Academic literature on the topic 'Arabinoxylooligosaccharide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arabinoxylooligosaccharide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arabinoxylooligosaccharide"

1

Yamada, Hideaki, Kiwamu Shiiba, Hiroyuki Hara, Nobuaki Ishida, Takashi Sasaki, and Hajime Taniguchi. "Preparation of a New Arabinoxylooligosaccharide from Wheat Bran Hemicellulose and Its Structure." Bioscience, Biotechnology, and Biochemistry 58, no. 2 (January 1994): 288–92. http://dx.doi.org/10.1271/bbb.58.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fushinobu, Shinya, and Maher Abou Hachem. "Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes." Biochemical Society Transactions 49, no. 2 (March 5, 2021): 563–78. http://dx.doi.org/10.1042/bst20200163.

Full text
Abstract:
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
APA, Harvard, Vancouver, ISO, and other styles
3

Leschonski, Kai P., Svend G. Kaasgaard, Nikolaj Spodsberg, Kristian B. R. M. Krogh, and Mirjam A. Kabel. "Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan." International Journal of Molecular Sciences 23, no. 22 (November 9, 2022): 13790. http://dx.doi.org/10.3390/ijms232213790.

Full text
Abstract:
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues.
APA, Harvard, Vancouver, ISO, and other styles
4

Dotsenko, Gleb, Michael Krogsgaard Nielsen, and Lene Lange. "Statistical model semiquantitatively approximates arabinoxylooligosaccharides' structural diversity." Carbohydrate Research 426 (May 2016): 9–14. http://dx.doi.org/10.1016/j.carres.2016.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Swennen, Katrien, Christophe M. Courtin, Geert CJE Lindemans, and Jan A. Delcour. "Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides." Journal of the Science of Food and Agriculture 86, no. 11 (2006): 1722–31. http://dx.doi.org/10.1002/jsfa.2470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eeckhaut, V., F. Van Immerseel, J. Dewulf, F. Pasmans, F. Haesebrouck, R. Ducatelle, C. M. Courtin, J. A. Delcour, and W. F. Broekaert. "Arabinoxylooligosaccharides from Wheat Bran Inhibit Salmonella Colonization in Broiler Chickens." Poultry Science 87, no. 11 (November 2008): 2329–34. http://dx.doi.org/10.3382/ps.2008-00193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Courtin, Christophe M., Katrien Swennen, Priscilla Verjans, and Jan A. Delcour. "Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides." Food Chemistry 112, no. 4 (February 15, 2009): 831–37. http://dx.doi.org/10.1016/j.foodchem.2008.06.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SWENNEN, K., C. COURTIN, B. VANDERBRUGGEN, C. VANDECASTEELE, and J. DELCOUR. "Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures." Carbohydrate Polymers 62, no. 3 (December 1, 2005): 283–92. http://dx.doi.org/10.1016/j.carbpol.2005.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Courtin, Christophe M., Willem F. Broekaert, Katrien Swennen, Olivier Lescroart, Okanlawon Onagbesan, Johan Buyse, Eddy Decuypere, et al. "Dietary Inclusion of Wheat Bran Arabinoxylooligosaccharides Induces Beneficial Nutritional Effects in Chickens." Cereal Chemistry Journal 85, no. 5 (September 2008): 607–13. http://dx.doi.org/10.1094/cchem-85-5-0607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Van Craeyveld, Valerie, Katrien Swennen, Emmie Dornez, Tom Van de Wiele, Massimo Marzorati, Willy Verstraete, Yasmine Delaedt, et al. "Structurally Different Wheat-Derived Arabinoxylooligosaccharides Have Different Prebiotic and Fermentation Properties in Rats." Journal of Nutrition 138, no. 12 (December 1, 2008): 2348–55. http://dx.doi.org/10.3945/jn.108.094367.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Arabinoxylooligosaccharide"

1

Genestie, Benoît. "Optimisation de la production d’arabinoxylooligosaccharides d’intérêt biologique à partir de sons de céréales : approches méthodologiques." Limoges, 2006. https://aurore.unilim.fr/theses/nxfile/default/c03b0432-2d83-46dd-9693-b4d37a2d153d/blobholder:0/2006LIMO0039.pdf.

Full text
Abstract:
Dans le cadre de la valorisation de sous-produits de l’industrie céréalière, des sons de blé et de seigle ont été sélectionnés pour la production d’arabinoxylooligosaccharides (AXOS) d’intérêt prébiotique. Les prébiotiques sont des ingrédients alimentaires, glucidiques, non digestibles, stimulant sélectivement la croissance et/ou l’activité d’éléments de la flore colique parmi lesquels les bactéries probiotiques, ingérées vivantes par l’ho���te produisent des effets bénéfiques sur sa santé. La fraction arabinoxylane des sons, extraite par traitement alcalin après délignification puis purification, est soumise à un traitement de dépolymérisation impliquant deux étapes successives d’hydrolyse, chimique (acide) puis enzymatique. L’optimisation du processus, par plans d’expériences, conduit à l’obtention d’AXOS avec un rendement de 50% pds/pds. La distribution en tailles des AXOS issus des différents sons est établie par SM/MALDI-TOF et ESI. Leurs propriétés prébiotiques ont été évaluées sur des souches bactériennes probiotiques reconnues, des genres Lactobacillus, Bifidobacterium, Clostridium et Bacillus comparativement à celles de fructooligosaccharides de référence et d’AXOS issus de mais
In the context of a valorisation of agricultural by-products, wheat and rye bran have been chosen as substrates for the production of arabinoxylooligosaccharides (AXOS) with prebiotics properties. Prebiotics are non-digestible food ingredients, mainly oligosaccharides, that benefit the host by selectively stimulating the growth and/or activity of one or a limited number of bacterial species already resident in the colon, named probiotics. Probiotics are live micro-organisms that exert health benefits beyond basic nutrition when ingested in sufficient quantities. After lignin removal and alkali treatment, the arabinoxylan fractions are converted into AXOS (50% w/w) by a two step hydrolytic treatment (chemical then enzymatic) optimized by experimental design approach. The AXOS mass distributions have been established by SM/MALDI-TOF or ESI. Their prebiotic properties have been evaluated on common probiotic bacterial strains, Lactobacillus plantarum, Bifidobacterium longum, Clostridium butyricum and Bacillus cereus, and compared to fructooligosaccharides and AXOS from maize bran
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography