditions of metamorphism, so as to contribute to the understanding of geodynamic processes in the Barberton and AGC granite-greenstone terranes, as well as to investigate certain physical and chemical aspects of anatexis in the migmatites. The metamorphic record retained in these rocks, constrained by phase equilibria modelling as well as zircon and monazite SHRIMP and LA-ICP-MS geochronology, informs on the state of the mid- to lower-crust of the southeastern Kaapvaal Craton during key events associated with early lithosphere assembly and crustal differentiation. It also suggests that the region is comprised of more than one high-grade terrane. Two of the areas investigated experienced high-temperature metamorphism at ca. 3.23-3.21 Ga, in addition to a major 830-875º C, 6.5-7.6 kbar anatectic event at ca. 3.11-3.07 Ga. Intermediate and younger high-temperature events are recorded at ca. 3.18 Ga, ca. 3.16 Ga and 2.99 Ga. The timing of these metamorphic events coincided with the amalgamation of the eastern domain of the proto-Craton via subduction and accretion of micro-continental fragments at ca. 3.23 Ga, including the Barberton Greenstone Belt (BGB) and AGC terranes, as well as discrete episodes of crustal differentiation and potassic granitic magmatism between ca. 3.23 and 3.10 Ga. The third area investigated holds no record of Mesoarchaean metamorphism, but instead experienced a 830- 855 ºC, 4.4-6.4 kbar partial melting episode at ca. 2.73 Ga. This broadly coincided with the formation of a large continental flood basalt province, the ca. 2.71 Ga Ventersdorp LIP, and widespread intracratonic granitic magmatism on the Craton towards the end of the Neoarchaean. An explanation for the contrast in metamorphic record in the two terranes may be that the 2.71 Ga granulites represent a much younger sedimentary succession, and that granulites from the older terrane were left too restitic, after substantial partial melting during the Mesoarchaean, to record subsequent high-grade events. Finally, this study documents the details of S-type granitic magma production and extraction from a typical metapelitic source. Using the 2.73 Ga granulites from the AGC as a natural field laboratory, a case is made for the selective entrainment of peritectic garnet to the magma as a mechanism for generating relatively mafic, peraluminous S-type granite compositions. The work demonstrates the evolution of entrained peritectic garnet in such magmas, and is in strong support of a ‘peritectic phase entrainment’ process by which relatively mafic granite magmas are produced from melts which, in theory, should be highly leucocratic.
AFRIKAANSE OPSOMMING: Hierdie studie ondersoek die anatektiese geskiedenis van hoëgraadse metasedimentêre gneise uit die Ancient Gneiss Complex (AGC) in Swaziland. Die werk behels 'n geïntegreerde veld, metamorfiese, geochemiese, geochronologiese en strukturele studie van metasedimentêre granuliete van drie afsonderlike, maar ruimtelik verwante gebiede in suid-sentraal Swaziland, wat aan verskeie hoëgraadse anatektiese gebeure onderworpe was gedurende die Meso-tot Neoargeïese tydsperiode. Die studie is daarop gemik om die ouderdomme en die kondisies van metamorfose vas te stel, om sodoende by te dra tot die begrip van die geodinamiese prosesse in die Barberton en AGC granietgroensteen terrein, asook om sekere fisiese en chemiese aspekte van die anatektiese proses te ondersoek. Die metamorfe rekord, bepaal deur mineraal ewewigsmodellering sowel as sirkoon en monasiet SHRIMP en LA-ICP-MS geochronologie, belig die toestand van die middel-tot laer-kors van die suidoostelike Kaapvaal Kraton tydens vroeë litosfeer samesmelting en differensiasie. Dit stel ook voor dat die streek uit meer as een hoëgraadse terrein bestaan. Twee van die gebiede het hoë-temperatuur metamorfose by 3.23-3.21 Ga ervaar, asook 'n hoof 830-875 ° C, 6.5-7.6 kbar anatektiese gebeurtenis by 3.11-3.07 Ga. Intermediêre en jonger hoë-temperatuur gebeure was ook by 3.18 Ga, 3.16 Ga en 2.99 Ga geregistreer. Die metamorfose van die gebied stem ooreen met die samesmelting van die oos Kaapvaal Kraton domein deur subduksie en aanwas van mikro-kontinente by 3.23 Ga, insluitend die Barberton en AGC terreine, asook diskrete episodes van kors differensiasie en kalium-ryke graniet magmatisme tussen 3.23 en 3.10 Ga. Die derde gebied hou geen rekord van Mesoargeïkum metamorfose nie. In plaas daarvan het dit 'n 830-855 ° C, 4.4-6.4 kbar anatektiese episode by 2.73 Ga ervaar, wat ooreenstem met die vorming van 'n groot kontinentale vloedbasalt provinsie, die 2.71 Ga Ventersdorp Supergroep, en wydverspreide intrakratoniese graniet magmatisme teen die einde van die Neoargeïkum. 'n Moontlike verduideliking vir die kontras in metamorfe rekord in die twee terreine mag wees dat die 2.71 Ga granuliete 'n jonger sedimentêre afsetting verteenwoordig, en dat granuliete van die ouer terrein te restieties gelaat was na aansienlike anateksis in die Mesoargeïkum, om daaropvolgende hoëgraadse gebeure te registreer. Ten slotte, hierdie studie dokumenteer die besonderhede van S-tipe graniet magma produksie en ontginning van 'n tipiese metasedimentêre bron. Die 2.73 Ga granuliete word gebruik as 'n natuurlike veld laboratorium om die selektiewe optel-en-meevoering van peritektiese granaat tot die magma te ondersoek. Die werk toon die evolusie van peritektiese granate in sulke magmas aan, en ondersteun lewering van relatiewe mafiese graniet magmas deur 'n ‘peritektiese fase optel-en-meevoerings’ proses.
Books on the topic "Archaean"
Phillips, G. Neil. Archaean gold deposits of Australia. Johannesburg: University of the Witwatersrand, 1985.
Find full textKerrich, R. Archaean lode gold deposits of Canada. Johannesburg: University of the Witwatersrand, 1986.
Find full textKerrich, R. Archaean lode gold deposits of Canada. Johannesburg: University of the Witwatersrand, 1986.
Find full textHölttä, Pentti. The Archaean of the Karelia Province in Finland. Espoo: Geological Survey of Finland, 2012.
Find full textThe young earth: An introduction to Archaean geology. Boston: Allen & Unwin, 1987.
Find full textInternational Archaean Symposium (3rd 1990 Perth, W. A.). Third International Archaean Symposium, Perth, 1990: Excursion guidebook. Nedlands, Western Australia: Geology Department (Key Centre) & University Extension, The University of Western Australia, 1990.
Find full textN, Kazakov A., ed. Struktura arkheĭskikh zelenokamennykh poi͡asov. Leningrad: "Nauka," Leningradskoe otd-nie, 1988.
Find full textS, Myers J., and Geological Survey of Western Australia., eds. Archaean geology of the Mount Narryer region, Western Australia. Perth: Department of Mines, Western Australia, 1987.
Find full textMeyer, Michael. The origin of gold in Archaean epigenetic gold deposits. Johannesburg: University of the Witwatersrand, 1985.
Find full textInternational Archaean Symposium (3rd 1990 Perth, W. A.). Third International Archaean Symposium, Perth, 1990: Extended abstracts volume. Perth, Western Australia: Geoconferences (W.A.), 1990.
Find full textBook chapters on the topic "Archaean"
Nisbet, E. G. "Archaean continents." In The Young Earth, 146–97. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-011-6489-4_5.
Full textNisbet, E. G. "Archaean volcanism." In The Young Earth, 198–248. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-011-6489-4_6.
Full textCattell, A. C., and R. N. Taylor. "Archaean basic magmas." In Early Precambrian Basic Magmatism, 11–39. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0399-9_2.
Full textNisbet, E. G. "The Archaean planet." In Living Earth, 47–64. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3056-1_3.
Full textWestall, Frances. "Early Archaean Life." In Cellular Origin and Life in Extreme Habitats and Astrobiology, 239–44. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1003-0_50.
Full textNisbet, E. G. "The Archaean planet." In Living Earth, 47–64. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-5965-4_3.
Full textGroves, D. I., and R. P. Foster. "Archaean lode gold deposits." In Gold metallogeny and exploration, 63–103. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-0497-5_3.
Full textHenderson-Sellers, A. "Archaean Atmosphere-Biosphere Interactions." In Climate and Geo-Sciences, 21–38. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2446-8_2.
Full textGroves, D. I., and R. P. Foster. "Archaean lode gold deposits." In Gold Metallogeny and Exploration, 63–103. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2128-6_3.
Full textValdiya, K. S. "Archaean Craton: Southern India." In Society of Earth Scientists Series, 31–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25029-8_3.
Full textConference papers on the topic "Archaean"
Astafieva, Marina M., Richard B. Hoover, Alexei Yu Rozanov, and Alexander B. Vrevskiy. "Fossil microorganisms in the Archaean." In SPIE Optics + Photonics, edited by Richard B. Hoover, Gilbert V. Levin, and Alexei Y. Rozanov. SPIE, 2006. http://dx.doi.org/10.1117/12.681660.
Full textAstafieva, M. M., R. B. Hoover, A. Y. Rozanov, and A. B. Vrevskiy. "Fossil microorganisms in Archaean deposits of Northern Karelia." In Optics & Photonics 2005, edited by Richard B. Hoover, Gilbert V. Levin, Alexei Y. Rozanov, and G. Randall Gladstone. SPIE, 2005. http://dx.doi.org/10.1117/12.646847.
Full textKlöcking, Marthe, Karol Czarnota, Ian Campbell, Hugh Smithies, David Champion, and D. Rhodri Davies. "Archaean basalts record evidence of lithospheric extension prior to cratonisation." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6551.
Full textDurgalakshmi, Durgalakshmi, Ian Williams, and Sajeev Krishnan. "Petrogenesis and evolution of charnockites formed at the Archaean-Proterozoic boundary." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9850.
Full textGeerthsen, K. "Geophysical Contributions To Exploration For Gold In The Archaean Of Tanzania, East Africa." In 5th SAGA Biennial Conference and Exhibition. European Association of Geoscientists & Engineers, 1997. http://dx.doi.org/10.3997/2214-4609-pdb.223.001.
Full textGeerthsen, Karen, and Michael John Maher. "Gravity signature of an Archaean craton/proterozoic mobile belt transition in Southern Africa." In SEG Technical Program Expanded Abstracts 1990. Society of Exploration Geophysicists, 1990. http://dx.doi.org/10.1190/1.1890281.
Full textT. Ranganai, R., C. J. Ebinger, K. A. Whaler, and G. W. Stuart. "Crustal Structure of the South-Central Zimbabwe Archaean Craton from Gravity and Aeromagnetic Data." In 57th EAEG Meeting. Netherlands: EAGE Publications BV, 1995. http://dx.doi.org/10.3997/2214-4609.201409309.
Full textRavindran, Arathy, Klaus Mezger, and Balakrishnan Srinivasan. "Composition of the Archaean Mantle and Continental Crust in the Western Dharwar Craton, India." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2175.
Full textSebastian, Sibin, Rajneesh Bhutani, and Srinivasan Balakrishnan. "Crustal Reworking in the Archaean: Geochemical Evidences from Granitoid of the Western Dharwar Craton." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2330.
Full textCole, J., and M. Havenga. "Magnetic modelling of Archaean basement material southeast of Boshof, Free State Province, South Africa." In 10th SAGA Biennial Technical Meeting and Exhibition. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609-pdb.146.2.3.
Full textReports on the topic "Archaean"
Trent, J. D., H. K. Kagawa, and N. J. Zaluzec. Chaperonin polymers in archaea: The cytoskeleton of prokaryotes? Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/505321.
Full textKelly, R. M. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/325744.
Full textTrent, J. D., H. K. Kagawa, Takuro Yaoi, E. Olle, and N. J. Zaluzec. Chaperonin filaments: The archael cytoskeleton. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/510354.
Full textElkins, James G., Victor Kunin, Iain Anderson, Kerrie Barry, Eugene Goltsman, Alla Lapidus, Brian Hedlund, et al. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/960397.
Full textCharles J. Daniels. The Role of Multiple Transcription Factors In Archaeal Gene Expression. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/937513.
Full textKelley, John. Expanding Metabolic Diversity of Two Archaeal Phyla: Nanoarchaeota and Korarchaeota. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5729.
Full textLuthey-Schulten, Zaida. Computational Modeling of Fluctuations in Energy and Metabolic Pathways of Methanogenic Archaea. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1337955.
Full textEichler, Jerry. Protein Glycosylation in Archaea: A Post-Translational Modification to Enhance Extremophilic Protein Stability. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada515568.
Full textSamuel M. Lesko. Final Report DOE Grant# DE-FG02-98ER62592: Second Cancers, Tumor p53, and Archaea Research. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/963347.
Full textWu, Ming-Hsiao. Temperature Dependent Transcription Initiation in Archaea: Interplay between Transcription Factor B and Promoter Sequence. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2020.
Full text