Academic literature on the topic 'Arabidopsis thaliana'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arabidopsis thaliana.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arabidopsis thaliana"

1

Huang, Ancheng C., Ting Jiang, Yong-Xin Liu, Yue-Chen Bai, James Reed, Baoyuan Qu, Alain Goossens, Hans-Wilhelm Nützmann, Yang Bai, and Anne Osbourn. "A specialized metabolic network selectively modulates Arabidopsis root microbiota." Science 364, no. 6440 (May 9, 2019): eaau6389. http://dx.doi.org/10.1126/science.aau6389.

Full text
Abstract:
Plant specialized metabolites have ecological functions, yet the presence of numerous uncharacterized biosynthetic genes in plant genomes suggests that many molecules remain unknown. We discovered a triterpene biosynthetic network in the roots of the small mustard plant Arabidopsis thaliana. Collectively, we have elucidated and reconstituted three divergent pathways for the biosynthesis of root triterpenes, namely thalianin (seven steps), thalianyl medium-chain fatty acid esters (three steps), and arabidin (five steps). A. thaliana mutants disrupted in the biosynthesis of these compounds have altered root microbiota. In vitro bioassays with purified compounds reveal selective growth modulation activities of pathway metabolites toward root microbiota members and their biochemical transformation and utilization by bacteria, supporting a role for this biosynthetic network in shaping an Arabidopsis-specific root microbial community.
APA, Harvard, Vancouver, ISO, and other styles
2

Meyerowitz, E. M. "Arabidopsis Thaliana." Annual Review of Genetics 21, no. 1 (December 1987): 93–111. http://dx.doi.org/10.1146/annurev.ge.21.120187.000521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wixon, Jo. "Arabidopsis thaliana." Comparative and Functional Genomics 2, no. 2 (2001): 91–98. http://dx.doi.org/10.1002/cfg.75.

Full text
Abstract:
Arabidopsisis universally acknowledged as the model for dicotyledonous crop plants. Furthermore, some of the information gleaned from this small plant can be used to aid work on monocotyledonous crops. Here we provide an overview of the current state of knowledge and resources for the study of this important model plant, with comments on future prospects in the field from Professor Pamela Green and Dr Sean May.
APA, Harvard, Vancouver, ISO, and other styles
4

Sussman, M. R. "Shaking Arabidopsis thaliana." Science 256, no. 5057 (May 1, 1992): 619. http://dx.doi.org/10.1126/science.256.5057.619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akimov, Yu. "Ultrastructure of mesophyll cells of Arabidopsis (Arabidopsis thaliana L.) after hyperthermia." Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology 85, no. 2 (2021): 15–22. http://dx.doi.org/10.17721/1728_2748.2021.85.15-22.

Full text
Abstract:
The influence of hyperthermia (33 ºC, 2 days) on the ultrastructure of palisade cells of mesophyll of the first rosette leaves of arabidopsis Columbia 0 ecotype (Col-0, phases 1.02–1.04) was studied. Samples of 12-day-old seedlings were selected in 2 variants: control and 2 days 33 ºC. Seedlings of the control variant were grown in a growth chamber with a photoperiod of 15/9 hours. (day/night), illumination 5.5 klx, 75 % humidity and temperature 22 ºC. In the experimental variant containers with 9-day-old seedlings were transferred for 2 days to a growth chamber with a preset light 5.5 klx and temperature 33 ºC, with a photoperiod of 15/9 hours. The conducted ultrastructural analysis allowed to reveal the spectrum of rearrangements of palisade cells after two-day action of high (33 ºC) temperature. It was shown that the high temperature negatively affected size of mesophyll palisade cells, the cross-sectional area of which was 12 % smaller than in the control. Chloroplasts show an increase in granality: in the control granas contained 6–10 thylakoids, often combining into larger granas, up to 20 or more thylakoids in the intersection zone, while after two-day hyperthermia the granas contained 20 or more thylakoids, often forming giant granas of 60 and more thylakoids, the average cross-sectional area of starch granules decreased by almost half: 0.99 μm2 compared to 1.92 μm2 in the control, the diameter of plastoglobuli increased 3–4 times: to 100–200 nm compared to 30–50 nm in the control. In mitochondria, there was a decrease in the partial volume of the cristae, enlightenment of the matrix, the cross-section of mitochondria increased at least twice: 1 μm2 compared to 0.44 μm2 in the control. The mean cross-sectional area of peroxisomes also increased at least twice, to 1.36 μm2 compared with 0.77 μm2 in the control.
APA, Harvard, Vancouver, ISO, and other styles
6

Lv, Junli, Wei Wu, Tao Ma, Bohan Yang, Asaf Khan, Peining Fu, and Jiang Lu. "Kinase Inhibitor VvBKI1 Interacts with Ascorbate Peroxidase VvAPX1 Promoting Plant Resistance to Oomycetes." International Journal of Molecular Sciences 24, no. 6 (March 7, 2023): 5106. http://dx.doi.org/10.3390/ijms24065106.

Full text
Abstract:
Downy mildew caused by oomycete pathogen Plasmopara viticola is a devastating disease of grapevine. P. viticola secretes an array of RXLR effectors to enhance virulence. One of these effectors, PvRXLR131, has been reported to interact with grape (Vitis vinifera) BRI1 kinase inhibitor (VvBKI1). BKI1 is conserved in Nicotiana benthamiana and Arabidopsis thaliana. However, the role of VvBKI1 in plant immunity is unknown. Here, we found transient expression of VvBKI1 in grapevine and N. benthamiana increased its resistance to P. viticola and Phytophthora capsici, respectively. Furthermore, ectopic expression of VvBKI1 in Arabidopsis can increase its resistance to downy mildew caused by Hyaloperonospora arabidopsidis. Further experiments revealed that VvBKI1 interacts with a cytoplasmic ascorbate peroxidase, VvAPX1, an ROS-scavenging protein. Transient expression of VvAPX1 in grape and N. benthamiana promoted its resistance against P. viticola, and P. capsici. Moreover, VvAPX1 transgenic Arabidopsis is more resistant to H. arabidopsidis. Furthermore, both VvBKI1 and VvAPX1 transgenic Arabidopsis showed an elevated ascorbate peroxidase activity and enhanced disease resistance. In summary, our findings suggest a positive correlation between APX activity and resistance to oomycetes and that this regulatory network is conserved in V. vinifera, N. benthamiana, and A. thaliana.
APA, Harvard, Vancouver, ISO, and other styles
7

Shigemori, Hideyuki, Haruyuki Nakajyo, Yosuke Hisamatsu, Mitsuhiro Sekiguchi, Nobuharu Goto, and Koji Hasegawa. "Arabidopside F, a New Oxylipin from Arabidopsis thaliana." HETEROCYCLES 69, no. 1 (2006): 295. http://dx.doi.org/10.3987/com-06-s(o)33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yilmaz, Merve, Merle Paulic, and Thorsten Seidel. "Interactome of Arabidopsis Thaliana." Plants 11, no. 3 (January 27, 2022): 350. http://dx.doi.org/10.3390/plants11030350.

Full text
Abstract:
More than 95,000 protein–protein interactions of Arabidopsis thaliana have been published and deposited in databases. This dataset was supplemented by approximately 900 additional interactions, which were identified in the literature from the years 2002–2021. These protein–protein interactions were used as the basis for a Cytoscape network and were supplemented with data on subcellular localization, gene ontologies, biochemical properties and co-expression. The resulting network has been exemplarily applied in unraveling the PPI-network of the plant vacuolar proton-translocating ATPase (V-ATPase), which was selected due to its central importance for the plant cell. In particular, it is involved in cellular pH homeostasis, providing proton motive force necessary for transport processes, trafficking of proteins and, thereby, cell wall synthesis. The data points to regulation taking place on multiple levels: (a) a phosphorylation-dependent regulation by 14-3-3 proteins and by kinases such as WNK8 and NDPK1a, (b) an energy-dependent regulation via HXK1 and the glucose receptor RGS1 and (c) a Ca2+-dependent regulation by SOS2 and IDQ6. The known importance of V-ATPase for cell wall synthesis is supported by its interactions with several proteins involved in cell wall synthesis. The resulting network was further analyzed for (experimental) biases and was found to be enriched in nuclear, cytosolic and plasma membrane proteins but depleted in extracellular and mitochondrial proteins, in comparison to the entity of protein-coding genes. Among the processes and functions, proteins involved in transcription were highly abundant in the network. Subnetworks were extracted for organelles, processes and protein families. The degree of representation of organelles and processes reveals limitations and advantages in the current knowledge of protein–protein interactions, which have been mainly caused by a high number of database entries being contributed by only a few publications with highly specific motivations and methodologies that favor, for instance, interactions in the cytosol and the nucleus.
APA, Harvard, Vancouver, ISO, and other styles
9

Meng, R., L. Q. Zhu, Y. F. Yang, L. C. Zhu, Z. K. Hou, L. Jin, and B. C. Wang. "Apyrases in Arabidopsis thaliana." Biologia plantarum 63, no. 1 (January 19, 2019): 38–42. http://dx.doi.org/10.32615/bp.2019.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Louis, Joe, Vijay Singh, and Jyoti Shah. "Arabidopsis thaliana—Aphid Interaction." Arabidopsis Book 10 (January 2012): e0159. http://dx.doi.org/10.1199/tab.0159.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Arabidopsis thaliana"

1

Strachan, Camille. "Phosphoproteomics of Arabidopsis thaliana." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brickell, Laura. "Wound signalling Arabidopsis thaliana." Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Stephanie J. "Understanding genetic regulation of UV-B responses in Arabidopsis thaliana." View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-1/r1/smiths/stephaniesmith.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Müller, Frank. "Phosphatidylglycerophosphat-Synthasen aus Arabidopsis thaliana." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964559455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Para, Alessia. "Meristem Maintenance in Arabidopsis thaliana." Doctoral thesis, Uppsala universitet, Fysiologisk botanik, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4310.

Full text
Abstract:
The shoot apical meristem (SAM) is the structure that shapes the aerial architecture of the plant, by producing lateral organs throughout development. In the model plant Arabidopsis thaliana, the SAM is always identifiable as a characteristic dome, whether it is found in the centre of a rosette of leaves or at the tip of an inflorescence. When senescence occurs and organogenesis ceases, the now inactive SAM still retains its characteristic appearance and it is never consumed into a terminal structure, such as a flower. Mutant plants that undergo termination represent a valuable tool to understand how the SAM structure and function are maintained during plant life. The aim of this work was to investigate the dynamics of meristem development through morphological and genetic studies of three Arabidopsis mutants that exhibit distinct modes of SAM termination: distorted architecture 1 (dar1), adenosine kinase 1 (adk1) and terminal flower 2 (tfl2). The dar1 mutation is characterised by a severely distorted cellular architecture within the SAM. We propose that dar1 affects the pattern of cell differentiation and/or cell proliferation within the SAM apical dome, resulting in termination by meristem consumption. Instead, the adk1 mutation affects the organogenic potential of the SAM, without altering its structure. The adk1 mutant has increased levels of cytokinins and, as a consequence of this, cell division is enhanced and cell differentiation is prevented in the apex, causing termination by meristem arrest. Finally, tfl2 is mutated in the conserved chromatin remodelling factor HP1, a transcriptional repressor with multiple roles during plant development. The tfl2 SAM terminates by conversion into a floral structure, due to de-repression of floral identity genes. Interestingly, tfl2 mutants also show an altered response to light, an indication that TFL2 might act as a repressor also in the context of light signalling.
APA, Harvard, Vancouver, ISO, and other styles
6

Gandorah, Batool. "Identifing Insulators in Arabidopsis thaliana." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23226.

Full text
Abstract:
In transgenic research the precise control of transgene expression is crucial in order to obtain transformed organisms with expected desirable traits. A broad range of transgenic plants use the constitutive cauliflower mosaic virus (CaMV) 35S promoter to drive expression of selectable marker genes. Due to its strong enhancer function, this promoter can disturb the specificity of nearby eukaryotic promoters. When inserted immediately downstream of the 35S promoter in transformation vectors, special DNA sequences called insulators can prevent the influence of the CaMV35S promoter/enhancer on adjacent tissue-specific promoters for the transgene. Insulators occur naturally in organisms such as yeasts and animals but few insulators have been found in plants. Therefore, the goal of this study is to identify DNA sequences with insulator activity in Arabidopsis thaliana. A random oligonucleotide library was designed as an initial step to obtain potential insulators capable of blocking enhancer-promoter interactions in transgenic plants. Fragments from this library with insulator activity were identified and re-cloned into pB31, in order to confirm their activity. To date, one insulator sequence (CLO I-3) has been identified as likely possessing enhancer-blocking activity. Also, two other oligonucleotide sequences (CLO II-10 and CLO III-78) may possess insulator activity but more sampling is needed to confirm their activity. Further studies are needed to validate the function of plant insulator(s) and characterize their associated proteins.
APA, Harvard, Vancouver, ISO, and other styles
7

Rawlins, Marion Ruth. "Glutathion synthetase in Arabidopsis thaliana." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jarsch, Iris. "Remorin proteins in Arabidopsis thaliana." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-181479.

Full text
Abstract:
Die Plasmamembran lebender Zellen stellt die Hauptbarriere für alle Arten von extrazellulären Signalen dar. Viele davon werden ins Innere der Zelle weitergeleitet, hier lösen sie im Kern transkiptionelle Veränderungen und damit die Anpassung der Zelle auf Proteinebene aus. Andere wiederum werden direkt erkannt und in unmittelbare molekulare Antworten umgewandelt, wie zum Beispiel die Sekretion von gespeicherten Stoffen oder Konformations-änderungen von Proteinen. Besonders in Pflanzen, welche durch ihre sesshafte Lebensweise auf die rechtzeitige und spezifische Erkennung von Umweltveränderungen angewiesen sind, hat sich ein höchst diverses Rezeptorsystem entwickelt. In der Ackerschmalwand Arabidopsis thaliana, der in dieser Arbeit verwendeten Modellpflanze, wurden 610 verschiedene Rezeptorproteine identifiziert, welche wiederum von zahlreichen interagierenden, und bis jetzt weitestgehend unerforschten Proteinen reguliert werden. Als entscheidendes Prinzip, dieses Aufgebot an membran-gebundenen Komponenten von Signalkaskaden zu organisieren, gilt inzwischen die zeitliche und lokale Kompartimentierung der Plasmamembran. Durch Akkumulation relevanter Bestandteile von biologischen Prozessen in sogenannten Membrandomänen werden kurze Reaktionszeiten und die unmittelbare Signalweiterleitung garantiert. Besonders wichtig bei solchen Prozessen sind sogenannte Gerüstproteine, welche als Adaptoren zwischen anderen Komponenten fungieren. In dieser Arbeit wurden Remorine, eine Familie pflanzenspezifische Proteinen ohne bisher definierte Funktion, aufgrund ihrer Eigenschaft Membrandomänen zu markieren und ihrer mutmaßlichen Beteiligung an Pflanzen-Pathogen-Interaktionen, genauer untersucht. Eine systematische Expression von Remorinen als Fluorophor-Fusionen mit anschließender hochauflösender mikroskopischer und quantitativer Untersuchung offenbarte, dass die meisten Remorine sich in deutlich unterschiedlichen Mustern an der Membran verteilen. Untersucht wurden dabei Parameter wie die Größe der erkennbaren Domänen, die Form, die Helligkeit, aus welcher auf die Proteinkonzentration rückgeschlossen werden kann, sowie die Domänendichte an der Membran. Diese Ergebnisse wurden von Kolokalisationsanalysen unterstützt, welche die Lokalisation in unterschiedlichen, koexistierenden Membrankompartimenten erkennen ließen. Ferner wurden die Eigenschaften der von Remorinen markierten Membrandomänen, wie zum Beispiel der Austausch an Proteinen mit der umgebenden Membran, sowie lokale und zeitliche Dynamik und Stabilität untersucht. Dabei konnte eine hohe Fluktuation einzelner Proteine zwischen Domäne und umliegender Membran, jedoch eine klare laterale Immobilität der gesamten Domäne nachgewiesen werden. Zusätzlich zeichneten sich die untersuchten Domänen teilweise durch eine außerordentlich große zeitliche Stabilität aus, andere wiederum scheinen abhängig von bestimmten Stimuli zu entstehen. Weitergehende Arbeiten dienten der Identifizierung der Funktion einzelner Bereiche der Proteine. Hierbei konnte die entscheidende Rolle des äußersten C-terminalen Bereichs, des so- genannten RemCAs (Perraki et al., 2012; Konrad et al., 2014) als Membrananker bestätigt werden. Zusätzlich wurden mit Hilfe eines Hefe-2-Hybrid Ansatzes zahlreiche neue Interaktoren für eine Auswahl von Remorinen identifiziert. Dabei wurde ein essentieller Rezeptor der basalen Immunantwort, BAK1 als Interaktor für Remorin 6.4 gefunden. Zuletzt wurden einige wenige Remorine mit Hilfe von Mutantenlinien in einer genetischen Studie phänotypischen Analysen bezüglich ihrer Funktion bei Pflanzen-Pathogen Interaktionen unterzogen. Remorin 6.4 spielt hiernach eine Rolle bei der Immunantwort nach Befall mit virulenten Bakterien. Die grundlegende Erkenntnis, dass in lebenden Zellen zahlreiche klar unterscheidbare Arten an Membrandomänen koexistieren, ist ein Meilenstein auf dem Weg zur Anerkennung einer neuen Vorstellung vom Aufbau der Zytoplasmamembran. Diese wird häufig noch als undifferenzierte zweidimensionale Flüssigkeit beschrieben, in welcher stellenweise sogenannte Lipidflöße, festere Strukturen aus Cholesterin und Sphingolipiden, die auch bestimmte Proteine beherbergen können, auftreten. Anhand der in dieser Arbeit gewonnen Ergebnisse, sowie ähnlicher Studien in Hefe lässt sich nun folgendes Bild zeichnen: Es ist davon auszugehen, dass unterschiedliche Proteine, welche im selben biologischen Prozess involviert sind, in unmittelbarer Nachbarschaft oder sogar im selben Proteinkomplex in der Membran organisiert sind. Die Lipidzusammensetzung in der unmittelbaren Umgebung wird von diesen Proteinen bestimmt, bietet jedoch auch die Grundlage für die Bildung der Domäne, indem sie die Lokalisation der Komponenten in diesem Bereich fördert. Die zahlreichen an der Zellmembran gleichzeitig ablaufenden, unterschiedlichen Prozesse erfordern eine hochkomplexe, zeitlich und räumlich stark regulierte Kompartimentierung der Membran. Es kann vermutet werden, dass Remorine eine Rolle als Gerüstproteine bei der Ausbildung einer Auswahl dieser Domänen bilden. Im Fall von Remorin 6.4 ist das Protein für den Prozess der Flagellin-Erkennung und die unmittelbaren Abwehrantworten, welche nachweislich eine Präformierung der beteiligten Proteinkomplexe voraussetzen, notwendig.
APA, Harvard, Vancouver, ISO, and other styles
9

Evans-Roberts, Katherine Mary. "DNA gyrase of 'Arabidopsis thaliana'." Thesis, University of East Anglia, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saha, Kaushik. "Tetrapyrrole biosynthesis in Arabidopsis thaliana." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612435.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Arabidopsis thaliana"

1

Ward, Sally P. Genetic dissection of auxin signalling in Arabidopsis thaliana. [s.l.]: typescript, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Léon-Kloosterziel, Karen. Genetic analysis of seed development in Arabidopsis thaliana. Wageningen: [s.n.], 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Brown Christopher, and United States. National Aeronautics and Space Administration., eds. Protein expression in Arabidopsis Thaliana after chronic clinorotation. [Kennedy Space Center, FL: The Bionetics Corporation, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syed, Naeem Hasan. A study of quantitative variation in Arabidopsis thaliana. Birmingham: University of Birmingham, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hausmann, Niklas. Gravitationsabhängige Änderungen des Phospho-Proteoms von Arabidopsis thaliana Zellkulturen. [S.l: s.n.], 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Davis Keith, and Hammerschmidt Raymond, eds. Arabidopsis thaliana as a model for plant-pathogen interactions. St. Paul, Minn: APS Press, American Phytopathological Society, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas Alexander Willem van der Kooij. Response of Arabidopsis thaliana to elevated CO₂ and SO₂. [s.l.]: [s.n.], 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mattsson, Jim. Isolation and characterization of homeodomain-leucine zipper encoding genes in plants. Uppsala: Acta Universitatis Upsaliensis, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ross, Katherine Jane. A cytogenetical and molecular study of Meiosis in Arabidopsis thaliana. Birmingham: University of Birmingham, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luong, Quang Trong. Molecular characterisation of a "three-division" mutant of Arabidopsis Thaliana. Birmingham: University of Birmingham, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Arabidopsis thaliana"

1

Davis, Keith R. "Arabidopsis thaliana." In Subcellular Biochemistry, 253–85. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1707-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nick, Peter. "Arabidopsis thaliana (Ackerschmalwand)." In Modellorganismen, 117–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-54868-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abel, Steffen, and Athanasios Theologis. "Transient Gene Expression in Protoplasts of Arabidopsis thaliana." In Arabidopsis Protocols, 209–17. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1385/0-89603-391-0:209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bilang, R., and I. Potrykus. "Transformation in Arabidopsis thaliana." In Plant Protoplasts and Genetic Engineering III, 123–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78006-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beale, Michael H., and Michael R. Sussman. "Metabolomics of Arabidopsis Thaliana." In Annual Plant Reviews Volume 43, 157–80. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444339956.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melnyk, Charles W. "Grafting with Arabidopsis thaliana." In Methods in Molecular Biology, 9–18. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6469-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biswas-Fiss, Esther E., Stephanie Affet, Malissa Ha, Takaya Satoh, Joe B. Blumer, Stephen M. Lanier, Ana Kasirer-Friede, et al. "AtRabC1-C2b (Arabidopsis thaliana)." In Encyclopedia of Signaling Molecules, 176. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Azimova, Shakhnoza S., and Anna I. Glushenkova. "Arabidopsis thaliana (L.) Heynh." In Lipids, Lipophilic Components and Essential Oils from Plant Sources, 178. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-323-7_595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Leung, Jeffrey, and Jéréme Giraudat. "30 Cloning Genes of Arabidopsis thaliana by Chromosome Walking." In Arabidopsis Protocols, 277–303. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1385/0-89603-391-0:277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Graaff, Eric, and Paul J. J. Hooykaas. "Transformation of Arabidopsis thaliana C24 Leaf Discs by Agrobacterium tumefaciens." In Arabidopsis Protocols, 245–58. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1385/0-89603-391-0:245.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Arabidopsis thaliana"

1

Euler Angelo de Menezes Junior and Fabrício Martins Lopes. "Integração de Dados da Arabidopsis thaliana." In XX Seminário de Iniciação Científica e Tecnológica da UTFPR. Curitiba, PR, Brasil: Universidade Tecnológica Federal do Paraná - UTFPR, 2015. http://dx.doi.org/10.20906/cps/sicite2015-0484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurimoto, T., J. V. H. Constable, S. Hood, A. Huda, Carlos Granja, Claude Leroy, and Ivan Stekl. "Response of Arabidopsis thaliana to Ionizing Radiation." In Nuclear Physics Medthods and Accelerators in Biology and Medicine. AIP, 2007. http://dx.doi.org/10.1063/1.2825822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Swartz, Landon G., Suxing Liu, David Mendoza Cozatl, and Kannappan Palaniappan. "Segmentation of Arabidopsis thaliana Using Segment-Anything." In 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2023. http://dx.doi.org/10.1109/aipr60534.2023.10440688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boyko, E. V., and I. F. Golovatskaya. "The effect of melatonin and IAA on the growth of Arabidopsis thaliana cotyledons seedlings in different spectral composition of the light." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.049.

Full text
Abstract:
We studied the effect of melatonin and IAA on the growth of Arabidopsis thaliana cotyledons seedlings in red and blue light. The mutual influence of melatonin and IAA on the regulation of cotyledon growth under selective light was shown.
APA, Harvard, Vancouver, ISO, and other styles
5

Jang, Bumjoon, Sung-Ho Lee, Sooah Woo, Jong-Hyun Park, Myeong Min Lee, and Seung-Han Park. "Multimodal nonlinear imaging of arabidopsis thaliana root cell." In International Conference on Nano-Bio Sensing, Imaging, and Spectroscopy 2017, edited by Jaebum Choo and Seung-Han Park. SPIE, 2017. http://dx.doi.org/10.1117/12.2270697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Auxin-ethylene transcriptional crosstalk in Arabidopsis thaliana L." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Singh, Khushboo, Diksha Garg, Arpana Katiyar, Yashwanti Mudgil, Aparajita Bandyopadhyay, and Amartya Sengupta. "Terahertz Spectroscopy of Different Phenotypes of Arabidopsis Thaliana." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Amba, Vineeth. "Catabolism of Indole-3-Carbil in Arabidopsis thaliana." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1046514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hallmark, Tucker. "Cytokinin-N-Glucosides Delay Senescence in Arabidopsis thaliana." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1050101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schwarzerová, Jana. "Metabolite Genome-Wide Association Studies Of Arabidopsis Thaliana." In STUDENT EEICT 2021. Brno: Fakulta elektrotechniky a komunikacnich technologii VUT v Brne, 2021. http://dx.doi.org/10.13164/eeict.2021.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Arabidopsis thaliana"

1

Mas, Paloma. El reloj circadiano de Arabidopsis thaliana. Sociedad Española de Bioquímica y Biología Molecular (SEBBM), June 2015. http://dx.doi.org/10.18567/sebbmdiv_anc.2015.06.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anthony R. Cashmore. Light responses in Photoperiodism in Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/893226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morin, Shai, Gregory Walker, Linda Walling, and Asaph Aharoni. Identifying Arabidopsis thaliana Defense Genes to Phloem-feeding Insects. United States Department of Agriculture, February 2013. http://dx.doi.org/10.32747/2013.7699836.bard.

Full text
Abstract:
The whitefly (Bemisia tabaci) is a serious agricultural pest that afflicts a wide variety of ornamental and vegetable crop species. To enable survival on a great diversity of host plants, whiteflies must have the ability to avoid or detoxify numerous different plant defensive chemicals. Such toxins include a group of insect-deterrent molecules called glucosinolates (GSs), which also provide the pungent taste of Brassica vegetables such as radish and cabbage. In our BARD grant, we used the whitefly B. tabaci and Arabidopsis (a Brassica plant model) defense mutants and transgenic lines, to gain comprehensive understanding both on plant defense pathways against whiteflies and whitefly defense strategies against plants. Our major focus was on GSs. We produced transgenic Arabidopsis plants accumulating high levels of GSs. At the first step, we examined how exposure to high levels of GSs affects decision making and performance of whiteflies when provided plants with normal levels or high levels of GSs. Our major conclusions can be divided into three: (I) exposure to plants accumulating high levels of GSs, negatively affected the performance of both whitefly adult females and immature; (II) whitefly adult females are likely to be capable of sensing different levels of GSs in their host plants and are able to choose, for oviposition, the host plant on which their offspring survive and develop better (preference-performance relationship); (III) the dual presence of plants with normal levels and high levels of GSs, confused whitefly adult females, and led to difficulties in making a choice between the different host plants. These findings have an applicative perspective. Whiteflies are known as a serious pest of Brassica cropping systems. If the differences found here on adjacent small plants translate to field situations, intercropping with closely-related Brassica cultivars could negatively influence whitefly population build-up. At the second step, we characterized the defensive mechanisms whiteflies use to detoxify GSs and other plant toxins. We identified five detoxification genes, which can be considered as putative "key" general induced detoxifiers because their expression-levels responded to several unrelated plant toxic compounds. This knowledge is currently used (using new funding) to develop a new technology that will allow the production of pestresistant crops capable of protecting themselves from whiteflies by silencing insect detoxification genes without which successful host utilization can not occur. Finally, we made an effort to identify defense genes that deter whitefly performance, by infesting with whiteflies, wild-type and defense mutated Arabidopsis plants. The infested plants were used to construct deep-sequencing expression libraries. The 30- 50 million sequence reads per library, provide an unbiased and quantitative assessment of gene expression and contain sequences from both Arabidopsis and whiteflies. Therefore, the libraries give us sequence data that can be mined for both the plant and insect gene expression responses. An intensive analysis of these datasets is underway. We also conducted electrical penetration graph (EPG) recordings of whiteflies feeding on Arabidopsis wild-type and defense mutant plants in order to determine the time-point and feeding behavior in which plant-defense genes are expressed. We are in the process of analyzing the recordings and calculating 125 feeding behavior parameters for each whitefly. From the analyses conducted so far we conclude that the Arabidopsis defense mutants do not affect adult feeding behavior in the same manner that they affect immatures development. Analysis of the immatures feeding behavior is not yet completed, but if it shows the same disconnect between feeding behavior data and developmental rate data, we would conclude that the differences in the defense mutants are due to a qualitative effect based on the chemical constituency of the phloem sap.
APA, Harvard, Vancouver, ISO, and other styles
4

Jeffrey F.D. Dean. Characterization of Laccase-like Multicopper Oxidases (LMCOs) in Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/929305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5176465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6592071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Velinvi, Valentin, Mariyana Georieva, Grigor Zehirov, and Valya Vassileva. NUDC-like Genes Contribute to Root Growth and Branching in Arabidopsis thaliana. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2021. http://dx.doi.org/10.7546/crabs.2021.12.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Progress report. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10151309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chory, J., N. Aguilar, and C. A. Peto. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5603534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bleecker, A. B. Biochemical and molecular analysis of a transmembrane protein kinase from Arabidopsis thaliana. Progress report, January 1993. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10151596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography